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Week 1: Introduction to Data Analysis and Reporting

Day 01 — INTRODUCTION

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of
discovering useful information, informing conclusions, and supporting decision-making. Data analysis
has multiple facets and approaches, encompassing diverse techniques under a variety of names, and
is used in different business, science, and social science domains. In today's business world, data
analysis plays a role in making decisions more scientific and helping businesses operate more
effectively.

Basics of data analysis and reporting

A data analysis report is a type of business report in which you present quantitative and qualitative
data to evaluate your strategies and performance. Based on this data, you give recommendations
for further steps and business decisions while using the data as evidence that backs up your
evaluation.

Today, data analysis is one of the most important elements of business intelligence strategies as
companies have realized the potential of having data-driven insights at hand to help them make
data-driven decisions.

What Is Data Science?

& O %y
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Research

Substantive
Expertise

The “data science” is fundamentally an interdisciplinary subject. Data science comprises three distinct
and overlapping areas: the skills of a statistician who knows how to model and summarize datasets
(which are growing ever larger); the skills of a computer scientist who can

design and use algorithms to efficiently store, process, and visualize this data; and the domain
expertise—what we might think of as “classical” training in a subject—necessary both to formulate
the right questions and to put their answers in context.

Defining data science

If science is a systematic method by which people study and explain domainspecific phenomena that
occur in the natural world, you can think of data science as the scientific domain that’s dedicated to
knowledge discovery via data analysis. With respect to data science, the term domain-specific refers
to the industry sector or subject matter domain that data science methods are being used to explore.
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Data scientists use mathematical techniques and algorithmic approaches to derive solutions to
complex business and scientific problems. Data science practitioners use its predictive methods to
derive insights that are otherwise unattainable. In business and in science, data science methods can
provide more robust decisionmaking capabilities:

Using data science skills, you can do cool things like the following:

»»Use machine learning to optimize energy usage and lower corporate carbon footprints.
»»Optimize tactical strategies to achieve goals in business and science.

»»Predict for unknown contaminant levels from sparse environmental datasets.

»»Design automated theft- and fraud-prevention systems to detect anomalies and trigger alarms
based on algorithmic results.

»»Craft site-recommendation engines for use in land acquisitions and real estate development.
»»Ilmplement and interpret predictive analytics and forecasting techniques for net increases in
business value.

Why Python?

Python has emerged over the last couple of decades as a first-class tool for scientific computing tasks,
including analyzing and visualizing large datasets. This may have surprised early proponents of the
Python language: the language itself was not explicitly designed with data analysis or scientific
computing in mind.

The usefulness of Python for data science stems primarily from the large and active ecosystem of third-
party packages: NumPy for manipulation of homogeneous array-based data, Pandas for manipulation
of heterogeneous and labeled data, SciPy for common scientific computing tasks, Matplotlib for
publication-quality visualizations, IPython for interactive execution and sharing of code, Scikit-Learn
for machine learning, and many more.

What is Artificial Intelligence?

Artificial intelligence is the simulation of human intelligence processes by machines, especially
computer systems. Specific applications of Al include expert systems, natural language processing,
speech recognition and machine vision.

What is Data Science & Machine Learning?
Data science is a field that studies data and how to extract meaning from it, whereas machine
learning is a field devoted to understanding and building methods that utilize data to improve

Page 15 of 580



performance or inform predictions. Machine learning is a branch of artificial intelligence

Data Science

Field that determines the
processes, systems, and
tools needed to transform
data into insights to be
applied to various

Machine learning is part
of data science. Its
algorithms train on data
delivered by data science
to "learn."

Machine
Learning

Field of artificial
intelligence (Al) that gives
machines the human-like
capability to learn and
adapt through statistical

models and algorithms.

industries.
Skills needed:
Skills needed: e Math, statistics, and Skills needed:

e Statistics probability * Programming skills
Data visualizatiom Comfortable working (Python, SQL, Java)
Coding skills (Python/R) with data Statistics and
Machine learning Programming skills probability
SQL/NoSQL Prototyping
Data wrangling Data modeling

Different phases of a typical Analytics/Data Science projects and role of Python
Data Analytics Life Cycle Phases

e Phase 1: Data Discovery and Formation.

e Phase 2: Data Preparation and Processing.

e Phase 3: Design a Model.

e Phase 4: Model Building.

e Phase 5: Result Communication and Publication.
e Phase 6: Measuring Effectiveness.

Regression vs. Classification

Regression

In statistical modeling, regression analysis is a set of statistical processes for estimating the
relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a
'label' in machine learning parlance) and one or more independent variables (often called 'predictors’,
'covariates', 'explanatory variables' or 'features'). The most common form of regression analysis is
linear regression, in which one finds the line (or a more complex linear combination) that most closely
fits the data according to a specific mathematical criterion. For example, the method of ordinary least
squares computes the unique line (or hyperplane) that minimizes the sum of squared differences
between the true data and that line (or hyperplane). For specific mathematical reasons (see linear
regression), this allows the researcher to estimate the conditional expectation (or population average
value) of the dependent variable when the independent variables take on a given set of values. Less
common forms of regression use slightly different procedures to estimate alternative location
parameters (e.g., quantile regression or Necessary Condition Analysis) or estimate the conditional
expectation across a broader collection of non-linear models (e.g., nonparametric regression).

Regression analysis is primarily used for two conceptually distinct purposes. First, regression analysis
is widely used for prediction and forecasting, where its use has substantial overlap with the field of
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machine learning. Second, in some situations regression analysis can be used to infer causal
relationships between the independent and dependent variables. Importantly, regressions by
themselves only reveal relationships between a dependent variable and a collection of independent
variables in a fixed dataset. To use regressions for prediction or to infer causal relationships,
respectively, a researcher must carefully justify why existing relationships have predictive power for a
new context or why a relationship between two variables has a causal interpretation. The latter is
especially important when researchers hope to estimate causal relationships using observational data.

Classification

Classification is a process related to categorization, the process in which ideas and objects are
recognized, differentiated and understood. Classification is the grouping of related facts into classes.
It may also refer to a process which brings together like things and separates unlike things.

Day 02 -PYTHON ESSENTIALS
Installing Python and the suite of libraries that enable scientific computing is straightforward. This
section will outline some of the considerations to keep in mind when setting up your computer.

Though there are various ways to install Python, the one | would suggest for use in data science is the
Anaconda distribution, which works similarly whether you use Windows, Linux, or Mac OS X. The
Anaconda distribution comes in two flavors:

Miniconda gives you the Python interpreter itself, along with a command-line tool called
conda that operates as a cross-platform package manager geared toward Python packages,
similar in spirit to the apt or yum tools that Linux usersmight be familiar with.

Anaconda includes both Python and conda, and additionally bundles a suite of other
preinstalled packages geared toward scientific computing. Because of the size of this bundle,
expect the installation to consume several gigabytes of disk space.

Introduction to the installation of Anaconda

Anaconda is a reasonably sophisticated installer. It supports installation from local and remote sources
such as CDs and DVDs, images stored on a hard drive, NFS, HTTP, and FTP. Installation can be scripted
with kickstart to provide a fully unattended installation that can be duplicated on scores of machines.
It can also be run over VNC on headless machines. A variety of advanced storage devices including
LVM, RAID, iSCSI, and multipath are supported from the partitioning program. Anaconda provides
advanced debugging features such as remote logging, access to the python interactive debugger, and
remote saving of exception dumps.

Introduction to Python Editors & IDE's (Anaconda, pycharm, Jupyter etc...)

Most data scientists and software developers prefer Python because of the various functionalities
provided by Python and the best among those is its open-source feature. Anyone all over the globe
can create their own package and make it public for others to use, hence improving the python
backend daily.

There are various IDEs in the market to select from such as Spyder, Atom, Pycharm, Pydev etc. Data
scientists prefer Spyder among all the different IDEs available and the driving fact behind this is that
Spyder was built specifically for data science. Its interface allows the user to scroll through various
data variables and also ready to use online help option. The output of the code can be viewed in the
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python console on the same screen. You can work on different scripts at a moment and then try them
out one by one in the same console or different as per your choice all the variables used will be stored
in the variable explorer tab. It also provides an option to view graphs and visualizations in the plot
window. You can also cover the basics concepts by taking up free Syder python and also check
out Python Libraries for Machine Learning from Great Learning Academy.

Understand Jupyter notebook & Customize Settings

The notebook extends the console-based approach to interactive computing in a qualitatively new
direction, providing a web-based application suitable for capturing the whole computation process:
developing, documenting, and executing code, as well as communicating the results. The Jupyter
notebook combines two components:

Overview of Python- Starting with Python

The Python interpreter can run Python programs that are saved in files or interactively execute Python
statements that are typed at the keyboard. Python comes with a program named IDLE that simplifies
the process of writing, executing, and testing programs.

Installing Python
Before you can try any of the programs shown in this book, or write any programs of your own, you
need to make sure that Python is installed on your computer and properly configured. If you are
working in a computer lab, this has probably been done already. If you are using your own computer,
you can follow the instructions in Appendix A to download and install Python.
The Python Interpreter
You learned earlier that Python is an interpreted language. When you install the Python language on
your computer, one of the items that is installed is the Python interpreter. The Python interpreter is a
program that can read Python programming statements and execute them. (Sometimes, we will refer
to the Python interpreter simply as the interpreter.) You can use the interpreter in two modes:
interactive mode and script mode. In interactive mode, the interpreter waits for you to type Python
statements on the keyboard. Once you type a statemen t, the interpreter executes it and then waits
for you to type another statement. In script mode, the interpreter reads the contents of a file that
contains Python statements. Such a file is known as a Python program or a Python script. The
interpreter executes each statement in the Python program as it reads it.
Interactive Mode
Once Python has been installed and set up on your system, you start the interpreter in interactive
mode by going to the operating system’s command line and typing the following command:

python
If you are using Windows, you can alternatively type Python in the Windows search box. In the search
results, you will see a program named something like Python 3.11. (The “3.11” is the version of Python
that is installed. At the time this is being written, Python 3.11 is the latest version.) Clicking this item
will start the Python interpreter in interactive mode.
When the Python interpreter is running in interactive mode, it is commonly called the Python shell.

The >>> that you see is a prompt that indicates the interpreter is waiting for you to type a Python
statement. Let’s try it out. One of the simplest things that you can do in Python is print a message on
the screen. For example, the following statement prints the message Python programming is fun! on
the screen:

print('Python programming is fun!’)
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You can think of this as a command that you are sending to the Python interpreter. If you type
the statement exactly as it is shown, the message Python programming is fun! Is printed on the screen.
Here is an example of how you type this statement at the interpreter’s
prompt:

>>> print('Python programming is fun!') Press Enter
After typing the statement, you press the Enter key, and the Python interpreter executes the
statement, as shown here:
>>> print('Python programming is fun!') Enter
Python programming is fun!

Launching the Jupyter Notebook

The Jupyter notebook is a browser-based graphical interface to the IPython shell, andbuilds
on it a rich set of dynamic display capabilities. As well as executing Python/ IPython
statements, the notebook allows the user to include formatted text, static and dynamic
visualizations, mathematical equations, JavaScript widgets, and much more.Furthermore,
these documents can be saved in a way that lets other people open themand execute the
code on their own systems.

Though the IPython notebook is viewed and edited through your web browser win-
dow, it must connect to a running Python process in order to execute code. To start
this process (known as a “kernel”), run the following command in your system shell:

S jupyter notebook

This command will launch a local web server that will be visible to your browser. It
immediately spits out a log showing what it is doing; that log will look something likethis:

Upon issuing the command, your default browser should automatically open and navigate
to the listed local URL; the exact address will depend on your system. If the browser does
not open automatically, you can open a window and manually open this address
(http://localhost:8888/ in this example).

Help and Documentation in IPython

If you read no other section in this chapter, read this one: | find the tools discussed here to
be the most transformative contributions of IPython to my daily workflow.

When a technologically minded person is asked to help a friend, family member, or colleague
with a computer problem, most of the time it’s less a matter of knowing theanswer as much
as knowing how to quickly find an unknown answer. In data science it’s the same: searchable
web resources such as online documentation, mailing-list threads, and Stack Overflow
answers contain a wealth of information, even (espe- cially?) if it is a topic you’ve found
yourself searching before. Being an effective prac-titioner of data science is less about
memorizing the tool or command you should usefor every possible situation, and more
about learning to effectively find the informa- tion you don’t know, whether through a web
search engine or another means.

One of the most useful functions of IPython/Jupyter is to shorten the gap between theuser
and the type of documentation and search that will help them do their work effectively.
While web searches still play a role in answering complicated questions, an amazing amount
of information can be found through IPython alone. Some examples of the questions IPython
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can help answer in a few keystrokes:
e How do | call this function? What arguments and options does it have?
e What does the source code of this Python object look like?
e What is in this package | imported? What attributes or methods does this objecthave?

Here we’ll discuss IPython’s tools to quickly access this information, namely the ? character
to explore documentation, the ?? characters to explore source code, and theTab key for
autocompletion.

Accessing Documentation with ?

The Python language and its data science ecosystem are built with the user in mind,
and one big part of that is access to documentation. Every Python object contains
the

reference to a string, known as a docstring, which in most cases will contain a concise
summary of the object and how to use it. Python has a built-in help() function that can access
this information and print the results. For example, to see the documenta- tion of the built-
in lenfunction, you can do the following:

In [1]: help(len)

Help on built-in function len in module builtins:

len(...)

len(object) -> integer

Return the number of items of a sequence or mapping.
Depending on your interpreter, this information may be displayed as inline text, or

in some separate pop-up window.

Because finding help on an object is so common and useful, IPython introduces the ?
character as a shorthand for accessing this documentation and other relevant information:

In[2]: len?

Type:

builtin_function_or_meth
odString form: <built-in function len>
Namespace:Python builtin

Docstring:

len(object) -> integer

Return the number of items of a sequence or mapping.

Accessing Source Code with ??

Because the Python language is so easily readable, you can usually gain another levelof
insight by reading the source code of the object you’'re curious about. IPython pro-vides a
shortcut to the source code with the double question mark (??):

In [8]: square?? Type:
function
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String  form:  <function square at
0x103713cbO>Definition: square(a)

Source:
def square(a):
"Return the square of a"

return a ** 2

For simple functions like this, the double question mark can give quick insight
intothe under-the-hood details.

If you play with this much, you’ll notice that sometimes the ?? suffix doesn’t displayany
source code: this is generally because the object in question is not implemented inPython,
but in C or some other compiled extension language. If this is the case, the ??suffix gives the
same output as the ? suffix. You'll find this particularly with many of Python’s built-in objects and
types, for example lenfrom above:

In [9]: len??
Type:
builtin_function_or_meth

odString form: <built-in function len>
Namespace:Python builtin

Docstring:

len(object) -> integer

Return the number of items of a sequence or mapping.

Using ?and/or ??gives a powerful and quick interface for finding information about
what any Python function or module does.

Exploring Modules with Tab Completion
IPython’s other useful interface is the use of the Tab key for autocompletion and exploration

of the contents of objects, modules, and namespaces. In the examples thatfollow, we’ll use
<TAB>to indicate when the Tab key should be pressed.

Tab completion of object contents

Every Python object has various attributes and methods associated with it. Like with the help
function discussed before, Python has a built-in dir function that returns a list of these, but
the tab-completion interface is much easier to use in practice. To seea list of all available

attributes of an object, you can type the name of the object fol- lowed by a period (.)
character and the Tab key:

In [10]: L.<TAB>
(Ia.appen L.copy L.extend L.insert L.remove L.sort

L.clear !c_.coun L.index L.pop L.reverse

To narrow down the list, you can type the first character or several characters of
the name, and the Tab key will find the matching attributes and methods:
In [10]: L.c<TAB>

L.clear L.copy L.count
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In [10]: L.co<TAB>
L.copy L.count

If there is only a single option, pressing the Tab key will complete the line for you.
Forexample, the following will instantly be replaced with L.count:

In [10]: L.cou<TAB>

Though Python has no strictly enforced distinction between public/externalattributes and
private/internal attributes, by convention a preceding underscore isused to denote such
methods. For clarity, these private methods and special methods are omitted from the list
by default, but it’s possible to list them by explicitly typing the underscore:

In [10]: L._<TAB>L.__add L. class

L. gtlL. hash_L. reduce
L._reduce_ex

For brevity, we’ve only shown the first couple lines of the output. Most of these are
Python’s special double-underscore methods (often nicknamed “dunder” methods).

Tab completion when importing

Tab completion is also useful when importing objects from packages. Here we’ll use
itto find all possible imports in the itertoolspackage that start with co:

In [10]: from itertools import co<TAB>
combinations

compres
s combinations_with_replacement
count

Similarly, you can use tab completion to see which imports are available on your sys-tem
(this will change depending on which third-party scripts and modules are visible to your
Python session):

In [10]: import <TAB>
Display all 399 possibilities? (y or n)

Crypto dis y_compi
Cython distutils Pe

pyclbr
dittlib pwd 2mg

In [10]: import h<TAB>
hashlib hmac http
heapq html husl

(Note that for brevity, | did not print here all 399 importable packages and modules
on my system.)

Beyond tab completion: Wildcard matching

Tab completion is useful if you know the first few characters of the object or attributeyou’re
looking for, but is little help if you’d like to match characters at the middle or end of the
word. For this use case, IPython provides a means of wildcard matchingfor names using
the *character.

For example, we can use this to list every object in the namespace that ends with
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Warning:
In [10]: *Warning?

BytesWarning RuntimeWarning
DeprecationWarning SyntaxWarning
FutureWarning UnicodeWarning
ImportWarning UserWarning

PendingDeprecationWarning Warning
ResourceWarning

Notice that the *character matches any string, including the empty string.

Similarly, suppose we are looking for a string method that contains the word find
somewhere in its name. We can search for it this way:

Keyboard Shortcuts in the IPython Shell

If you spend any amount of time on the computer, you’ve probably found a use for keyboard
shortcuts in your workflow. Most familiar perhaps are Cmd-C and Cmd-V (or Ctrl-C and Ctrl-
V) for copying and pasting in a wide variety of programs and sys-tems. Power users tend to
go even further: popular text editors like Emacs, Vim, and others provide users an incredible
range of operations through intricate combina- tions of keystrokes.

The IPython shell doesn’t go this far, but does provide a number of keyboard short- cuts for
fast navigation while you’re typing commands. These shortcuts are not in factprovided by
IPython itself, but through its dependency on the GNU Readline library: thus, some of the
following shortcuts may differ depending on your system configu- ration. Also, while some
of these shortcuts do work in the browser-based notebook, this section is primarily about
shortcuts in the IPython shell.

Once you get accustomed to these, they can be very useful for quickly performing
certain commands without moving your hands from the “home” keyboard
position.If you’re an Emacs user or if you have experience with Linux-style shells,
the follow-ing will be very familiar. We'll group these shortcuts into a few
categories: navigationshortcuts, text entry shortcuts, command history shortcuts, and
miscellaneous shortcuts.

Navigation Shortcuts

While the use of the left and right arrow keys to move backward and forward in the line is
quite obvious, there are other options that don’t require moving your hands from the
“home” keyboard position:

Keystroke Action

Ctrl-a Move cursor to the beginning of the line

Ctrl-e Move cursor to the end of the line
Ctrl-b (or the left arrow key) ~ Move cursor back one character

Ctrl-f (or the right arrow key) Move cursor forward one character

Text Entry Shortcuts

While everyone is familiar with using the Backspace key to delete the previous char- acter,
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reaching for the key often requires some minor finger gymnastics, and it only deletes a single
character at a time. In IPython there are several shortcuts for remov- ing some portion of
the text you’re typing. The most immediately useful of these are the commands to delete
entire lines of text. You’ll know these have become second nature if you find yourself using
a combination of Ctrl-b and Ctrl-d instead of reach- ing for the Backspace key to delete the
previous character!

Keystroke  Action

Backspace key Delete previous character in line

Ctrl-d Delete next character in line

Ctrl-k Cut text from cursor to end of line

Ctrl-u Cut text from beginning fo line to cursor
Ctrl-y Yank (i.e.,, paste) text that was previously cut
Ctrl-t Transpose (i.e., switch) previous two characters

Command History Shortcuts

Perhaps the most impactful shortcuts discussed here are the ones IPython providesfor
navigating the command history. This command history goes beyond your cur- rent IPython
session: your entire command history is stored in a SQLite database in your IPython profile
directory. The most straightforward way to access these is with the up and down arrow keys
to step through the history, but other options exist as well:

Keystroke Action

Ctrl-p (or the up arrow key) ~ Access previous command in history

Ctrl-n (or the down arrow key) Access next command in history

Ctrl-r Reverse-search through command history

The reverse-search can be particularly useful. Recall that in the previous section we defined
a function called square. Let’s reverse-search our Python history from a newlIPython shell
and find this definition again. When you press Ctrl-r in the IPython terminal, you'll see the
following prompt:

In[1]:

(reverse-i-search)™:

If you start typing characters at this prompt, IPython will auto-fill the most recent command,
if any, that matches those characters:
In[1]:

(reverse-i-search)’sga': square??

At any point, you can add more characters to refine the search, or press Ctrl-r againto
search further for another command that matches the query. If you followed along in the
previous section, pressing Ctrl-r twice more gives:
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In[1]:
(reverse-i-search)’sqa': def square(a):

mmn

"""Return the square of a

return a ** 2

Once you have found the command you’re looking for, press Return and the search will end.
We can then use the retrieved command, and carry on with our session:

In [1]: def square(a):

mmn

"""Return the square of a

return a ** 2

In [2]: square(2)

Out[2]: 4
Note that you can also use Ctrl-p/Ctrl-n or the up/down arrow keys to search through
history, but only by matching characters at the beginning of the line. That is, if you type def

and then press Ctrl-p, it would find the most recent command (if any)in your history that
begins with the characters def.

Miscellaneous Shortcuts

Finally, there are a few miscellaneous shortcuts that don’t fit into any of the preceding
categories, but are nevertheless useful to know:

Keystroke Action

Ctrl-l Clear terminal screen

Ctrl-c  Interrupt current Python command

Ctrl-d  Exit IPython session

The Ctrl-c shortcut in particular can be useful when you inadvertently start a very
long-running job.

While some of the shortcuts discussed here may seem a bit tedious at first, they quickly
become automatic with practice. Once you develop that muscle memory, | suspect you will
even find yourself wishing they were available in other contexts.

IPython Magic Commands

The previous two sections showed how IPython lets you use and explore Python effi-ciently
and interactively. Here we’ll begin discussing some of the enhancements that

IPython adds on top of the normal Python syntax. These are known in IPython as magic
commands, and are prefixed by the % character. These magic commands are designed to
succinctly solve various common problems in standard data analysis. Magic commands come
in two flavors: line magics, which are denoted by a single % prefix and operate on a single
line of input, and cell magics, which are denoted by a double %% prefix and operate on
multiple lines of input. We’ll demonstrate and dis- cuss a few brief examples here, and come
back to more focused discussion of severaluseful magic commands later in the chapter.
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Pasting Code Blocks: %paste and %cpaste

When you’re working in the IPython interpreter, one common gotcha is that pasting
multiline code blocks can lead to unexpected errors, especially when indentation and
interpreter markers are involved. A common case is that you find some example codeon a
website and want to paste it into your interpreter. Consider the following simple function:

>>> def donothing(x):

. return x

The code is formatted as it would appear in the Python interpreter, and if you copy and paste
this directly into IPython you get an error:

In [2]: >>> def donothing(x):

return x

File "<ipython-input-20-5a66c8964687>", line 2
return x

A

SyntaxError: invalid syntax

The interpreter is confused by the additional prompt characters in the direct paste.
But never fear—IPython’s %pastemagic function is designed to handle this exact
typeof multiline, marked-up input:

In [3]: %paste
>>> def donothing(x):

return x

## -- End pasted text --

The %paste command both enters and executes the code, so now the function isready
to be used:

In [4]: donothing(10)

Out[4]: 10

A command with a similar intent is %cpaste, which opens up an interactive multiline prompt
in which you can paste one or more chunks of code to be executed in a batch:
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In [5]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:>>> def donothing(x):

return x

These magic commands, like others we will see, make available functionality that
wouldbe difficult or impossible in a standard Python interpreter.

Running External Code: %run

As you begin developing more extensive code, you will likely find yourself working inboth
IPython for interactive exploration and a text editor to store code youwant to reuse. Rather
than running this code in a new window, running it within your IPython session can be
convenient. This can be done with the %runmagic.

For example, imagine you’ve created a myscript.py file with the following contents:

# file: myscript.py

def square(x):

mnin

square a number

nin

return x ** 2

for N in range(1, 4):
print(N, "squared is", square(N))
You can execute this from your IPython session as follows:

In [6]: %run myscript.py
1 squaredis 1

2 squaredis 4
3 squaredis 9

Note also that after you’ve run this script, any functions defined within it are availablefor use
in your IPython session:

In [7]: square(5)
Out[7]: 25

There are several options to fine-tune how your code is run; you can see the docu- mentation
in the normal way, by typing %run? in the IPython interpreter.

Timing Code Execution: %timeit

Another example of a useful magic function is %timeit, which will automatically
determine the execution time of the single-line Python statement that follows it.
For example, we may want to check the performance of a list comprehension:

In [8]: %timeit L= [n ** 2 for nin range(1000)]1000
loops, best of 3: 325 ps per loop

The benefit of %timeit is that for short commands it will automatically perform mul-tiple
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runs in order to attain more robust results. For multiline statements, adding a second % sign
will turn this into a cell magic that can handle multiple lines of input. For example, here’s the
equivalent construction with a forloop:
In [9]: %%timeit
.o Ll=1]
... for nin range(1000):
L.append(n ** 2)

1000 loops, best of 3: 373 us per loop

We can immediately see that list comprehensions are about 10% faster than the equivalent
for loop construction in this case. We’ll explore %timeit and otherapproaches to timing and
profiling code in “Profiling and Timing Code” on page 25.

Help on Magic Functions: ?, %magic, and %lsmagic

Like normal Python functions, IPython magic functions have docstrings, and thisuseful
documentation can be accessed in the standard manner. So, for example, toread the
documentation of the %timeitmagic, simply type this:

In [10]: %timeit?

Documentation for other functions can be accessed similarly. To access a general description
of available magic functions, including some examples, you can type this:

In [11]: %smagic
For a quick and simple list of all available magic functions, type this:

In [12]: %lsmagic

Profiling and Timing Code

In the process of developing code and creating data processing pipelines, there are often
trade-offs you can make between various implementations. Early in developing your
algorithm, it can be counterproductive to worry about such things. As Donald Knuth
famously quipped, “We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.”

But once you have your code working, it can be useful to dig into its efficiency a bit.
Sometimes it’s useful to check the execution time of a given command or set of com-mands;
other times it’s useful to dig into a multiline process and determine where thebottleneck lies
in some complicated series of operations. IPython provides access to awide array of
functionality for this kind of timing and profiling of code. Here we’ll discuss the following
IPython magic commands:

%time Time the execution of a single statement

%timeit Time repeated execution of a single statement for more accuracy
%prun Run code with the profiler

%lprun Run code with the line-by-line profiler
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%memit Measure the memory use of a single statement
%mprun Run code with the line-by-line memory profiler

The last four commands are not bundled with IPython—you’ll need to install the line_profiler
and memory_profiler extensions, which we will discuss in the fol- lowing sections.

Timing Code Snippets: %timeit and %time

We saw the %timeitline magic and %%timeitcell magic in the introduction to magicfunctions
in “IPython Magic Commands” ; %%timeit can be used to time the repeated execution of
snippets of code:

In[1]: %timeit sum(range(100))
100000 loops, best of 3: 1.54 us per loop

Note that because this operation is so fast, %timeitautomatically does a large numberof
repetitions. For slower commands, %timeit will automatically adjust and performfewer
repetitions:

In[2]: %%timeit
total =0
for iin range(1000):
for jin range(1000): total
F= % (1) *5
1 loops, best of 3: 407 ms per loop
Sometimes repeating an operation is not the best option. For example, if we have a list that

we’d like to sort, we might be misled by a repeated operation. Sorting a pre- sorted list is
much faster than sorting an unsorted list, so the repetition will skew the result:

In[3]: import
L = [random.random() for iin range(100000)]
%timeit L.sort()

100 loops, best of 3: 1.9 ms per loop

For this, the %time magic function may be a better choice. It also is a good choice forlonger-
running commands, when short, system-related delays are unlikely to affect the result. Let’s
time the sorting of an unsorted and a presorted list:

In[4]: import
L = [random.random() for iin range(100000)]
print("sorting an unsorted list:")
%time L.sort()

sorting an unsorted list:

CPU times: user 40.6 ms, sys: 896 us, total: 41.5 ms
Wall time: 41.5 ms

In[5]: print("sorting an already sorted list:")
%time L.sort()

sorting an already sorted list:
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CPU times: user 8.18 ms, sys: 10 s, total: 8.19 ms
Wall time: 8.24 ms

Notice how much faster the presorted list is to sort, but notice also how much longer the
timing takes with %time versus %timeit, even for the presorted list! This is a result of the
fact that %timeit does some clever things under the hood to prevent sys-tem calls from
interfering with the timing. For example, it prevents cleanup of unusedPython objects
(known as garbage collection) that might otherwise affect the timing. For this reason,
%timeitresults are usually noticeably faster than %timeresults.

For %time as with %timeit, using the double-percent-sign cell-magic syntax allows timing of
multiline scripts:
In[6]: %%time

total =0
for iin range(1000):
for jin range(1000): total
+=i% (1) %]

CPU times: user 504 ms, sys: 979 us, total: 505 ms
Wall time: 505 ms

For more information on %time and %timeit, as well as their available options, use the
IPython help functionality (i.e., type %time? at the IPython prompt).

Profiling Full Scripts: %prun

A program is made of many single statements, and sometimes timing these state- ments in
context is more important than timing them on their own. Python containsa built-in code
profiler (which you can read about in the Python documentation), but IPython offers a much
more convenient way to use this profiler, in the form of the magic function %prun.

By way of example, we’ll define a simple function that does some calculations:
In[7]: def sum_of lists(N):
total =0
for iin range(5):

L=[j~(j>>i)for jin range(N)]total
+=sum(L)

return total
Now we can call %prunwith a function call to see the profiled results:

In[8]: %prun sum_of _lists(1000000)

In the notebook, the output is printed to the pager, and looks something like this:

14 function calls in 0.714 seconds

Ordered by: internal time

ncalls tottime percall cumti percall filename:lineno(function)
me

5 0.599 0.120 0.599 0.120 <ipython-input-
19>:4(<listcomp>)

5 0.064 0.013 0.064 0.013 {built-in method sum}

1 0.036 0.036 0.699 0.699 <ipython-input-
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19>:1(sum_of lists)
1 0.014 0.014 0.714 0.714 <string>:1(<module>)
1 0.000 0.000 0.714 0.714 {built-in method exec}
The result is a table that indicates, in order of total time on each function call, where the
execution is spending the most time. In this case, the bulk of execution time is in the list
comprehension inside sum_of_lists. From here, we could start thinkingabout what
changes we might make to improve the performance in the algorithm.

Day 03 — Designing a Program

Programs must be carefully designed before they are written. During the design process, programmers
use tools such as pseudocode and flowcharts

to create models of programs

Input, Processing, and Output

Input is data that the program receives. When a program receives data,
it usually processes it by performing some operation with it. The result
of the operation is sent out of the program as output.

Python Objects and data types

The following items are all considered objects in the Python programming

language:

»»Numbers

»»Strings

»»lists

»»Tuples

»»Sets

»»Dictionaries

»»Functions

»»Classes

Additionally, all these items (except for the last two in the list) function as basic data types in plain
ol’ Python, which is Python with no external extensions added to it. (I introduce you to the external
Python libraries NumPy, SciPy, Pandas, MatPlotLib, and Scikit-learn in the later section “Checking out
some useful Python libraries.” When you add these libraries, additional data types become available
to you.)

In Python, functions do basically the same thing as they do in plain math — they accept data inputs,
process them, and output the result. Output results depend wholly on the task the function was
programmed to do. Classes, on the other hand, are prototypes of objects that are designed to
output additional objects.

If your goal is to write fast, reusable, easy-to-modify code in Python, you must

use functions and classes. Doing so helps to keep your code efficient and

organized.

Sorting out the various Python data types

If you do much work with Python, you need to know how to work with different

data types. The main data types in Python and the general forms they take are

described in this list:

»»Numbers: Plain old numbers, obviously

»»Strings: .. or “...”

»olists: [...Jor[..., ..., ...]

»»Tuples: (...)or (..., ... ...)
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Numbers in Python

The Numbers data type represents numeric values that you can use to handle all
types of mathematical operations. Numbers come in the following types:
»»Integer: A whole-number format

»»Long: A whole-number format with an unlimited digit size

»»Float: A real-number format, written with a decimal point

»»Complex: An imaginary-number format, represented by the square root of -1

Strings and String Literals

Programs almost always work with data of some type. For example, Program 2-1 uses the
following three pieces of data:

'Kate Austen'

'123 Full Circle Drive

'Asheville, NC 28899'

These pieces of data are sequences of characters. In programming terms, a sequence of characters
that is used as data is called a string. When a string appears in the actual code of a program,
it is called a string literal. In Python code, string literals must be enclosed in quote marks.

As mentioned earlier, the quote marks simply mark where the string data begins and ends.
In Python, you can enclose string literals in a set of single-quote marks (') or a set of
double-

qguote marks (").

Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the Python interpreter

ignores them. They are intended for people who may be reading the

source code.

Variables
CONCEPT: A variable is a name that represents a value stored in the computer’s
memory.

Variable Naming Rules

Although you are allowed to make up your own names for variables, you must follow these
rules:

* You cannot use one of Python’s key words as a variable name. (See Table 1-2 for a

list of the key words.)

¢ A variable name cannot contain spaces.

¢ The first character must be one of the letters a through z, A through Z, or an underscore
character ().

¢ After the first character you may use the letters a through z or A through Z, the digits

0 through 9, or underscores.

¢ Uppercase and lowercase characters are distinct. This means the variable name
IltemsOrdered is not the same as itemsordered.

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name may suggest a camel’s humps.

Variable Name Legal or lllegal?
Table 1:Sample variable names

‘ Variable Name ‘ Legal or lllegal? ‘ Reason
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units_per_day | Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.
Junel997 Legal
Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

Numeric Data Types and Literals

Python

uses data types to categorize values in memory. When an integer is stored in memory, it is
classified as an int, and when a real number is stored in memory, it is classified as a float.
room =503

dollars =2.75

Storing Strings with the str Data Type

In addition to the int and float data types, Python also has a data type named str, which
is used for storing strings in memory. The code in Program 2-11 shows how strings can be
assigned to variables.

Reading Input from the Keyboard
CONCEPT: Programs commonly need to read input typed by the user on the keyboard.
We will use the Python functions to do this.

Performing Calculations
CONCEPT: Python has numerous operators that can be used to perform mathematical

calculations.

Python math operators

Symbol | Operation Description
+ Addition Adds
- Subtraction Subtracts
* Multiplication | Multiplies
/ Division Divides
a floating-point | number
// Integer division
a whole number
% Remainder Divides
o Exponent Raises
Escape Character
Escape Effect
Character
\n Causes output to be advanced to the next line.
\t Causes output to skip over to the next horizontal tab position.
\' Causes a single quote mark to be printed.
\" Causes a double quote mark to be printed.
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‘ \\ ‘ Causes a backslash character to be printed.

Day 04-Core built-in data structures — Lists, Tuples, Dictionaries, Sets

A sequence is an object that holds multiple items of data, stored one after the other. You can perform
operations on a sequence to examine and manipulate the items stored in it.

A sequence is an object that contains multiple items of data. The items that are in a sequence
are stored one after the other. Python provides various ways to perform operations on the
items that are stored in a sequence.

Introduction to Lists

A list is an object that contains multiple data items. Lists are mutable, which means that their contents
can be changed during a program’s execution. Lists are dynamic data structures, meaning that items
may be added to them or removed from them. You can use indexing, slicing, and various methods to
work with lists in a program.

even_numbers =2, 4, 6, 8, 10]

Country = [“Pakistan”, “ Iran”, “China”, “Iraq”]

Lists Are Mutable

Lists in Python are mutable, which means their elements can be changed. Consequently, an
expression in the form list[index] can appear on the left side of an assignment operator.
numbers =[1, 2, 3, 4, 5]

numbers[0] = 99

It will replace the first element with 99.

List Slicing
A slicing expression selects a range of elements from a sequence.

Copying Lists
To make a copy of a list, you must copy the list’s elements.

listl=[1, 2, 3, 4]
# Assign the list to the list2 variable.
list2 = listl

After this code executes, both variables list1 and list2 will reference the same list in
Memory

One way to do this is with a loop that copies each element of the list.
Here is an example:

# Create a list with values.

listl =1, 2, 3, 4]

# Create an empty list.

list2 =]

# Copy the elements of list1 to list2.

for item in list1:

list2.append(item)

Page 34 of 580



Tuples
A tuple is an immutable sequence, which means that its contents cannot be changed.

A tuple is a sequence, very much like a list. The primary difference between tuples and lists
is that tuples are immutable. That means once a tuple is created, it cannot be changed.
When you create a tuple, you enclose its elements in a set of parentheses, as shown in the
following interactive session:

>>>my_tuple=(1,2,3,4,5)

In fact, tuples support all the same operations as lists, except those that change the contents
of the list. Tuples support the following:

* Subscript indexing (for retrieving element values only)

¢ Methods such as index

e Built-in functions such as len, min, and max

e Slicing expressions

¢ The in operator

* The + and * operators

Tuples do not support methods such as append, remove, insert, reverse, and sort.

Dictionaries
A dictionary is an object that stores a collection of data. Each element in a dictionary has two parts: a
key and a value. You use a key to locate a specific value.

Creating a Dictionary

You can create a dictionary by enclosing the elements inside a set of curly braces ( {} ). An element
consists of a key, followed by a colon, followed by a value. The elements are separated by commas.
The following statement shows an example:

phonebook = {'Chris':'555-1111", 'Katie':'555-2222", 'Joanne':'555-3333'}

This statement creates a dictionary and assigns it to the phonebook variable. The dictionary contains
the following three elements:

o The first element is 'Chris':'555-1111". In this element, the key is 'Chris' and the value is
'5655-1111".

. The second element is 'Katie':'555-2222". In this element, the key is 'Katie' and the value
is '555-2222',

. The third element is 'Joanne':'555-3333". In this element, the key is 'Joanne' and the value
is '555-3333",

Retrieving a Value from a Dictionary
The elements in a dictionary are not stored in any particular order. For example, look at the
following interactive session in which a dictionary is created and its elements are displayed:

>>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222", 'Joanne':'555-3333'} Enter
>>> phonebook Enter

{'Chris": '555-1111", 'Joanne': '555-3333', 'Katie': '555-2222'}

>>>

Notice the order in which the elements are displayed is different than the order in which they were
created. This illustrates how dictionaries are not sequences, like lists, tuples, and strings. As a result,
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you cannot use a numeric index to retrieve a value by its position from a dictionary. Instead, you use
a key to retrieve a value.

To retrieve a value from a dictionary, you simply write an expression in the following general format:
dictionary_namel[key]

In the general format, dictionary_name is the variable that references the dictionary, and key is a
key. If the key exists in the dictionary, the expression returns the value that is associated with the
key. If the key does not exist, a KeyError exception is raised. The following interactive session
demonstrates:

Using the in and not in Operators to Test for a Value in a Dictionary

As previously demonstrated, a KeyError exception is raised if you try to retrieve a value from a
dictionary using a nonexistent key. To prevent such an exception, you can use the in operator to
determine whether a key exists before you try to use it to retrieve a value. The following interactive
session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222", 'Joanne':'555-3333'} Enter

2 >>> if 'Chris' in phonebook: Enter

3 print(phonebook['Chris']) Enter Enter
4

5555-1111

6 >>>

Adding Elements to an Existing Dictionary

Dictionaries are mutable objects. You can add new key-value pairs to a dictionary
with an assignment statement in the following general format:

dictionary_namelkey] = value
Deleting Elements

You can delete an existing key-value pair from a dictionary with the del statement.
Here is the general format:

del dictionary_name[key]
Some Dictionary Methods

Dictionary objects have several methods. In this section, we look at some of the
more usefulones, which are summarized in Table 9-1.

Some of the dictionary methods

Method Description

Clear Clears the contents of a dictionary.

get Gets the value associated with a specified key. If the key is not

found, the methoddoes not raise an exception. Instead, it returns a
default value.

items Returns all the keys in a dictionary and their associated values as
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a sequence oftuples.

keys Returns all the keys in a dictionary as a sequence of tuples.

pop Returns the value associated with a specified key and removes

that key-value pair from the dictionary. If the key is not found,
the method returns a default value.

popitem Returns a randomly selected key-value pair as a tuple from the
dictionary andremoves that key-value pair from the dictionary.
values Returns all the values in the dictionary as a sequence of tuples.

The getMethod

You can use the getmethod as an alternative to the []operator for getting a value
froma dictionary. The getmethod does not raise an exception if the specified key is
not found.Here is the method’s general format:

dictionary.get(key, default)

Sets
A set contains a collection of unique values and works like a mathematical set.

A set is an object that stores a collection of data in the same way as mathematical sets. Here are
some important things to know about sets:

o All the elements in a set must be unique. No two elements can have the same value.

o Sets are unordered, which means that the elements in a set are not stored in any par-
ticular order.

o The elements that are stored in a set can be of different data types.

Creating a Set

To create a set, you have to call the built-in set function. Here is an example of
how you create an empty set:

myset = set()
myset = set('abc')
Finding the Union of Sets
The union of two sets is a set that contains all the elements of both sets.
setl.union(set2)

Finding the Intersection of Sets
The intersection of two sets is a set that contains only the elements that are found in both sets.

setl.intersection(set2)

other functions
setl.difference(set2) and equivalent set1 - set2

setl.symmetric_difference(set2) and equivalent set1 " set2

set2.issubset(set1) and equivalen set2 <= set1
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setl.issuperset(set2) and equivalen setl >= set2

Lab activity -Sets
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The
lines starting with # sign are comments in Python and are used to elaborate the code.

1 # This program demonstrates various set operations.

2 baseball = set(['Jodi', 'Carmen’, 'Aida’, 'Alicia'])

3 basketball = set(['Eva’, 'Carmen’, 'Alicia’, 'Sarah']) 4

5 # Display members of the baseball set.

6 print('The following students are on the baseball team:')
7 for name in baseball:

8 print(name) 9

10 # Display members of the basketball set.

11 print()

12 print('The following students are on the basketball team:')

13 for name in basketball:

14 print(name) 15

16 # Demonstrate intersection

17 print()

18 print('The following students play both baseball and basketball:')
19 for name in baseball.intersection(basketball):

20 print(name) 21

22 # Demonstrate union

23 print()

24 print('The following students play either baseball or basketball:')
25 for name in baseball.union(basketball):

26 print(name) 27

28 # Demonstrate difference of baseball and basketball

29 print()

30 print('The following students play baseball, but not basketball:')
31 for name in baseball.difference(basketball):

32 print(name) 33

34 # Demonstrate difference of basketball and baseball

35 print()

36 print('The following students play basketball, but not baseball:')
37 for name in basketball.difference(baseball):

38 print(name) 39

40 # Demonstrate symmetric difference

41 print()

42 print('The following students play one sport, but not both:')

43 for name in baseball.symmetric_difference(basketball):

44 print(name)

Day-05: Decision Structures and Boolean Logic

The if Statement

CONCEPT: The if statement is used to create a decision structure, which allows a program to have
more than one path of execution. The if statement causes one or more statements to execute only
when a Boolean expression is true.
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A control structure is a logical design that controls the order in which a set of statements execute. So
far in this book, we have used only the simplest type of control structure: the sequence structure. A
sequence structure is a set of statements that execute in the order in which they appear.

if condition:
statement
statement
etc.
Code snippet

# This program gets three test scores and displays

# their average. It congratulates the user if the
#averageisahighscore.The HIGH_SCORE named constant holds the value that is

# considered a high score.
HIGH_SCORE =95

test1 = int(input('Enter the score for test 1: '))
test2 = int(input('Enter the score for test 2: '))
test3 =int(input('Enterthescorefortest3:'))
# Calculate the average test score.

average = (test1 +test2 + test3)/3

# Print the average.

print('The average score is', average)

#Ifthe average is a high score,

# congratulate the user.

if average >= HIGH_SCORE:
print('Congratulations!’)

print('That is a great average!')

Boolean Expressions and Relational Operators

As previously mentioned, the if statement tests an expression to determine whether it
is true or false. The expressions that are tested by the if statement are called Boolean
expres- sions, named in honor of the English mathematician George Boole. In the
1800s, Boole invented a system of mathematics in which the abstract concepts of true
and false can be used in computations.

Typically, the Boolean expression that is tested by an if statement is formed with a

relational operator. A relational operator determines whether a specific relationship

existsbetween two values. For example, the greater than operator (>) determines

whether one value is greater than another. The equal to the operator (==) determines

whether two values are equal.

The if-else Statement

CONCEPT: An if-else statement will execute one block of statements if its condition is true, or
another block if its condition is false.

The previous section introduced the single alternative decision structure (the if statement), which has
one alternative path of execution. Now, we will look at the dual alternative deci- sion structure, which
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has two possible paths of execution—one path is taken if a condition is true, and the other path is
taken if the condition is false.

Indentation in the if-else Statement
When you write an if-else statement, follow these guidelines for indentation:

. Make sure the if clause and the else clause are aligned.

. The if clause and the else clause are each followed by a block of statements. Make sure the
statements in the blocks are consistently indented.

Nested Decision Structures and the

if-elif-else Statement
CONCEPT: To test more than one condition, a decision structure can be nested inside another
decision structure.

Logical Operators

CONCEPT: The logical “and” operator and the logical “or” operator allow you to connect multiple
Boolean expressions to create a compound expression. The logical “not” operator reverses the truth
of a Boolean expression.

Boolean Variables
CONCEPT: A Boolean variable can reference one of two values: True or False.

Boolean variables are commonly used as flags, which indicate whether specific conditions exist.

Repetition Structures
CONCEPT: A repetition structure causes a statement or set of statements to executerepeatedly.

Condition-Controlled and Count-Controlled Loops

We will look at two broad categories of loops: condition-controlled and count-controlled. A condition-
controlled loop uses a true/false condition to control the number of times that it repeats. A count-
controlled loop repeats a specific number of times. In Python, you use the while statement to write a
condition-controlled loop, and you use the for statement to write a count-controlled loop. In this
chapter, we will demonstrate how to write both types of loops.

The while Loop: A Condition-Controlled Loop
A condition-controlled loop causes a statement or set of statements to repeat as long as a condition is
true. In Python, you use the while state- ment to write a condition-controlled loop.

The while loop gets its name from the way it works: while a condition is true, do some task. The loop
has two parts: (1) a condition that is tested for a true or false value, and (2) a statement or set of
statements that is repeated as long as the condition is true.

Syntax:
while condition:
statement
statement

etc.
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The while Loop Is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its condition before per- forming an
iteration. Because the test is done at the beginning of the loop, you usually have to perform some
steps prior to the loop to make sure that the loop executes at least once. For example,

while keep_going =="y":

Infinite Loops

An infinite loop continues to repeat until the program is interrupted. Infinite loops usually occur when
the programmer forgets to write code inside the loop, making the test condition false. In most
circumstances, you should avoid writing infinite loops.

The for Loop: A Count-Controlled Loop
A count-controlled loop iterates a specific number of times. In Python, you use the for the statement
to write a count-controlled loop.

As mentioned at the beginning of this chapter, a count-controlled loop iterates a specific number of
times. Count-controlled loops are commonly used in programs. For example, suppose a business is
open six days per week, and you are going to write a program that calculates the total sales for a week.
You will need a loop that iterates exactly six times. Each time the loop iterates, it will prompt the user
to enter the sales for one day.

You use the for statement to write a count-controlled loop. In Python, the for statement is designed
to work with a sequence of data items. When the statement executes, it iterates once for each item
in the sequence. Here is the general format:

for variable in [valuel, value2, etc.]: statement
statement etc.

We will refer to the first line as the for clause. In the for clause, variable is the name of a variable.
Inside the brackets a sequence of values appears, with a comma separating each value. (In Python, a
comma-separated sequence of data items that are enclosed in a set of brackets is called a list.

Beginning at the next line is a block of statements that is executed each time the loop iterates.

The for statement executes in the following manner: The variable is assigned the first value in the list,
then the statements that appear in the block are executed. Then, variable is assigned the next value
in the list, and the statements in the block are executed again. This continues until variable has been
assigned the last value in the list.

forxinrange(5):
print('Hello world')

for num in range(1, 10, 2):
print(num)

Calculating a Running Total
A running total is a sum of numbers accumulating with each loop iteration. The variable used to keep
the running total is called an accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For example,
suppose you are writing a program that calculates a business’s total sales for a week. The program
would read the sales for each day as input and calculate the total of those numbers.
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Programs that calculate the total of a series of numbers typically use two elements:
. A loop that reads each number in the series.
. A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. It is often
said that the loop keeps a running total because it accumulates the total as it reads each number in
the series.

1 # This program calculates the sum of a

series

2

MAX = 5 # The maximum number

5 # Initialize an accumulator
variable.total = 0.0

g # Explain what we are doing.

print ('This program calculates the

e}

sum of')print (MAX, 'numbers you will

10 enter.')
11
Statement What It Does Value of xafter the Statement
X=X+ 4 Add 4 to x 10
X=x- 3 Subtracts 3 from x 3
x=x*¥ 10 Multiplies xby 10 60
x=x/ 2 Divides xby 2
X=X% 4 Assigns the remainder of x / 4to x
Sentinels

A sentinel is a special value that marks the end of a sequence of values.

. Simply ask the user, at the end of each loop iteration, if there is another value to process. If
the sequence of values is long, however, asking this question at the end of each loop iteration might
make the program cumbersome for the user.

. Ask the user at the beginning of the program how many items are in the sequence. This might
also inconvenience the user, however. If the sequence is very long, and the user does not know the
number of items it contains, it will require the user to count them.

When processing a long sequence of values with a loop, perhaps a better technique is touse a
sentinel. A sentinel is a special value that marks the end of a sequence of items. Whena program
reads the sentinel value, it knows it has reached the end of the sequence, so the loop terminates.

Nested Loops
CONCEPT: A loop that is inside another loop is called a nested loop.
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Example:
for hours in range(24):
for minutes in range(60):
for seconds in range(60):
print(hours, "', minutes, "', seconds)

Lab Activity: Nested Loops
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The
lines starting with # sign are comments in Python and are used to elaborate the code.

1 # This program averages test scores. It asks the user for the

2 # number of students and the number of test scores per student. 3

4 # Get the number of students.

5 num_students = int(input('How many students do you have?')) 6

7 # Get the number of test scores per student.

8 num_test_scores = int(input('How many test scores per student? ')) 9

10 # Determine each student's average test score.

11 for student in range(num_students):

12 # Initialize an accumulator for test scores.
13 total =0.0

14 # Get a student's test scores.

15 print('Student number', student + 1)

16 print(' )

17 for test_num in range(num_test_scores):
18 print('Test number', test_num + 1, end="
19 score = float(input(': '))

20 # Add the score to the accumulator.

21 total += score

22 23 # Calculate the average test score for this student.
24 average = total / num_test_scores 25

26 # Display the average.

27 print('The average for student number', student + 1,
28 'is:', average)
print()
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Week 2 -Data Manipulation and Cleaning

Day 01- Functions, Packages
A function is a group of statements that exist within a program for the
purpose of performing a specific task.

Benefits of Modularizing a Program with Functions

A program benefits in the following ways when it is broken down into functions:

Simpler Code

A program’s code tends to be simpler and easier to understand when it is broken down

into functions. Several small functions are much easier to read than one long sequence of
statements.

Code Reuse

Functions also reduce the duplication of code within a program. If a specific operation is performed in
several places in a program, a function can be written once to perform thatoperation, then be
executed any time it is needed. This benefit of using functions is known as code reuse because you are
writing the code to perform a task once, then reusing it each time you need to perform the task.
Better Testing

When each task within a program is contained in its own function, testing and debugging

becomes simpler. Programmers can test each function in a program individually, to determine
whether it correctly performs its operation. This makes it easier to isolate and fix errors.

Faster Development

Suppose a programmer or a team of programmers is developing multiple programs. They

discover that each of the programs perform several common tasks, such as asking for a username
and a password, displaying the current time, and so on. It doesn’t make sense to write

the code for these tasks multiple times. Instead, functions can be written for the commonly

needed tasks, and those functions can be incorporated into each program that needs them.

Easier Facilitation of Teamwork

Functions also make it easier for programmers to work in teams. When a program is developed

as a set of functions that each performs an individual task, then different programmers

can be assigned the job of writing different functions.

Void Functions and Value-Returning Functions

You will learn to write two types of functions: void functions and value- returning functions. When you
call a void function, it simply executes the statements it contains and then terminates. When you call
a value-returning function, it executes the statements that it contains, then returns a value back to
the statement that called it. The input function is an example of a value-returning function. When you
call the input func-tion, it gets the data that the user types on the keyboard and returns that data as
a string. The int and float functions are also examples of value-returning functions. You pass an
argument to the int function, and it returns that argument’s value converted to an integer. Likewise, you
pass an argument to the float function, and it returns that argument’s value converted to a floating-point
number.

The first type of function that you will learn to write is the void function.
Defining and Calling a Void Function

The code for a function is known as a function definition. To execute
the function, you write a statement that calls it.

Function Names

Before we discuss the process of creating and using functions, we should mention a few
things about function names. Just as you name the variables that you use in a program, you
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also name the functions. A function’s name should be descriptive enough so anyone reading
your code can reasonably guess what the function does.

Python requires that you follow the same rules that you follow when naming variables,

which we recap here:

* You cannot use one of Python’s key words as a function name. (See Table 1-2 for a

list of the key words.)

¢ A function name cannot contain spaces.

¢ The first character must be one of the letters a through z, A through Z, or an underscore
character ().

¢ After the first character you may use the letters a through z or A through Z, the digits

0 through 9, or underscores.

e Uppercase and lowercase characters are distinct.

Because functions perform actions, most programmers prefer to use verbs in function names.
For example, a function that calculates gross pay might be named calculate_gross_pay.

This name would make it evident to anyone reading the code that the function calculates
something. What does it calculate? The gross pay, of course. Other examples of good function
names would be get_hours, get_pay_rate, calculate_overtime, print_check,

and so on. Each function name describes what the function does.

Defining and Calling a Function

To create a function, you write its definition. Here is the general format of a function definition
in Python:

def function_name():

statement

statement

etc.

The first line is known as the function header. It marks the beginning of the function definition.
The function header begins with the keyword def, followed by the name of the

function, followed by a set of parentheses, followed by a colon.

Beginning at the following line is a set of statements known as a block. A block is simply a set
of statements that belong together as a group. These statements are performed any time the
function is executed. Notice in the general format that all of the statements in the block are
indented. This indentation is required, because the Python interpreter uses it to tell where
the block begins and ends.

Let’s look at an example of a function. Keep in mind that this is not a complete program.

We will show the entire program in a moment.

def message():

print('l am Arthur,')

print('King of the Britons.")

This code defines a function named message. The message function contains a block with
two statements. Executing the function will cause these statements to execute.

Calling a Function

A function definition specifies what a function does, but it does not cause the function to
execute. To execute a function, you must call it. This is how we would call the message
function:

message()

Local Variables

A local variable is created inside a function and cannot be accessed by statements that are outside the
function. Different functions can have local variables with the same names because the functions
cannot see each other's local variables.

Anytime you assign a value to a variable inside a function, you create a local variable. A
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local variable belongs to the function in which it is created, and only statements inside that
function can access the variable. (The term local is meant to indicate that the variable can
be used only locally, within the function in which it is created.)

Scope and Local Variables

A variable’s scope is the part of a program in which the variable may be accessed. A variable
is visible only to statements in the variable’s scope. A local variable’s scope is the

function in which the variable is created.

Passing Arguments to Functions
An argument is any piece of data that is passed into a function when the function is called. A parameter
is a variable that receives an argument that is passed into a function.

Sometimes it is useful not only to call a function, but also to send one or more pieces of
data into the function. Pieces of data that are sent into a function are known as arguments.
The function can use its arguments in calculations or other operations.

Keyword Arguments

Python language allows you to write an argument in the following format, to specify which parameter
variable the argument should be passed to:

parameter_name=value

Global Variables and Global Constants
A global variable is accessible to all the functions in a program file.

When a variable is created by an assignment statement that is written outside all the functions in a
program file, the variable is global. A global variable can be accessed by any statement in the program
file, including the statements in any function.

Global Constants

A global constant is a global name that references a value that cannot be changed. Because a global
constant’s value cannot be changed during the program’s execution, you do not have to worry about
many of the potential hazards that are associated with the use of global variables.

Although the Python language does not allow you to create true global constants, you can simulate
them with global variables. If you do not declare a global variable with the global key word inside a
function, then you cannot change the variable’s assignment inside that function. For example global
constant declaration as below

CONTRIBUTION_RATE = 0.05

Introduction to Value-Returning Functions: Generating Random Numbers

A value-returning function is a function that returns a value back to the part of the program that called
it. Python, as well as most other programming languages, provides a library of prewritten functions
that perform commonly needed tasks. These libraries typically contain a function that generates
random numbers.

A value-returning function is a special type of function. It is like a void function in the following ways.

¢ |t is a group of statements that perform a specific task.
¢ When you want to execute the function, you call it.
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Standard Library Functions and the import Statement

Python, as well as most programming languages, comes with a standard library of functions

that have already been written for you. These functions, known as library functions, make a
programmer’s job easier because they perform many of the tasks that programmers commonly need
to perform. For example,

import math
This statement causes the interpreter to load the contents of the math module into memory
and makes all the functions in the math module available to the program.

The following statement shows an example of how you might call the randint function from Math
libarary:
number = random.randint (1, 100)

Writing Your Own Value-Returning Functions
A value-returning function has a return statement that returns a value back to the part of the program
that called it.
You write a value-returning function in the same way that you write a void function, with
one exception: a value-returning function must have a return statement. Here is the general
format of a value-returning function definition in Python:

def function_name():

statement

statement

etc.

return expression

Returning Multiple Values

def get_name():

# Get the user's first and last names.
first = input('Enter your first name: ')
last = input('Enter your last name: ')

# Return both names.

return first, last

When you call this function in an assignment statement, you need to use two variables on
the left side of the = operator. Here is an example:
first_name, last_name = get_name()

Symbol Operation Description

+ Addition Adds two numbers

- Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the result
asa floating-point number

// Integer division Divides one number by another and gives the result
asa whole number

% Remainder Divides one number by another and gives the
remainder

* ok Exponent Raises a number to a power
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Day-02: String, built-in String methods, String Manipulation, and regular expressions

Basic String Operations

CONCEPT: Python provides several ways to access the individual characters in a string. Strings also
have methods that allow you to perform operations on them.

Indexing

Another way that you can access the individual characters in a string is with an index. Each

character in a string has an index that specifies its position in the string. Indexing starts

at 0, so the index of the first character is 0, the index of the second character is 1, and so

forth.

Strings Are Immutable

In Python, strings are immutable, which means once they are created, they cannot be
changed. Some operations, such as concatenation, give the impression that they modify
strings, but in reality, they do not.

String Slicing

CONCEPT: You can use slicing expressions to select a range of characters from a string
When you take a slice from a string, you get a span of characters from within the string.
String slices are also called substrings.

To get a slice of a string, you write an expression in the following general format:
string[start : end]

Testing, Searching, and Manipulating Strings
CONCEPT: Python provides operators and methods for testing strings, searching the
contents of strings, and getting modified copies of strings.

Testing Strings with ‘in” and ‘not in’

In Python, you can use the in operator to determine whether one string is contained in another string.
Here is the general format of an expression using the in operator with two strings:

string1 in string2

string1 and string2 can be either string literals or variables referencing strings. The expression returns
true if stringl1 is found in string2. For example, look at the following code:

text = 'Four score and seven years ago'

if 'seven' in text:

print('The string "seven" was found.')

else:

print('The string "seven" was not found.')

This code determines whether the string 'Four score and seven years ago' contains the string 'seven'.
If we run this code, it will display:

The string "seven" was found.

You can use the not in operator to determine whether one string is not contained in another string.
Here is an example:

names = 'Bill Joanne Susan Chris Juan Katie'

if 'Pierre' not in names:

print('Pierre was not found.")

else:

print('Pierre was found.')

If we run this code, it will display:

Pierre was not found.

Page 48 of 580



String Methods

Recall from Chapter 6 that a method is a function that belongs to an object and performs
some operation on that object. Strings in Python have numerous methods.1 In this section,
we will discuss several string methods for performing the following types of operations:

¢ Testing the values of strings

¢ Performing various modifications

¢ Searching for substrings and replacing sequences of characters

String Modification Methods

I * Returns a copy of the string with all alphabetic letters converted to lower- case. Any
OWG r character that is already lowercase, or is not an alphabetic letter, is unchanged.
. . Returns a copy of the string with all leading whitespace characters removed. Leading
I St rl p ( ) whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the beginning
of the string.
| t M h ¢ The char argument is a string containing a character. Returns a copy of the string with all
S rl p C a r instances of char that appear at the beginning of the string removed.
.  Returns a copy of the string with all trailing whitespace characters removed. Trailing
rl p ( ) whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the end of the
string.
H h ¢ The char argument is a string containing a character. The method returns a copy of the
r rl p C a r string with all instances of char that appear at the end of the string removed.
t rl p ( ) * Returns a copy of the string with all leading and trailing whitespace characters removed.
t 5 h * Returns a copy of the string with all instances of char that appear at the beginning and the
S rl p C a r end of the string removed.

* Returns a copy of the string with all alphabetic letters converted to uppercase. Any
U p p e r character that is already uppercase, or is not an alphabetic letter, is unchanged.

Lab Activtity- Python essentials
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The
lines starting with # sign are comments in Python and are used to elaborate the code.

x=1
y=2
X+y
y
def add_numbers(x, y):
return x +y
add_numbers(1, 2)
# ‘add_numbers’ updated to take an optional 3rd parameter. Using “print” allows printing of multiple
expressions within a single cell.
def add_numbers(x, y, z=None):

if (z==None):
return x +y
else:

returnx+y+z
print(add_numbers(1, 2))
print(add_numbers(1, 2, 3))

def add_numbers(x, y, z=None, flag=False):
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if (flag):
print(‘Flag is true!’)

if (z==None):
return x +y
else:

returnx+y+z

print(add_numbers(1, 2, flag=True))
def add_numbers(x, y):
return x+vy

a =add_numbers
a1, 2)

type('This is a string')
type(None)

type(1)
type(1.0)

type(add_numbers)

x=(1,'a', 2,'b")

type(x)

# Lists are a mutable data structure.
x=[1,'a", 2,'b']

type(x)

x.append(3.3)
print(x)

# This is an example of how to loop through each item in the list.

for item in x:
print(item)
# Or using the indexing operator:
i=0
while (i !=len(x)):
print(x[i])
i=i+1
# Use + to concatenate lists.
[1, 2] +[3, 4]
# Use "*" to repeat lists.

[11*3

# Use the ‘in" operator to check if something is inside a list.
1in[1, 2, 3]
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# Now let's look at strings. Use bracket notation to slice a string.

x = 'This is a string'

print(x[0]) #first character

print(x[0:1]) #first character, but we have explicitly set the end character
print(x[0:2]) #first two characters

x[-1]

# This will return the slice starting from the 4th element from the end and stopping before the 2nd
element from the end.
x[-4:-2]

# This is a slice from the beginning of the string and stopping before the 3rd element.
xX[:3]
# And this is a slice starting from the 4th element of the string and going all the way to the end.
xX[3:]
firstname = 'Christopher’
lastname = 'Brooks'
print(firstname + ' ' + lastname)
print(firstname * 3)
print('Chris" in firstname)
firstname = 'Christopher Arthur Hansen Brooks'.split(' ')[0] # [0] selects the first element of the list
lastname = 'Christopher Arthur Hansen Brooks'.split(' ')[-1] # [-1] selects the last element of the list
print(firstname)
print(lastname)
# Make sure you convert objects to strings before concatenating.
'Chris' + 2
'Chris' + str(2)
# Dictionaries associate keys with values.
x = {'Christopher Brooks': 'brooksch@umich.edu’, 'Bill Gates': 'billg@microsoft.com'}
xX['Christopher Brooks'] # Retrieve a value by using the indexing operator
X['Kevyn Collins-Thompson'] = None
X['Kevyn Collins-Thompson']
# Iterate over all of the keys:
for name in x:
print(x[name])
# Iterate over all of the values:
for email in x.values():
print(email)
# Iterate over all of the items in the list:
for name, email in x.items():
print(name)
print(email)
# You can unpack a sequence into different variables:
x = ('Christopher’, 'Brooks', 'brooksch@umich.edu')
fname, Iname, email = x
fname
Iname
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# Make sure the number of values you are unpacking matches the number of variables being
assigned.

x = ('Christopher’, 'Brooks', 'brooksch@umich.edu’, 'Ann Arbor')

fname, Iname, email = x

# # The Python Programming Language: More on Strings
print('Chris' + 2)
print('Chris' + str(2))
# Python has a built in method for convenient string formatting.
# In[33]:
sales_record = {

'price': 3.24,

'num_items': 4,

'person': 'Chris'}

sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}'

print(sales_statement.format(sales_record['person'],
sales_record['num_items'],
sales_record['price'],
sales_record['num_items'] * sales_record['price']))

import datetime as dt
import time as tm

# ‘time’ returns the current time in seconds since the Epoch. (January 1st, 1970)
tm.time()

# Convert the timestamp to datetime.

#In[47]:

dtnow = dt.datetime.fromtimestamp(tm.time())

dtnow

# Handy datetime attributes:

# In[48]:

dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second # get year,
month, day, etc.from a datetime

# ‘timedelta’ is a duration expressing the difference between two dates.
# In[49]:

delta = dt.timedelta(days=100) # create a timedelta of 100 days

delta

# “date.today’ returns the current local date.

# In[50]:

today = dt.date.today()

#In[51]:

today - delta # the date 100 days ago

#In[52]:

today > today - delta # compare dates

# # The Python Programming Language: Objects and map()

# An example of a class in python:
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# In[54]:
class Person:
department = 'School of Information' #a class variable

def set_name(self, new_name): #a method
self.name = new_name

def set_location(self, new_location):
self.location = new_location

person = Person()
person.set_name('Christopher Brooks')
person.set_location('Ann Arbor, MI, USA'")
print('{} live in {} and works in the department {}'.format(person.name, person.location,
person.department))
# Here's an example of mapping the ‘'min” function between two lists.
storel =[10.00, 11.00, 12.34, 2.34]
store2 =[9.00, 11.10, 12.34, 2.01]
cheapest = map(min, storel, store2)
cheapest
# Now let's iterate through the map object to see the values.
for item in cheapest:

print(item)

# # The Python Programming Language: Lambda and List Comprehensions
# Here's an example of lambda that takes in three parameters and adds the first two.
my_function =lambdaa, b,c:a+b
# In[60]:
my_function(1, 2, 3)
# Let's iterate from 0 to 999 and return the even numbers.
my_list =[]
for number in range(0, 1000):
if number % 2 == 0:

my_list.append(number)

my_list

my_list = [number for number in range(0, 1000) if number % 2 == 0]
my_list

Day 03- EXPORTING DATA USING PYTHON MODULES (numpy)

Data manipulation in Python is nearly synonymous with NumPy array manipulation: even
newer tools like Pandas are built around the NumPy array. This sec-tion will present several
examples using NumPy array manipulation to access data and subarrays, and to split,
reshape, and join the arrays. While the types of operationsshown here may seem a bit dry
and pedantic, they comprise the building blocks of many other examples used throughout
the book. Get to know them well!

We'll cover a few categories of basic array manipulations here:
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Attributes of arrays
Determining the size, shape, memory consumption, and data types of arrays
Indexing of arrays
Getting and setting the value of individual array elements
Slicing of arrays
Getting and setting smaller subarrays within a larger array
Reshaping of arrays
Changing the shape of a given array
Joining and splitting of arrays

Combining multiple arrays into one, and splitting one array into many

NumPy Array Attributes

First let’s discuss some useful array attributes. We'll start by defining three random arrays:
a one-dimensional, two-dimensional, and three-dimensional array. We’ll use NumPy’s
random number generator, which we will seed with a set value in order to ensure that the
same random arrays are generated each time this code is run:

In[1]: import as

np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array

Each array has attributes ndim (the number of dimensions), shape (the size of each
dimension), and size(the total size of the array):

In[2]: print("x3 ndim: ", x3.ndim)
print("x3  shape:", x3.shape)
print("x3 size: ", x3.size)

x3 ndim: 3
x3 shape: (3, 4, 5)
x3 size: 60
Another useful attribute is the dtype, the data type of the array:
In[3]: print("dtype:", x3.dtype)
dtype: int64

Other attributes include itemsize, which lists the size (in bytes) of each array ele- ment, and
nbytes, which lists the total size (in bytes) of the array:

In[4]: print("itemsize:", x3.itemsize, "bytes")
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print("nbytes:", x3.nbytes, "bytes")
itemsize: 8 bytes

nbytes: 480 bytes

In general, we expect that nbytesis equal to itemsizetimes size.

Array Indexing: Accessing Single Elements

If you are familiar with Python’s standard list indexing, indexing in NumPy will feel quite

familiar. In a one-dimensional array, you can access the ith value (counting fromzero) by
specifying the desired index in square brackets, just as with Python lists:

In[5]: x1
Out[5]: array([5, O, 3, 3, 7, 9])
In[6]: x1[0]

Out[6]: 5
In[7]:  x1[4]
Out[7]:7

To index from the end of the array, you can use negative indices:
In[8]: x1[-1]
Out([8]: 9
In[9]: x1[-2]
Out[9]: 7
In a multidimensional array, you access items using a comma-separated tuple of
indices:
In[10]: x2
Out[10]: array([[3, 5, 2, 4],
[7,6,8,8],
(1,6,7,71)
In[11]: x2[0, 0]
Out[11]:3
In[12]: x2[2, 0]
Out[12]:1
In[13]: x2[2, -1]
Out[13]: 7
You can also modify values using any of the above index notation:
In[14]: x2[0, 0] = 12
x2
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Out|14]: array(|[12, 5, 2, 4],
[7, 6, 8 8
[ 1, 6, 7, 71

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type. This means, for
example, that if you attempt to insert a floating-point value to an integer array, thevalue will
be silently truncated. Don’t be caught unaware by this behavior!

In[15]: x1[0] = 3.14159 # this will be truncated!
x1

Out[15]: array([3, 0, 3,3, 7,9])

Array Slicing: Accessing Subarrays

Just as we can use square brackets to access individual array elements, we can also usethem
to access subarrays with the slice notation, marked by the colon (:) character. The NumPy
slicing syntax follows that of the standard Python list; to access a slice ofan array x, use this:

X[start:stop:step]

If any of these are unspecified, they default to the values start=0, stop=size of dimension,
step=1. We’'ll take a look at accessing subarrays in one dimension and inmultiple dimensions.

One-dimensional subarrays

In[16]: x = np.arange(10)
X

Out[16]: array([0, 1, 2, 3,4,5, 6,7, 8,9])
In[17]:x[:5] # first five elements
Out[17]: array([0, 1, 2, 3, 4])
In[18]: x[5:] # elements after index 5
Out[18]: array([5, 6, 7, 8, 9])
In[19]: x[4:7] # middle subarray
Out[19]: array([4, 5, 6])
In[20]: x[::2] # every other element
Out[20]: array([0, 2, 4, 6, 8])
In[21]: x[1::2] # every other element, starting at index 1
Out[21]: array([1, 3, 5, 7, 9])

A potentially confusing case is when the step value is negative. In this case, the
defaults for start and stop are swapped. This becomes a convenient way to reverse
an array:

In[22]: x[::-1] # all elements, reversed

Out[22]: array([9, 8, 7,6,5,4,3,2,1,0])
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In[23]: x[5::-2] # reversed every other from index 5

Out[23]: array([5, 3, 1])

Multidimensional subarrays

Multidimensional slices work in the same way, with multiple slices separated by
com-mas. For example:

In[24]: x2

Out|24]: array(|[12, 5, 2, 4],
[7, 6, 8 8],

L1, 6, 7, 7))

In[25]: x2[:2, :3] # two rows, three columns
Out[25]: array([[12, 5, 2],
[7, 6 8]l

In[26]: x2[:3, ::2] # all rows, every other column

Out|26]: array(|112, 2],

[7, 8,

11, 711)

Finally, subarray dimensions can even be reversed together:

In[27]: x2[::-1, :-1]

out[27]): array(ll7, 7, 6, 1],

[8, 8, 6, 7],
L4, 2, 5,12]])

Accessing array rows and columns. One commonly needed routine is accessing singlerows or
columns of an array. You can do this by combining indexing and slicing, using an empty slice
marked by a single colon (:):

In[28]: print(x2[:, 0]) # first column of x2
[12 7 1]
In[29]: print(x2[0, :]) # first row of x2
[12 5 2 4]
In the case of row access, the empty slice can be omitted for a more compact syntax:
In[30]: print(x2[0]) # equivalent to x2[0, :]

[12 5 2 4]

Subarrays as no-copy views

One important—and extremely useful—thing to know about array slices is that they return
views rather than copies of the array data. This is one area in which NumPy array slicing

Page 57 of 580



differs from Python list slicing: in lists, slices will be copies. Consider ourtwo-dimensional
array from before:

In[31]: print(x2)

112 5 2 4]
[7 6 8 8]
1 6 7 7]

Let’s extract a 2x2 subarray from this:
In[32]: x2_sub =x2[:2, :2]
print(x2_sub)
[[12 5]
[7 6]
Now if we modify this subarray, we’ll see that the original array is changed! Observe:
In[33]: x2_sub[0, 0] = 99
print(x2_sub)
[[99 5]
[7 6]]

In[34]: print(x2)

199 5 2 4]
[7 6 8 8]
1 6 7 7]

This default behavior is actually quite useful: it means that when we work with large
datasets, we can access and process pieces of these datasets without the need to
copy the underlying data buffer.

Creating copies of arrays

Despite the nice features of array views, it is sometimes useful to instead explicitly copy the
data within an array or a subarray. This can be most easily done with the copy()method:
In[35]: x2_sub_copy = x2[:2, :2].copy()

print(x2_sub_copy)
[[99 5]
[7 6]]
If we now modify this subarray, the original array is not touched:
In[36]: x2_sub_copy[0, 0] =42
print(x2_sub_copy)
[[42 5]
[7 6]]

In[37]: print(x2)

199 5 2 4]
[7 6 8 8]
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11 6 7 7]]

Reshaping of Arrays

Another useful type of operation is reshaping of arrays. The most flexible way of
doing this is with the reshape() method. For example, if you want to put the num-
bers 1 through 9 in a 3x3 grid, you can do the following:

In[38]: grid = np.arange(1, 10).reshape((3, 3))
print(grid)
[[123]
[456]
(7 89]]

Note that for this to work, the size of the initial array must match the size of the reshaped
array. Where possible, the reshape method will use a no-copy view of the initial array, but
with noncontiguous memory buffers this is not always the case.

Another common reshaping pattern is the conversion of a one-dimensional arrayinto a
two-dimensional row or column matrix. You can do this with the reshape method, or more
easily by making use of the newaxis keyword within a slice opera- tion:

In[39]: x = np.array([1, 2, 3])

# row vector via reshape

x.reshape((1, 3))
Out[39]: array([[1, 2, 3]])
In[40]: # row vector via newaxis
x[np.newaxis, ]

Out[40]: array([[1, 2, 3]])

In[41]: # column vector via reshape
x.reshape((3, 1))
Out[41]: array([[1],
(2],
(311)
In[42]: # column vector via newaxis
X[:, np.newaxis]
Out[42]: array([[1],
(2],
(311)

We will see this type of transformation often throughout the remainder of the book.
Array Concatenation and Splitting

All of the preceding routines worked on single arrays. It’s also possible to combine multiple
arrays into one, and to conversely split a single array into multiple arrays. We'll take a look
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at those operations here.

Concatenation of arrays

Concatenation, or joining of two arrays in NumPy, is primarily accomplished
through the routines np.concatenate, np.vstack, and np.hstack. np.concatenate
takes a tuple or list of arrays as its first argument, as we can see here:

In[43]: x = np.array([1, 2, 3])

y = np.array([3, 2, 1])
np.concatenate([x, y])

Out[43]: array([1, 2, 3, 3, 2, 1])

You can also concatenate more than two arrays at once:
In[44]: z = [99, 99, 99]
print(np.concatenate([x, vy, z]))[

123321999999]

np.concatenatecan also be used for two-dimensional arrays:

In[45]: grid = np.array([[1, 2, 3],
[4,5,6]])

In[46]: # concatenate along the first axis
np.concatenate([grid, grid])
Out[46]: array([[1, 2, 3],
(4,5, 6],
(1,2,3],
(4,5, 6]])

In[47]: # concatenate along the second axis (zero-indexed)

np.concatenate([grid, grid], axis=1)

Out[47]: array([[1, 2,3, 1, 2, 3],
[4,5,6,4,5,6]])

For working with arrays of mixed dimensions, it can be clearer to use the np.vstack
(vertical stack) and np.hstack(horizontal stack) functions:
In[48]: x = np.array([1, 2, 3])
grid = np.array([[9, 8, 7],
(6,5, 41])

# vertically stack the arrays
np.vstack([x, grid])

Out[48]: array([[1, 2, 3],

[9,8,7],

(6,5, 4]])
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In[49]: # horizontally stack the arrays
y = np.array([[99],
[9911)
np.hstack([grid, y])
Out[49]: array([[9, 8, 7,99],
[6, 5 4,99]])

Similarly, np.dstackwill stack arrays along the third axis.

Splitting of arrays

The opposite of concatenation is splitting, which is implemented by the functions np.split,
np.hsplit, and np.vsplit. For each of these, we can pass a list of indices giving the split points:

In[50]: x =[1, 2, 3,99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

[123][9999][321]

Notice that N split points lead to N + 1 subarrays. The related functions np.hsplit

and np.vsplitare similar:

In[51]: grid = np.arange(16).reshape((4, 4))
grid

Out|51): array(|| O, 1, 2, 3|,

[ 4[ 5I 6I 7][
[8, 9, 10, 11],
(12, 13,14, 15]])

In[52]: upper, lower = np.vsplit(grid, [2])

print(upper)
print(lower)

[[0123]
[4567]]
[[8 91011]
[12 13 14 15]]
In[53]: left, right = np.hsplit(grid, [2])

print(left)
print(right)

(10 1]
[4 5]
[8 9]
[12 13]]
([2 3]

[6 7]
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[10 11]
[14 15]]

Similarly, np.dsplitwill split arrays along the third axis.
Computation on NumPy Arrays: Universal Functions

Up until now, we have been discussing some of the basic nuts and bolts of NumPy; inthe next
few sections, we will dive into the reasons that NumPy is so important in thePython data
science world. Namely, it provides an easy and flexible interface to opti-mized computation
with arrays of data.

Computation on NumPy arrays can be very fast, or it can be very slow. The key tomaking
it fast is to use vectorized operations, generally implemented through Num- Py’s universal
functions (ufuncs). This section motivates the need for NumPy’s ufuncs,which can be used to
make repeated calculations on array elements much more effi- cient. It then introduces
many of the most common and useful arithmetic ufuncs available in the NumPy package.

Array arithmetic

NumPy’s ufuncs feel very natural to use because they make use of Python’s native
arithmetic operators. The standard addition, subtraction, multiplication, and
division can all be used:
In[7]: x = np.arange(4)

print("x =", X)

print("x + 5 =", x + 5)

print("x - 5 =", x - 5)

print("x * 2 =",x* 2)

print("x/2=",x/2)

print("x//2=",x//2) # floor division

x =[0123]
x+5=[5678]
X-5=[5-4-3-2]
x*2=[0246]

x/2=[0. 05 1. 1.5]
x//2=[0011]

There is also a unary ufunc for negation, a ** operator for exponentiation, and a %
operator for modulus:

In[8]: print("-x = , X
print("x ** 2 =", x ** 2)
print("x % 2 =",x % 2)

x = [0-1-2-3]
x**2= [0149]
x%2 = [0101]

In addition, these can be strung together however you wish, and the standard
orderof operations is respected:

In[9]: -(0.5*x + 1) ** 2
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Out[9]: array([-1. ,-2.25,-4. ,-6.25])

All of these arithmetic operations are simply convenient wrappers around specific functions
built into NumPy; for example, the + operator is a wrapper for the add function:

In[10]: np.add(x, 2)

Out[10]: array([2, 3, 4, 5])

Table . Arithmetic operators implemented in NumPy

Operator  Equivalent ufunc Description
+ np.add Addition(e.g,1+1=2)

- np.subtract Subtraction (e.g, 3 - 2 = 1)

- np.negative Unary negation (e.g., -2)
* np.multiply Multiplication (e.g.,2 * 3 = 6)
/ np.divide Division (e.g.,3 / 2 = 1.5)

// np.floor_divide Floor division (e.g.,3 // 2 = 1)
*x np.power Exponentiation (e.g.,, 2 ** 3 = 8)
% np.mod Modulus/remainder (e.g.,9 % 4 = 1)

Absolute value

Just as NumPy understands Python’s built-in arithmetic operators, it also understands
Python’s built-in absolute value function:

In[11]: x = np.array([-2, -1, 0, 1, 2])
abs(x)
Out[11]: array([2, 1,0, 1, 2])

The corresponding NumPy ufunc is np.absolute, which is also available under the
alias np.abs:

In[12]: np.absolute(x)
Out[12]: array([2, 1,0, 1, 2])
In[13]: np.abs(x)
Out[13]: array([2, 1, 0, 1, 2])
This ufunc can also handle complex data, in which the absolute value returns the magnitude:

In[14]: x = np.array([3 - 4j, 4 - 3], 2 + 0j, 0 + 1j])
np.abs(x)

Out[14]: array([ 5., 5., 2., 1.])

Trigonometric functions

NumPy provides a large number of useful ufuncs, and some of the most useful for
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thedata scientist are the trigonometric functions. We'll start by defining an array
of angles:

In[15]: theta = np.linspace(0, np.pi, 3)
Now we can compute some trigonometric functions on these values:

In[16]: print("theta = " theta)
print("sin(theta) ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))

[O. 1.57079633 3.14159265]
[ 0.00000000e+ 1.00000000e 1.22464680e-
00 +00 16]

theta
sin(theta)

cos(theta)=[ 1.00000000e+ 6.12323400e -
00 -17 1.00000000e+0

0]
tan(theta) =| 0.00000000e+ 1.63312394e -1.22464680e-
00 +16 16]

The values are computed to within machine precision, which is why values that
should be zero do not always hit exactly zero. Inverse trigonometric functions are
also available:
In[17]:x=1-1, 0, 1]
print("x =",x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) =", np.arccos(x))

print("arctan(x) = ", np.arctan(x))

X = [-1,0, 1]

arcsin(x) = [- 0. 1.5707963
1.57079633 3]

arccos(x)= [ 1.570796 O. ]
3.14159265 33

arctan(x)=

b— 0. 0.7853981
78539816 6]

Exponents and logarithms
Another common type of operation available in a NumPy ufunc are the exponentials:

In[18]: x =11, 2, 3]

print("x =",x)
print("e”x =", np.exp(x))
print("2"x =", np.exp2(x))
print("3*x =", np.power(3, x))
X =11, 2, 3]
eMx =[ 2.71828183 7.389056 20.0855369

1 2]
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The inverse of the exponentials, the logarithms, are also available. The basic np.log
gives the natural logarithm; if you prefer to compute the base-2 logarithm or the
base-10 logarithm, these are available as well:

In[19]: x = [1, 2, 4, 10]
print("x =",x)
print("In(x) =", np.log(x))
print("log2(x) =", np.log2(x))
print("log10(x) =", np.logl0(x))

X =11, 2, 4, 10]

In(x) =[o. 0.693147 1.386294 2.3025850
18 36 9]

log2(x) =[0. 1. 2. 3.3219280
9]

log10(x) = | O. 030103  0,602059 1. ]

There are also some specialized versions that are useful for maintaining precision
with very small input:

In[20]: x = [0, 0.001, 0.01, 0.1]
print("exp(x) - 1 =", np.expm1(x))
print("log(1 + x) =", np.loglp(x))

exp(x)-1=10. 0.0010005 0.01005017
0.10517092]
log(1+x)=10. 0.0009995 0.00995033

0.09531018]

When xis very small, these functions give more precise values than if the raw np.log
or np.expwere used.

Specialized ufuncs

NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise
arithmetic, comparison operators, conversions from radians to degrees, rounding
and remainders, and much more. A look through the NumPy documentation
reveals a lot of interesting functionality.

Another excellent source for more specialized and obscure ufuncs is the submodule
scipy.special. If you want to compute some obscure mathematical function onyour data,
chances are it is implemented in scipy.special. There are far too many functions to list them
all, but the following snippet shows a couple that might come up in a statistics context:

In[21]: from import special
In[22]: # Gamma functions (generalized factorials) and related functions

x =[1,5, 10]

print("gamma(x) =", special.gamma(x))
print("In|gamma(x) | =",
special.gammaln(x)) print("beta(x, 2)

=", special.beta(x, 2))
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gamma(x) =[ 1.00000000e+002.40000000e+01
3.62880000e+05]In|gamma(x)| =[ 0. 3.17805383
12.80182748]

beta(x,2) =[0.5 0.03333333 0.00909091]

In[23): # Error function (integral of
Gaussian)# its complement, and its
inverse

x = np.array([0, 0.3, 0.7, 1.0])
print("erf(x) =", special.erf(x))
print("erfc(x) =", special.erfc(x))

print("erfinv(x) =", special.erfinv(x))

erf(x) =[0. 0.32862676 0.67780119 0.84270079]
erfc(x) =[1. 0.67137324 0.32219881 0.15729921]
erfinv(x) = [ 0. 0.27246271 0.73286908 inf]

There are many, many more ufuncs available in both NumPy and scipy.special.
Because the documentation of these packages is available online, a web search
along the lines of “gamma function python” will generally find the relevant
information.

Advanced Ufunc Features

Many NumPy users make use of ufuncs without ever learning their full set of features.We’'ll
outline a few specialized features of ufuncs here.

Specifying output
For large calculations, it is sometimes useful to be able to specify the array where theresult
of the calculation will be stored. Rather than creating a temporary array, you can use this to

write computation results directly to the memory location where you’d like them to be.
For all ufuncs, you can do this using the out argument of thefunction:

In[24]: x = np.arange(5)

y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)

[ 0. 10. 20. 30. 40.]
This can even be used with array views. For example, we can write the results of a
computation to every other element of a specified array:
In[25]: y = np.zeros(10)
np.power(2, x, out=y[::2])
print(y)
[1. 0. 2. 0. 4 0. 8 0.16. 0]
If we had instead written y[::2] = 2 ** x, this would have resulted in the creation of a
temporary array to hold the results of 2 ** x, followed by a second operation copying those
values into the yarray. This doesn’t make much of a difference for sucha small computation,

but for very large arrays the memory savings from careful use ofthe outargument can be
significant.
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Aggregates

For binary ufuncs, there are some interesting aggregates that can be computed directly
from the object. For example, if we’d like to reduce an array with a particularoperation, we
can use the reducemethod of any ufunc. A reduce repeatedly applies agiven operation to
the elements of an array until only a single result remains.

For example, calling reduceon the addufunc returns the sum of all elements in
thearray:

In[26]: x = np.arange(1, 6)
np.add.reduce(x)

Out[26]: 15

Similarly, calling reduce on the multiply ufunc results in the product of all array
elements:

In[27]: np.multiply.reduce(x)
Out[27]: 120

If we'd like to store all the intermediate results of the computation, we can instead use
accumulate:

In[28]: np.add.accumulate(x)

Out[28]: array([ 1, 3, 6,10, 15])

Aggregations: Min, Max, and Everything in Between

Often when you are faced with a large amount of data, a first step is to compute sum-mary
statistics for the data in question. Perhaps the most common summary statistics are the
mean and standard deviation, which allow you to summarize the “typical” val-ues in a
dataset, but other aggregates are useful as well (the sum, product, median, minimum and
maximum, quantiles, etc.).

NumPy has fast built-in aggregation functions for working on arrays; we’ll discuss and
demonstrate some of them here.
Summing the Values in an Array

As a quick example, consider computing the sum of all values in an array. Python
itself can do this using the built-in sumfunction:

In[1]: import as

In[2]: L =
np.random.random(100)
sum(L)

Out[2]: 55.61209116604941

The syntax is quite similar to that of NumPy’s sumfunction, and the result is the
samein the simplest case:

In[3]: np.sum(L)
Out[3]: 55.612091166049424

However, because it executes the operation in compiled code, NumPy’s version of the
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operation is computed much more quickly:
In[4]: big_array = np.random.rand(1000000)
%timeit sum(big_array)
%timeit np.sum(big_array)

10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 us per loop

Be careful, though: the sumfunction and the np.sumfunction are not identical, whichcan
sometimes lead to confusion! In particular, their optional arguments have differ- ent
meanings, and np.sumis aware of multiple array dimensions, as we will see in thefollowing
section.

Minimum and Maximum

Similarly, Python has built-in minand maxfunctions, used to find the minimum
valueand maximum value of any given array:

In[5]: min(big_array), max(big_array)
Out[5]: (1.1717128136634614e-06, 0.9999976784968716)

NumPy’s corresponding functions have similar syntax, and again operate much
morequickly:

In[6]: np.min(big_array), np.max(big_array)
Out[6]: (1.1717128136634614e-06, 0.9999976784968716)
In[7]: %timeit min(big_array)

%timeit np.min(big_array)

10 loops, best of 3: 82.3 ms per loop
1000 loops, best of 3: 497 us per loop

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods
of the array object itself:

In[8]: print(big_array.min(), big_array.max(), big_array.sum())
1.17171281366e-06 0.999997678497 499911.628197

Whenever possible, make sure that you are using the NumPy version of these
aggre- gates when operating on NumPy arrays!

Multidimensional aggregates

One common type of aggregation operation is an aggregate along a row or column.
Say you have some data stored in a two-dimensional array:

In[9]: M = np.random.random((3, 4))
print(M)

[| 0.8967576 0.037837 0.759525 0.0668282
39 19 7]

[ 0.8354065 0.991968 0.195447 0.4344708

18 69 4]

0.150387 0.379114 0.6687194
.66859307 21 23 11
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By default, each NumPy aggregation function will return the aggregate over the entirearray:

In[10]: M.sum()
Out[10]: 6.0850555667307118

Aggregation functions take an additional argument specifying the axis along which the
aggregate is computed. For example, we can find the minimum value within eachcolumn by
specifying axis=0:

In[11]: M.min(axis=0)

Out[11]: array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827])
The function returns four values, corresponding to the four columns of numbers.Similarly,
we can find the maximum value within each row:

In[12]: M.max(axis=1)

Out[12]: array([ 0.8967576, 0.99196818, 0.6687194 ])

The way the axis is specified here can be confusing to users coming from other lan- guages.
The axis keyword specifies the dimension of the array that will be collapsed, rather than the
dimension that will be returned. So specifying axis=0 means that the first axis will be
collapsed: for two-dimensional arrays, this means that values within each column will be
aggregated.

Table. Aggregation functions available in NumPy

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute median of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance

np.min np.nanmin Find ~ minimum  value
np.max np.nanmax Find  maximum  value
np.argmin np.nanargmin Find index of minimum value

np.argmax np.nanargmax  Findindex of maximum value

np.median np.nanmedian  Compute median of elements

np.percentile np.nanpercentile Compute rank-based statistics of elements

np.any N/A Evaluate whether any elements are true

np.all N/A Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.
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Example: What Is the Average Height of US Presidents?

Aggregates available in NumPy can be extremely useful for summarizing a set of val-ues. As
a simple example, let’s consider the heights of all US presidents. This data is available in the
file president_heights.csv, which is a simple comma-separated list of labels and values:

In[13]: lhead -4

data/president_heights.csv

order,name,height(cm)

1,George Washington,189

2,John Adams,170
3,Thomas
Jefferson,189

We’'ll use the Pandas package, which we’ll explore more fully in Chapter 3, to read thefile and
extract this information (note that the heights are measured in centimeters):

In[14]: import as
data =
pd.read_csv('data/president_heights.csv')
heights = np.array(data['height(cm)'])
print(heights)

[189170 189 163 183 171 185168 173 183173 173 175178 183 193 178 173
174 183 183 168 170178 182 180 183 178 182 188 175 179 183 193 182 183
177 185 188 188 182 185]

Now that we have this data array, we can compute a variety of summary statistics:

In[15]: print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height:",  heights.min())
print("Maximum height:", heights.max())

Mean height: 179.738095238
Standard deviation: 6.93184344275
Minimum height: 163

Maximum height: 193

Note that in each case, the aggregation operation reduced the entire array to a
single summarizing value, which gives us information about the distribution of
values. We may also wish to compute quantiles:

In[16]: print("25th percentile: ", np.percentile(heights, 25))
print("Median: " np.median(heights))
print("75th percentile: ", np.percentile(heights, 75))

25th percentile: %74.2

Median: 182.0
75th percentile:  183.0

We see that the median height of US presidents is 182 cm, or just shy of six feet.

Of course, sometimes it’s more useful to see a visual representation of this data, whichwe
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can accomplish using tools in Matplotlib (we’ll discuss Matplotlib more fully in Chapter 4).
For example, this code generates the chart shown in Figure 2-3:

In[17]: %matplotlib inline

import matplotlib.pyplot as plt

import seaborn; seaborn.set() # set plot style
In[18]: plt.hist(heights)

plt.title('"Height Distribution of US Presidents')
plt.xlabel('height (cm)")

plt.ylabel('number’);

Height Distribution of US Presidents

number

160 165 70 75 120 185 190 195
height {cm)

Figure 1:Histogram of presidential heights

Computation on Arrays: Broadcasting

We saw in the previous section how NumPy’s universal functions can be used to vec-torize
operations and thereby remove slow Python loops. Another means of vectoriz- ing
operations is to use NumPy’s broadcasting functionality. Broadcasting is simply aset of rules
for applying binary ufuncs (addition, subtraction, multiplication, etc.) on arrays of different
sizes.

Introducing  Broadcasting

Recall that for arrays of the same size, binary operations are performed on an
element-by-element basis:

In[1]: import numpy as np
In[2]: a = np.array([0, 1, 2])

b =np.array([5, 5, 5])a +
b

Out[2]: array([5, 6, 7])

Broadcasting allows these types of binary operations to be performed on arrays of dif-ferent
sizes—for example, we can just as easily add a scalar (think of it as a zero- dimensional array)
to an array:

In[3]:a+5
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Out[3]: array([5, 6, 7])

We can think of this as an operation that stretches or duplicates the value 5 into
the array [5, 5, 5], and adds the results. The advantage of NumPy’s broadcasting is
thatthis duplication of values does not actually take place, but it is a useful mental
model as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when we add
a one-dimensional array to a two-dimensional array:

In[4]: M = np.ones((3, 3))M

Out|4]: array(]] 1., 1., 1.],

[1, 1, 1],
[1., 1., 1.])
In[5]: M +a

Out[5]: array([[ 1., 2., 3.],
[1., 2., 31,
[1., 2., 3.1

Here the one-dimensional array a is stretched, or broadcast, across the second dimension in
order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can involve
broadcasting of both arrays. Consider the following example:

In[6]: a = np.arange(3)

b = np.arange(3)[:, np.newaxis]

print(a)
print(b)

[012]

[[0]

(1]

(2]]

In[7]:a+b
Out[7]: array([[O, 1, 2],
[1,2,3],
(2,3,4]])
Just as before we stretched or broadcasted one value to match the shape of the other, here we’ve
stretched both a and b to match a common shape, and the result is a two-dimensional array!
Example: Selecting Random Points

One common use of fancy indexing is the selection of subsets of rows from a matrix. For
example, we might have an N by D matrix representing N points in D dimen- sions, such as
the following points drawn from a two-dimensional normal distribu- tion:

In[13]: mean = [0, 0]
cov = [[1, 2],
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(2, 511

X = rand.multivariate_normal(mean, cov,
100)X.shape

Out[13]: (100, 2)

Using the plotting tools we will discuss in Chapter 4, we can visualize these points
asa scatter plot (Figure 2-7):
In[14]: %matplotlib inline
import as
import ; seaborn.set() # for plot styling

plt.scatter(X[:, 0], X[:, 1]);

-4 -3 -2 -1 a 1 2 3

Let’s use fancy indexing to select 20 random points. We'll do this by first choosing
20random indices with no repeats, and use these indices to select a portion of the

origi- nal array:

In[15]: indices = np.random.choice(X.shape[0], 20,
replace=False)indices

Out[15]: array([93, 45, 73, 81, 50, 10, 98, 94, 4, 64, 65, 89, 47, 84, 82,
80, 25, 90, 63, 20])
In[16]: selection = X[indices] # fancy indexing here
selection.shape

Out[16]: (20, 2)

Now to see which points were selected, let’s over-plot large circles at the locations ofthe
selected points
In[17]: plt.scatter(X[:, 0], X[:, 1], alpha=0.3)
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plt.scatter(selection[:, 0], selection[:, 1],
facecolor="none', s=200);

-10
-4 -3 -2 -1 a 1 2 3

Figure . Random selection among points

This sort of strategy is often used to quickly partition datasets, as is often needed in train/test
splitting for validation of statistical models and in sampling approaches to answering
statistical questions.

Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can also be used to modify
parts of an array. For example, imagine we have an array of indices and we’dlike to set the
corresponding items in an array to some value:

In[18]: x = np.arange(10)
i =np.array([2, 1, 8, 4])
x[i] =99
print(x)
[09999 399 5 6 799 9]
We can use any assignment-type operator for this. For example:
In[19]: x[i] -= 10
print(x)
[08989 389 5 6 789 9]

Notice, though, that repeated indices with these operations can cause some poten-
tially unexpected results. Consider the following:

In[20]: x = np.zeros(10)
x[[0, 0]] = [4, €]
print(x)

[6. 0. 0. 0. 0. 0. 0. 0. 0. 0]

Where did the 4 go? The result of this operation is to first assign x[0] = 4, followed
by x[0] = 6. The result, of course, is that x[0]contains the value 6.

Fair enough, but consider this operation:

In[21]:1=1[2,3,3,4,4,4]
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X[i]+=1
X

Out[21]: array([ 6., O, 1., 1., 1., 0, 0., 0., 0, 0.])

You might expect that x[3] would contain the value 2, and x[4] would contain the value 3, as
this is how many times each index is repeated. Why is this not the case? Conceptually, this
is because x[i] += 1is meant as a shorthand of x[i] = x[i] + 1.x[i] + 1 is evaluated, and then the
result is assigned to the indices in x. With this inmind, it is not the augmentation that
happens multiple times, but the assignment, which leads to the rather nonintuitive results.

So what if you want the other behavior where the operation is repeated? For this,
youcan use the at()method of ufuncs (available since NumPy 1.8), and do the
following:

In[22]: x = np.zeros(10)
np.add.at(x, i, 1)
print(x)
[0. 0. 1. 2. 3. 0. 0. 0. 0. 0.]
The at() method does an in-place application of the given operator at the specified indices
(here, i) with the specified value (here, 1). Another method that is similar in spirit is the

reduceat() method of ufuncs, which you can read about in the NumPy documentation.
Example: Binning Data

You can use these ideas to efficiently bin data to create a histogram by hand. For
example, imagine we have 1,000 values and would like to quickly find where they
fallwithin an array of bins. We could compute it using ufunc.atlike this:

In[23]: np.random.seed(42)

x = np.random.randn(100)

# compute a histogram by
hand bins = np.linspace(-5, 5,
20) counts =
np.zeros_like(bins)

# find the appropriate bin for each x

i = np.searchsorted(bins, x)

# add 1 to each of these bins
np.add.at(counts, i, 1)

The counts now reflect the number of points within each bin—in other words, a
his-togram

In[24]: # plot the results
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plt.plot(bins, counts, linestyle='steps');

a
-6 -4 -2 a 2 4 [

Figure. A histogram computed by hand

Of course, it would be silly to have to do this each time you want to plot a histogram.This is
why Matplotlib provides the plt.hist() routine, which does the same in a single line:

plt.hist(x, bins, histtype="step");
This function will create a nearly identical plot to the one seen here. To compute

the binning, Matplotlib uses the np.histogram function, which does a very similar
com-putation to what we did before. Let’s compare the two here:

In[25]: print("NumPy routine:")
%timeit counts, edges = np.histogram(x, bins)
print("Custom routine:")
%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:

10000 loops, best of 3: 97.6 us per loop
Custom routine:

10000 loops, best of 3: 19.5 us per loop

Our own one-line algorithm is several times faster than the optimized algorithm in NumPy!
How can this be? If you dig into the np.histogram source code (you can do this in IPython by
typing np.histogram??), you'll see that it’s quite a bit more involved than the simple search-
and-count that we’ve done; this is because NumPy’s algorithm is more flexible, and

particularly is designed for better performance when the number of data points becomes
large:

In[26]: x = np.random.randn(1000000)
print("NumPy routine:")

%timeit counts, edges = np.histogram(x, bins)

print("Custom routine:")

%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:
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10 loops, best of 3: 68.7 ms per loop
Custom routine:

10 loops, best of 3: 135 ms per loop

Sorting Arrays

Up to this point we have been concerned mainly with tools to access and operate on array
data with NumPy. This section covers algorithms related to sorting values in NumPy arrays.
These algorithms are a favorite topic in introductory computer sci- ence courses: if you've
ever taken one, you probably have had dreams (or, dependingon your temperament,
nightmares) about insertion sorts, selection sorts, merge sorts, quick sorts, bubble sorts, and
many, many more. All are means of accomplishing a similar task: sorting the values in a list
or array.

For example, a simple selection sort repeatedly finds the minimum value from a list, and
makes swaps until the list is sorted. We can code this in just a few lines of Python:

In[1]: import as

def selection_sort(x):
for iin range(len(x)):

swap = i + np.argmin(x[i:]) (x[i],
x[swap]) = (x[swap], x[i])

return x

In[2]: x = np.array([2, 1, 4, 3, 5])
selection_sort(x)

Out[2]: array([1, 2, 3, 4, 5])

Fortunately, Python contains built-in sorting algorithms that are much more efficient than
either of the simplistic algorithms just shown. We’ll start by looking at the Python built-ins,
and then take a look at the routines included in NumPy and opti- mized for NumPy arrays.

Fast Sorting in NumPy: np.sort and np.argsort

Although Python has built-in sortand sortedfunctions to work with lists, we won’t
discuss them here because NumPy’s np.sortfunction turns out to be much more

efficient and useful for our purposes. By default np.sort usesan N ldg N , quick- sort algorithm,
though mergesort and heapsort are also available. For most applica- tions, the default
quicksort is more than sufficient.

To return a sorted version of the array without modifying the input, you can use
np.sort:

In[5]: x = np.array([2, 1, 4, 3, 5])
np.sort(x)

Out[5]: array([1, 2, 3, 4, 5])

If you prefer to sort the array in-place, you can instead use the sortmethod of arrays:

In[6]: x.sort()
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print(x)
[12345]

A related function is argsort, which instead returns the indices of the sorted
elements:

In[7]: x = np.array([2, 1, 4, 3, 5])i =
np.argsort(x)

print(i)
[10324]
The first element of this result gives the index of the smallest element, the second

value gives the index of the second smallest, and so on. These indices can then be
used (via fancy indexing) to construct the sorted array if desired:

In[8]: x[i]

out[8]: array([1, 2, 3, 4, 5])

Sorting along rows or columns

A useful feature of NumPy’s sorting algorithms is the ability to sort along specific rows or
columns of a multidimensional array using the axisargument. For example:

In[9]: rand =
np.random.RandomState(42)X =
rand.randint(0, 10, (4, 6))
print(X)

[[6374609]
[267437]
[725417]
[5140095]]
In[10]: # sort each column of X
np.sort(X, axis=0)
Out[10]: array([[2, 1, 4,0, 1, 5],
[5,2,5,4,3,7],
[6,3,7,4,6,7],
[7,6,7,4,9,9]1])
In[11]: # sort each row of X
np.sort(X, axis=1)
Out[11]: array([[3, 4, 6, 6, 7, 9],
[2,3,4,6,7,7],
[1,2,4,5,7,7],
[0,1,4,5,5,9]])

Keep in mind that this treats each row or column as an independent array, and any
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relationships between the row or column values will be lost!

Partial Sorts: Partitioning

Sometimes we’re not interested in sorting the entire array, but simply want to find thek
smallest values in the array. NumPy provides this in the np.partition function. np.partition
takes an array and a number K; the result is a new array with the small-est K values to the
left of the partition, and the remaining values to the right, in arbi- trary order:

In[12]: x = np.array([7, 2, 3, 1, 6, 5, 4])
np.partition(x, 3)
Out[12]: array([2, 1, 3,4, 6, 5, 7])
Note that the first three values in the resulting array are the three smallest in thearray,

and the remaining array positions contain the remaining values. Within thetwo partitions,
the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional
array:

In[13]: np.partition(X, 2, axis=1)

Out[13]: array([[3, 4,6, 7, 6, 9],
[2,3,4,7,6,7],
[1,2,4,5,7,7],
[0,1,4,5,9,5]])

The result is an array where the first two slots in each row contain the smallest
valuesfrom that row, with the remaining values filling the remaining slots.

Finally, just as there is a np.argsort that computes indices of the sort, there is a
np.argpartitionthat computes indices of the partition. We'll see this in action in the
following section.

Example: k-Nearest Neighbors

Let’s quickly see how we might use this argsortfunction along multiple axes to find
the nearest neighbors of each point in a set. We'll start by creating a random set of
10 points on a two-dimensional plane. Using the standard convention, we’ll
arrangethese in a 10x2 array:

In[14]: X = rand.rand(10, 2)
To get an idea of how these points look, let’s quickly scatter plot them:
In[15]: %matplotlib inline
import as

import ; seaborn.set() # Plot styling
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plt.scatter(X[:, 0], X[:, 1], s=100);
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Figure . Visualization of points in the k-neighbors example

Now we’ll compute the distance between each pair of points. Recall that the squared-
distance between two points is the sum of the squared differences in each dimension; using
the efficient broadcasting routines provided by NumPy, we can compute the matrix of
square distances in a sin-gle line of code:

In[16]: dist_sqg = np.sum((X[:,np.newaxis,:] - X[np.newaxis,:,:]) ** 2, axis=-1)

This operation has a lot packed into it, and it might be a bit confusing if you’re unfa- miliar
with NumPy’s broadcasting rules. When you come across code like this, it canbe useful to
break it down into its component steps:

In[17]: # for each pair of points, compute differences in their
coordinates differences = X[:;, np.newaxis, :] -
X[np.newaxis, :, :] differences.shape

Out[17]: (10, 10, 2)

In[18]: # square the coordinate differences
sq_differences = differences ** 2
sq_differences.shape

Out[18]: (10, 10, 2)
In[19]: # sum the coordinate differences to get the squared distance

dist_sq=sq_differences.sum(-1)
dist_sq.shape

Out[19]: (10, 10)

Just to double-check what we are doing, we should see that the diagonal of this matrix(i.e.,
the set of distances between each point and itself) is all zero:

In[20]: dist_sq.diagonal()
Out[20]: array([ 0., 0., 0., O, 0., 0., 0., 0, 0, 0.])

It checks out! With the pairwise square-distances converted, we can now use np.arg sort to
sort along each row. The leftmost columns will then give the indices of the nearest neighbors:

In[21]: nearest = np.argsort(dist_sq, axis=1)
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print(nearest)

[[039714 2568]
[1 47936 8502]
[2 14630 8975]
[3 970145862]
[4 18567 9302]
[5 86417 9320]
[6 85417 9320]
[7 931405862]

[8 56417 9320]
9 73014 5862

Notice that the first column gives the numbers 0 through 9 in order: this is due to
the fact that each point’s closest neighbor is itself, as we would expect.

By using a full sort here, we’ve actually done more work than we need to in this case.lf we’re
simply interested in the nearest k neighbors, all we need is to partition each row so that the
smallest k + 1 squared distances come first, with larger distances fill- ing the remaining
positions of the array. We can do this with the np.argpartition function:

In[22]: K = 2
nearest_partition = np.argpartition(dist_sq, K + 1, axis=1)

In order to visualize this network of neighbors, let’s quickly plot the points along withlines
representing the connections from each point to its two nearest neighbors:

In[23]: plt.scatter(X[:, 0], X[:, 1], s=100)

# draw lines from each point to its two nearest neighbors

K=2

for iin range(X.shape[0]):
for j in nearest_partition[i, :K+1]:
# plot a line from X[i] to X[j]
# use some zip magic to make it happen:

plt.plot(*zip(X[j], X[i]), color="black')
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Figure : Visualization of the neighbors of each point

Page 81 of 580



Lab activity : Reading and Writing CSV files
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The
lines starting with # sign are comments in Python and are used to elaborate the code.

# # Reading and Writing CSV files

# Let's import our datafile mpg.csv, which contains fuel economy data for 234 cars.
#

# * mpg : miles per gallon

# * class : car classification

# * cty : city mpg

# * cyl : # of cylinders

# * displ : engine displacement in liters

# *drv: f = front-wheel drive, r = rear wheel drive, 4 = 4wd

# * fl : fuel (e = ethanol E85, d = diesel, r = regular, p = premium, c = CNG)
# * hwy : highway mpg

# * manufacturer : automobile manufacturer

# * model : model of car

# * trans : type of transmission

# * year : model year

import csv

get_ipython().run_line_magic('precision’, '2')

with open('datasets/mpg.csv') as csvfile:
mpg = list(csv.DictReader(csvfile))

mpg[:3] # The first three dictionaries in our list.

# ‘csv.Dictreader” has read in each row of our csv file as a dictionary. ‘len” shows that our list is
comprised of 234 dictionaries.
len(mpg)

# “keys’ gives us the column names of our csv.
mpg[0].keys()

# This is how to find the average cty fuel economy across all cars. All values in the dictionaries are
strings, so we need to convert to float.

# In[38]:

sum(float(d['cty']) for d in mpg) / len(mpg)

# Similarly this is how to find the average hwy fuel economy across all cars.

# In[39]:

sum(float(d['hwy']) for d in mpg) / len(mpg)

# Use ‘set’ to return the unique values for the number of cylinders the cars in our dataset have.
cylinders = set(d['cyl'] for d in mpg)

cylinders

# Here's a more complex example where we are grouping the cars by number of cylinder, and finding
the average cty mpg for each group.

CtyMpgByCyl =]

for cin cylinders: # iterate over all the cylinder levels
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summpg =0
cyltypecount =0
for d in mpg: #iterate over all dictionaries
if d['cyl'l == c: # if the cylinder level type matches,
summpg += float(d['cty']) # add the cty mpg
cyltypecount += 1 # increment the count
CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple (‘cylinder', 'avg mpg')

CtyMpgByCyl.sort(key=lambda x: x[0])

CtyMpgByCyl

# Use ‘set’ to return the unique values for the class types in our dataset.

vehicleclass = set(d['class'] for d in mpg) # what are the class types

vehicleclass

# And here's an example of how to find the average hwy mpg for each class of vehicle in our dataset.
HwyMpgByClass =[]

for tin vehicleclass: # iterate over all the vehicle classes
summpg =0
vclasscount =0
for d in mpg: #iterate over all dictionaries
if d['class'] ==t: # if the cylinder amount type matches,
summpg += float(d[‘hwy']) # add the hwy mpg
vclasscount += 1 # increment the count
HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class’, 'avg mpg')

HwyMpgByClass.sort(key=lambda x: x[1])
HwyMpgByClass
# # The Python Programming Language: Dates and Times

Day 04- Data Manipulation with Pandas

Pandas Introduction

This week we're going to deepen our investigation to how Python can be used to manipulate, clean,
and query data by looking at the Pandas data tool kit. Pandas was created by Wes McKinney in 2008,
and is an open source project under a very permissive license. As an open source project it's got a
strong community, with over one hundred software developers all committing code to help make it
better. Before pandas existed we had only a hodge podge of tools to use, such as numpy, the python
core libraries, and some python statistical tools. But pandas has quickly become the defacto library
for representing relational data for data scientists.

| want to take a moment here to introduce the question answersing site Stack Overflow. Stack
Overflow is used broadly within the software development community to post questions about
programming, programming languages, and programming toolkits. What's special about Stack
Overflow is that it's heavily curated by the community. And the Pandas community, in particular, uses
it as their number one resource for helping new members. It's quite possible if you post a question to
Stack Overflow, and tag it as being Pandas and Python related, that a core Pandas developer will
actually respond to your question. In addition to posting questions, Stack Overflow is a great place to
go to see what issues people are having and how they can be solved. You can learn a lot from browsing
Stacks at Stack Overflow and with pandas, this is where the developer community is.
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A second resource you might want to consider are books. In 2012 Wes McKinney wrote the definitive
Pandas reference book called Python for Data Analysis and published by O'Reilly, and it's recently been
update to a second edition. | consider this the go to book for understanding how Pandas works. | also
appreciate the more brief book "Learning the Pandas Library" by Matt Harrison. It's not a
comprehensive book on data analysis and statistics. But if you just want to learn the basics of Pandas
and want to do so quickly, | think it's a well laid out volume and it can be had for a good price.

The field of data science is rapidly changing. There's new toolkits and method being created everyday.
It can be tough to stay on top of it all. Marco Rodriguez and Tim Golden maintain a wonderful blog
aggregator site called Planet Python. You can visit the webpage at planetpython.org, subscribe with
an RSS reader, or get the latest articles from the @PlanetPython Twitter feed. There's lots of regular
Python data science contributors, and | highly recommend it if you follow RSS feeds.

Here's my last plug on how to deepen your learning. Kyle Polich runs an excellent podcast called Data
Skeptic. Itisn't Python based per se, but it's well produced and it has a wonderful mixture of interviews
with experts in the field as well as short educational lessons. Much of the word he describes is specific
to machine learning methods. But if that's something you are planning to explore through this
specialization this course is in, | would really encourage you to subscribe to his podcast.

That's it for a little bit of an introduction to this week of the course. Next we're going to dive right into
Pandas library and talk about the series data structure.

Pandas is a newer package built on top of NumPy, and provides anefficient implementation
of a DataFrame. DataFrames are essentially multidimen- sional arrays with attached row and
column labels, and often with heterogeneous types and/or missing data. As well as offering
a convenient storage interface for labeled data, Pandas implements a number of powerful
data operations familiar to users of both database frameworks and spreadsheet programs.

As we saw, NumPy’s ndarray data structure provides essential features for the type of clean,
well-organized data typically seen in numerical computing tasks. While it serves this purpose
very well, its limitations become clear when we need more flexi- bility (attaching labels to
data, working with missing data, etc.) and when attempting operations that do not map well
to element-wise broadcasting (groupings, pivots, etc.), each of which is an important piece
of analyzing the less structured data avail- able in many forms in the world around us.
Pandas, and in particular its Series and DataFrameobjects, builds on the NumPy array
structure and provides efficient accessto these sorts of “data munging” tasks that occupy
much of a data scientist’s time.

In this chapter, we will focus on the mechanics of using Series, DataFrame, and
related structures effectively. We will use examples drawn from real datasets
where appropriate, but these examples are not necessarily the focus.

Installing and Using Pandas

Installing Pandas on your system requires NumPy to be installed, and if you're
build-ing the library from source, requires the appropriate tools to compile
the C and

Cython sources on which Pandas is built. Details on this installation can be found in the
Pandas documentation. If you followed the advice outlined in the preface andused the
Anaconda stack, you already have Pandas installed.

Once Pandas is installed, you can import it and check the version:
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In[1]: import
pandas. version

Out[1]: '0.18.1"

Just as we generally import NumPy under the alias np, we will import Pandas under the alias
pd:

In[2]: import as
Introducing Pandas Objects

At the very basic level, Pandas objects can be thought of as enhanced versions of NumPy
structured arrays in which the rows and columns are identified with labels rather than simple
integer indices. As we will see during the course of this chapter, Pandas provides a host of
useful tools, methods, and functionality on top of the basic data structures, but nearly
everything that follows will require an understanding of what these structures are. Thus,
before we go any further, let’s introduce these three fundamental Pandas data structures:
the Series, DataFrame, and Index.

We will start our code sessions with the standard NumPy and Pandas imports:

In[1]: import as
import as

The Pandas Series Object

A Pandas Seriesis a one-dimensional array of indexed data. It can be created from alist or
array as follows:

In[2]: data = pd.Series([0.25, 0.5, 0.75, 1.0])
data

Out[2:0 0.25

1 0.50
2 0.75
3 1.00

dtype: float64

As we see in the preceding output, the Series wraps both a sequence of values and a
sequence of indices, which we can access with the values and index attributes. The values
are simply a familiar NumPy array:

In[3]: data.values

Out[3]: array([ 0.25, 0.5, 0.75, 1. ])

The index is an array-like object of type pd.Index, which we’ll discuss in more detail
momentarily:

In[4]: data.index
Out[4]: Rangelndex(start=0, stop=4, step=1)

Like with a NumPy array, data can be accessed by the associated index via the
familiarPython square-bracket notation:

In[5]: data[1]
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Out[5]: 0.5

In[6]:  data[1:3]
Out[6]: 1 0.50
2 0.75
dtype: float64

As we will see, though, the Pandas Seriesis much more general and flexible than the
one-dimensional NumPy array that it emulates.

Series as generalized NumPy array

From what we’ve seen so far, it may look like the Series object is basically inter- changeable
with a one-dimensional NumPy array. The essential difference is the pres-ence of the index:
while the NumPy array has an implicitly defined integer index usedto access the values, the
Pandas Series has an explicitly defined index associated with the values.

This explicit index definition gives the Series object additional capabilities. For example, the
index need not be an integer, but can consist of values of any desired type. For example, if
we wish, we can use strings as an index:

In[7]: data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=['a’, 'b', 'c', 'd"])
data

Out|7:a 0.25

b 0.50
c 0.75
d 1.00

dtype: float64

And the item access works as expected:
In[8]: data['b']
Out[8]: 0.5

We can even use noncontiguous or nonsequential indices:
In[9]: data = pd.Series([0.25, 0.5, 0.75, 1.0],

index=[2, 5, 3, 7])
data

Out|9]:2 0.25

5 0.50
3 0.75
7 1.00

dtype: float64
In[10]: data[5]

Out[10]: 0.5
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Series as specialized dictionary

In this way, you can think of a Pandas Series a bit like a specialization of a Python dictionary.
A dictionary is a structure that maps arbitrary keys to a set of arbitrary values, and a Series
is a structure that maps typed keys to a set of typed values. Thistyping is important: just as
the type-specific compiled code behind a NumPy array makes it more efficient than a Python
list for certain operations, the type information of a Pandas Series makes it much more
efficient than Python dictionaries for certainoperations.

We can make the Series-as-dictionary analogy even more clear by constructing a
Seriesobject directly from a Python dictionary:
In[11]: population_dict = {'California': 38332521,

'"Texas': 26448193,
'New York': 19651127,
'Florida': 19552860,

llinois': 12882135}
population = pd.Series(population_dict)
population

Out|11]: California %2133325

Florida 195528
60

Illinois 128821
35

New York 196511
27

Texa 264481

S 93

dtype: int64

By default, a Series will be created where the index is drawn from the sorted keys.From
here, typical dictionary-style item access can be performed:

In[12]:  population['California']

Out[12]: 38332521
Unlike a dictionary, though, the Seriesalso supports array-style operations such
asslicing:

In[13]: population['California':'lllinois']

Out|[13]: California 32{3325

Florida 195528
60
lllinois 128821
35
dtype: int64

Constructing Series objects

We've already seen a few ways of constructing a Pandas Series from scratch; all ofthem are
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some version of the following:

>>> pd.Series(data, index=index)

where indexis an optional argument, and datacan be one of many entities.

For example, datacan be a list or NumPy array, in which case indexdefaults to aninteger
sequence:

In[14]: pd.Series([2, 4, 6])

Out[14]:0 2
1 4
2 6
dtype: int64

datacan be a scalar, which is repeated to fill the specified index:
In[15]: pd.Series(5, index=[100, 200, 300])
Out[15]: 100 5

200 5
300 5
dtype: int64

datacan be a dictionary, in which indexdefaults to the sorted dictionary keys:
In[16]: pd.Series({2:'a', 1:'b', 3:'c'})

Out[16]:1 b
2 a
3¢

dtype: object
In each case, the index can be explicitly set if a different result is preferred:
In[17]: pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2])
Out[17]:3 ¢
2 a
dtype: object
Notice that in this case, the Seriesis populated only with the explicitly identifiedkeys.
The Pandas DataFrame Object

The next fundamental structure in Pandas is the DataFrame. Like the Series object discussed
in the previous section, the DataFrame can be thought of either as a gener- alization of a
NumPy array, or as a specialization of a Python dictionary. We'll now take a look at each of
these perspectives.

DataFrame as a generalized NumPy array

If a Seriesis an analog of a one-dimensional array with flexible indices, a DataFrameis an
analog of a two-dimensional array with both flexible row indices and flexible column names.
Just as you might think of a two-dimensional array as an ordered sequence of aligned one-
dimensional columns, you can think of a DataFrame as a sequence of aligned Series objects.
Here, by “aligned” we mean that they share thesame index.

To demonstrate this, let’s first construct a new Serieslisting the area of each of
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thefive states discussed in the previous section:

In[18]:

area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,
'Florida': 170312, 'lllinois': 149995}

area = pd.Series(area_dict)
area

Out|18]: Calitornia 3%39

Florida 1703
12
Illinois 1499
95
New York 1412
97
Texa 6956
62

s
dtype: int64

Now that we have this along with the populationSeriesfrom before, we can use adictionary
to construct a single two-dimensional object containing this information:

In[19]: states = pd.DataFrame({'population': population,

'area': area})

states

Out|19] area

California 423967
Florida 170312
Ilinois 149995

New York 141297
Texas 695662

populatio
n

38332521
19552860
12882135

19651127
26448193

Like the Seriesobject, the DataFramehas an indexattribute that gives access to the

index labels:

In[20]: states.index
Out[20]:

Index(['California’, 'Florida’, 'lllinois', 'New York', 'Texas'], dtype='object')

Additionally, the DataFramehas a columnsattribute, which is an Indexobject holding

the column labels:

In[21]: states.columns

Out[21]: Index(['area’, 'population'], dtype="'object')

Thus the DataFrame can be thought of as a generalization of a two-dimensional NumPy
array, where both the rows and columns have a generalized index for access- ing the data.
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DataFrame as specialized dictionary

Similarly, we can also think of a DataFrame as a specialization of a dictionary. Wherea
dictionary maps a key to a value, a DataFrame maps a column name to a Series ofcolumn
data. For example, asking for the 'area' attribute returns the Series object containing the
areas we saw earlier:

In[22]: states['area'] Out[22]:
California 423967
Florida 170312
lllinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Notice the potential point of confusion here: in a two-dimensional NumPy array, data[0]will return
the first row. For a DataFrame, data['col0']will return the firstcolumn. Because of this, it is probably
better to think about DataFrames as generalizeddictionaries rather than generalized arrays, though
both ways of looking at the situa- tion can be useful.

Constructing DataFrame objects

A Pandas DataFramecan be constructed in a variety of ways. Here we'll give several
examples.

From a single Series object. A DataFrame is a collection of Series objects, and a single- column
DataFramecan be constructed from a single Series:

In[23]: pd.DataFrame(population, columns=['population'])

Qut[231 ﬁopulatio
California 38332521
Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193

Fromalistofdicts. Any list of dictionaries can be made into a DataFrame. We'll use a
simple list comprehension to create some data:

In[24]: data =[{'a":i, 'b": 2 * i}

for i in range(3)]
pd.DataFrame(data)

Out[24] a b
000
11 2
22 4

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN(i.e.,“not a
number”) values:
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In[25]: pd.DataFrame([{'a": 1, 'b": 2}, {'b": 3, 'c": 4}])
Out[25]: a b c

0 1.0 2 NaN

1 NaN 34.0

From a dictionary of Series objects. As we saw before, a DataFrame can be constructed from a
dictionary of Seriesobjects as well:

In[26]: pd.DataFrame({'population': population,

'area': area})

Qut|26| area populatio
: n

California 423967 38332521
Florida 170312 19552860
lllinois 149995 12882135

New York 141297 19651127
Texas 695662 26448193

From a two-dimensional NumPy array. Given a two-dimensional array of data, we can create a
DataFramewith any specified column and index names. If omitted, an integerindex
will be used for each:

In[27]: pd.DataFrame(np.random.rand(3, 2),
columns=['foo’, 'bar'],

index=['a’, 'b', 'c'])

Out|27] too bar

a 0.86525 0.21316
7 9
b 0.44275 0.10826

9 7
c 0.04711 0.90571
0 8

From a NumPy structured array.

A Pandas DataFrame operates much like a structured array, and can be created directly from
one:

In[28]: A = np.zeros(3, dtype=[('A', 'i8"), ('B', 'f8')])A

Out[28]: array([(0, 0.0), (0, 0.0), (0, 0.0)],
dtype=[('A’, '<i8'), ('B', '<f8")])

In[29]: pd.DataFrame(A)

Out[29] A B

00 00

10 0.0
20 0.0
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The Pandas Index Object

We have seen here that both the Series and DataFrame objects contain an explicit index that
lets you reference and modify data. This Index object is an interesting structure in itself, and
it can be thought of either as an immutable array or as an ordered set (technically a multiset,
as Index objects may contain repeated values). Those views have some interesting
consequences in the operations available on Indexobjects. As a simple example, let’s construct
an Indexfrom a list of integers:

In[30]: ind = pd.Index([2, 3, 5, 7, 11])ind
Out[30]: Int64Index([2, 3, 5, 7, 11], dtype='int64')

Index as immutable array

The Indexobject in many ways operates like an array. For example, we can use stan-
dard Python indexing notation to retrieve values or slices:

In[31]: ind[1]
Out[31]: 3
In[32]:ind[::2]

Out[32]: Int64Index([2, 5, 11], dtype='int64')
Indexobjects also have many of the attributes familiar from NumPy arrays:

In[33]: print(ind.size, ind.shape, ind.ndim, ind.dtype)5

(5,) 1int64
One difference between Index objects and NumPy arrays is that indices are
immuta-ble—that is, they cannot be modified via the normal means:

In[34]:ind[1]=0

TypeError Traceback (most recent call last)

<ipython-input-34-40e631c82e8a> in <module>()
-—-->1ind[1]=0

/Users/jakevdp/anaconda/lib/python3.5/site-packages/pandas/indexes/base.py ...
1243
1244  def _setitem_ (self, key, value):

-> 1245 raise TypeError("Index does not support mutable
operations")1246

1247  def getitem_(self, key):
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TypeError: Index does not support mutable operations

This immutability makes it safer to share indices between multiple DataFrames
and arrays, without the potential for side effects from inadvertent index
modification.

Index as ordered set

Pandas objects are designed to facilitate operations such as joins across datasets,which
depend on many aspects of set arithmetic. The Indexobject follows many of

the conventions used by Python’s built-in set data structure, so that unions, intersec-tions,
differences, and other combinations can be computed in a familiar way:

In[35]: indA = pd.Index([1, 3, 5, 7, 9])
indB = pd.Index([2, 3, 5, 7, 11])In[36]:

indA & indB # intersection

Out[36]: Int64Index([3, 5, 7], dtype='int64')
In[37]:indA | indB # union

Out[37]: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64")
In[38]: indA * indB # symmetric difference

Out[38]: Int64Index([1, 2, 9, 11], dtype='int64')

These operations may also be accessed via object methods—for example,
indA.intersection(indB).

Data Indexing and Selection

We looked in detail at methods and tools to access, set, and modify val- ues in NumPy arrays.
These included indexing (e.g., arr[2, 1]), slicing (e.g., arr[:,1:5]), masking (e.g., arr[arr > 0]),
fancy indexing (e.g., arr[0, [1, 5]]), and combinations thereof (e.g., arr[:, [1, 5]]). Here we’ll
look at similar means of accessing and modifying values in Pandas Series and DataFrame objects.
If you have used the NumPy patterns, the corresponding patterns in Pandas will feel very
famil- iar, though there are a few quirks to be aware of.

We'll start with the simple case of the one-dimensional Seriesobject, and then moveon to
the more complicated two-dimensional DataFrameobject.

Data Selection in Series

As we saw in the previous section, a Series object acts in many ways like a one- dimensional
NumPy array, and in many ways like a standard Python dictionary. If wekeep these two
overlapping analogies in mind, it will help us to understand the pat- terns of data indexing
and selection in these arrays.

Series as dictionary

Like a dictionary, the Seriesobject provides a mapping from a collection of keys to acollection
of values:

In[1]: import as
data = pd.Series([0.25, 0.5, 0.75, 1.0],
index=["a', 'b", 'c', 'd"])
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data
Out[1l]:a 0.25

b 0.50
C 0.75
d 1.00

dtype: float64
In[2]: data['b'] Out[2]:
0.5

We can also use dictionary-like Python expressions and methods to examine the
keys/indices and values:

In[3]: 'a' in data
Out[3]: True In[4]:
data.keys()

Out[4]: Index(['a’, 'b', 'c', 'd'], dtype='object")In[5]:

list(data.items())

Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]

Series objects can even be modified with a dictionary-like syntax. Just as you canextend a
dictionary by assigning to a new key, you can extend a Series by assigningto a new index
value:

In[6]: data['e'] = 1.25
data

Out|6]:a 0.25

b 0.50
c 0.75
d 1.00
e 1.25

dtype: float64

This easy mutability of the objects is a convenient feature: under the hood, Pandas is making
decisions about memory layout and data copying that might need to take place; the user
generally does not need to worry about these issues.

Series as one-dimensional array

A Series builds on this dictionary-like interface and provides array-style item selec-tion via
the same basic mechanisms as NumPy arrays—that is, slices, masking, and fancy indexing.
Examples of these are as follows:

In[7]: # slicing by explicit index

data['a":'c']
Out[7]:a 0.25

b 0.50

¢ 0.75

dtype: float64
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In[8]: # slicing by implicit integer index

data[0:2]
Out[8]:a 0.25
b 0.50

dtype: float64
In[9]: # masking
data[(data > 0.3) & (data < 0.8)]
Out[9]: b 0.50
c 075
dtype: float64
In[10]: # fancy indexing
data[['a’, 'e']]
Out[10]:a 0.25
e 125
dtype: float64

Among these, slicing may be the source of the most confusion. Notice that when you are
slicing with an explicit index (i.e., data['a":'c']), the final index is included in the slice, while
when you’re slicing with an implicit index (i.e., data[0:2]), the final index is excluded from the
slice.

Indexers: loc, iloc, and ix

These slicing and indexing conventions can be a source of confusion. For example, ifyour
Serieshas an explicit integer index, an indexing operation such as data[1]willuse the explicit
indices, while a slicing operation like data[1:3] will use the implicit Python-style index.

In[11]: data = pd.Series(['a’, 'b', 'c'], index=[1, 3, 5])data

Out[11]:1 a
3 b
5 ¢
dtype: object
In[12]: # explicit index when indexing
data[1]
Out[12]: 'a’
In[13]: # implicit index when slicing
data[1:3]
Out[13]:3 b
5 ¢

dtype: object

Because of this potential confusion in the case of integer indexes, Pandas provides some
special indexer attributes that explicitly expose certain indexing schemes. These are not
functional methods, but attributes that expose a particular slicing interface to the data in
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the Series.

First, the locattribute allows indexing and slicing that always references the explicit
index:

In[14]: data.loc[1]
Out[14]: 'a’

In[15]: data.loc[1:3]
Out[15]:1 a
3 b
dtype: object

The iloc attribute allows indexing and slicing that always references the implicitPython-
style index:

In[16]: data.iloc[1]
Out[16]: 'b'

In[17]: data.iloc[1:3]
Out[17]:3 b
5 ¢
dtype: object
A third indexing attribute, ix, is a hybrid of the two, and for Seriesobjects is equiva-lent to

standard []-based indexing. The purpose of the ix indexer will become more apparent in the
context of DataFrameobjects, which we will discuss in a moment.

One guiding principle of Python code is that “explicit is better than implicit.” The explicit
nature of locand ilocmake them very useful in maintaining clean and read-able code;
especially in the case of integer indexes, | recommend using these both to make code easier
to read and understand, and to prevent subtle bugs due to themixed indexing/slicing
convention.

Data Selection in DataFrame

Recall that a DataFrameacts in many ways like a two-dimensional or structured array,and in
other ways like a dictionary of Series structures sharing the same index. These analogies can
be helpful to keep in mind as we explore data selection within this structure.

DataFrame as a dictionary

The first analogy we will consider is the DataFrame as a dictionary of related Series
objects. Let’s return to our example of areas and populations of states:

In[18]: area = pd.Series({'California': 423967, 'Texas'": 695662,
'New York': 141297, 'Florida': 170312,
"lllinois': 149995})
pop = pd.Series({'California': 38332521, 'Texas'": 26448193,
'New York': 19651127, 'Florida': 19552860,
"lllinois': 12882135})
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data = pd.DataFrame({'area':area,
‘pop':pop})data

Qut[lSJ area pop
California 42396 383325
7 21
Florida 17031 195528
2 60
Illinois 14999 128821
5 35
New York 14129 196511
7 27

Texas 69566 2644381
2 93

The individual Series that make up the columns of the DataFrame can be accessed via
dictionary-style indexing of the column name:

In[19]: data['area']

QOut|19]: Calitornia 423967
Florida 170312
Illinois 149995

New York 141297
Texas 695662

Name: area, dtype: int64

Equivalently, we can use attribute-style access with column names that are strings:

In[20]: data.area

Out|20]: Calitornia 423967
Florida 170312
Illinois 149995

New York 141297
Texas 695662

Name: area, dtype: int64

This attribute-style column access actually accesses the exact same object as the
dictionary-style access:

In[21]: data.area is data['area']Out[21]:

True

Though this is a useful shorthand, keep in mind that it does not work for all cases!For
example, if the column names are not strings, or if the column names conflict with methods
of the DataFrame, this attribute-style access is not possible. For exam- ple, the DataFrame
has a pop()method, so data.popwill point to this rather than the"pop"column:

In[22]: data.pop is data['pop']
Out[22]: False
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In particular, you should avoid the temptation to try column assignment via
attribute (i.e., use data['pop'] = zrather than data.pop = z).

Like with the Series objects discussed earlier, this dictionary-style syntax can also be used to
modify the object, in this case to add a new column:

In[23]: data['density'] = data['pop'] / data['area']

data
Qut[23] area
California 42396
7
Florida 17031
2
Illinois 14999
5
New York 14129
7
Texas 29566

pop density
383325 90.41392
21 6

195528 114.8061
60 21
128821 85.88376
35 3

196511 139.0767
27 46

264481 38.01874
93 0

This shows a preview of the straightforward syntax of element-by-element arithmetic
between Series objects; we’ll dig into this further in “Operating on Data in Pandas” on page

115.
DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced two- dimensional
array. We can examine the raw underlying data array using the values attribute:

In[24]: data.values

Out|24]: array(]]

g.23967000e+0%.833252 10e+0

9.04139261e+0

[ 1.70312000e+01.95528600e+0 1.14806121e+0
5, 7, 2],

[ 1.49995000e+01.28821350e+0 8.58837628e+0
5, 7, 1],

[ 1.41297000e+01.96511270e+0  1.39076746e+0

[ gt95662000e+0;t64481930e+0 %;5}3)0187404e+0

With this picture in mind, we can do many familiar array-like observations on the DataFrame
itself. For example, we can transpose the full DataFrame to swap rows and columns:

In[25]: data.T

Out[25]:

Calitornia Florida
area

05 05
pop

07 07

Illinois New York Texas

4.239670e+ 1.703120e+ 1.499950e+ 1.412970e+ 6.956620e+

05 05 05

3.833252e+ 1.955286e+ 1.288214e+ 1.965113e+ 2.644819e+

07 07 07

density 9.041393e+ 1.14806le+ 8.588376e+ 1.390767e+ 3.801874e+
01 02 01 02 01

When it comes to indexing of DataFrame objects, however, it is clear that the dictionary-
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style indexing of columns precludes our ability to simply treat it as a NumPy array. In
particular, passing a single index to an array accesses a row:

In[26]: data.values[0]

Out[26]: array([ 4.23967000e+05, 3.83325210e+07,
9.04139261e+01])

and passing a single “index” to a DataFrameaccesses a column:

In[27]: data['area']

QOut|27]: Calitornia 423967
Florida 170312
Illinois 149995

New York 141297
Texas 695662

Name: area, dtype: int64

Thus for array-style indexing, we need another convention. Here Pandas again uses the loc,
iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can index the underlying
array as if it is a simple NumPy array (using the implicit Python-style index), but the
DataFrameindex and column labels are maintained inthe result:

In[28]: data.iloc[:3, :2]

Qut[281 area pop
California 42396 383325

7 21
Florida 17031 195528

2 60

lllinois 14999 128821
5 35

In[29]: data.loc[:'lllinois’, :'pop']

Out[29] area pop
California 42396 383325

7 21
Florida 17031 195528

2 60

lllinois 14999 128821
5 35

The ixindexer allows a hybrid of these two approaches:

In[30]: data.ix[:3, :'pop']

Qut[30] area pop
California 42396 383325

7 21
Florida 17031 195528

2 60

lllinois 14999 128821
5 35
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Keep in mind that for integer indices, the ix indexer is subject to the same potential sources
of confusion as discussed for integer-indexed Seriesobjects.

Any of the familiar NumPy-style data access patterns can be used within these index-ers. For
example, in the loc indexer we can combine masking and fancy indexing as in the following:

In[31]: data.loc[data.density > 100, ['pop’, 'density']]
Out[31]: pop density

Florida 19552860 114.806121

New York 19651127 139.076746

Any of these indexing conventions may also be used to set or modify values; this is done in
the standard way that you might be accustomed to from working withNumPy:

In[32]: data.iloc[0, 2] = 90

data
Qut[32] area pop density
California 42396 383325 90.00000
7 21 0
Florida 17031 195528 114.8061
2 60 21

lllinois 14999 128821 85.88376
5 35 3
New York 14129 196511 139.0767

7 27 46
Texas 69566 264481 38.01874
2 93 0

To build up your fluency in Pandas data manipulation, | suggest spending some time with a
simple DataFrame and exploring the types of indexing, slicing, masking, and fancy indexing
that are allowed by these various indexing approaches.

Additional indexing conventions

There are a couple extra indexing conventions that might seem at odds with the pre- ceding
discussion, but nevertheless can be very useful in practice. First, while index- ing refers to
columns, slicing refers to rows:

In[33]: data['Florida":"lllinois']

Out[33]: area pop density
Florida 170312 19552860
114.806121

lllinois 149995 12882135 85.883763
Such slices can also refer to rows by number rather than by index:

In[34]: data[1:3]

Out[34]: area pop density
Florida 170312 19552860
114.806121

lllinois 149995 12882135 85.883763

Similarly, direct masking operations are also interpreted row-wise rather than
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column-wise:

In[35]: data[data.density > 100]

Out[35]: area pop density
Florida 170312 19552860
114.806121

New York 141297 19651127 139.076746

These two conventions are syntactically similar to those on a NumPy array, and
whilethese may not precisely fit the mold of the Pandas conventions, they are
nevertheless quite useful in practice.

Operating on Data in Pandas

One of the essential pieces of NumPy is the ability to perform quick element-wise
operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with
more sophisticated operations (trigonometric functions, exponential and loga- rithmic
functions, etc.). Pandas inherits much of this functionality from NumPy, and the ufuncs that
we introduced in “Computation on NumPy Arrays: Universal Func- tions” on page 50 are key
to this.

Pandas includes a couple useful twists, however: for unary operations like negation and
trigonometric functions, these ufuncs will preserve index and column labels in theoutput, and
for binary operations such as addition and multiplication, Pandas will automatically align
indices when passing the objects to the ufunc. This means that keeping the context of data
and combining data from different sources—both poten- tially error-prone tasks with raw
NumPy arrays—become essentially foolproof ones with Pandas. We will additionally see that
there are well-defined operations between one-dimensional Seriesstructures and two-
dimensional DataFramestructures.

Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas
Series and DataFrame objects. Let’s start by defining a simple Series and DataFrameon which
to demonstrate this:

In[1]: import as
import as

In[2]: rng = np.random.RandomState(42)

ser = pd.Series(rng.randint(0, 10, 4))

ser
Out|2]:0 6
1 3
2 7
3 4
dtype: int64

In[3]: df = pd.DataFrame(rng.randint(0, 10, (3, 4)),
columns=['A", 'B', 'C', 'D"])
df

Out3JA B C D
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If we apply a NumPy ufunc on either of these objects, the result will be another
Pan-das object with the indices preserved:

In[4]: np.exp(ser)
Out|4]: 0 403.428793

1 20.085537
2 1096.63315
8

3 54.598150

dtype: float64

Or, for a slightly more complex calculation:

In[5]: np.sin(df * np.pi / 4)

Oout(5] A B C D
0 - 7.071068e- 1.00000 -
1.000000 01 0 1.000000e+
00
1 - 1.224647e- 0.70710 -7.071068e-
0.707107 16 7 01
2 - 1,000000e+ - 1.224647e-
0.707107 00 9.70710 16

Any of the ufuncs discussed in “Computation on NumPy Arrays: Universal Func-
tions” on page 50 can be used in a similar manner.

UFuncs: Index Alignment

For binary operations on two Seriesor DataFrameobjects, Pandas will align indicesin the
process of performing the operation. This is very convenient when you are working with
incomplete data, as we’ll see in some of the examples that follow.

Index alignment in Series

As an example, suppose we are combining two different data sources, and find only the top
three US states by area and the top three US states by population:

In[6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662,
'California': 423967}, name="area')
population = pd.Series({'California': 38332521, 'Texas': 26448193,
'New York': 19651127}, name="population')
Let’s see what happens when we divide these to compute the population density:

In[7]: population / area Out[7]:

Alaska NaN
California 90.413926
New York NaN

Texas 38.018740
dtype: float64
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The resulting array contains the union of indices of the two input arrays, which we
could determine using standard Python set arithmetic on these indices:

In[8]: area.index | population.index
Out[8]: Index(['Alaska’, 'California’, 'New York', 'Texas'], dtype="'object')

Any item for which one or the other does not have an entry is marked with NaN, or “Not a
Number,” which is how Pandas marks missing data. This index matching is imple mented this
way for any of Python’s built-in arithmetic expressions; any missing val-ues are filled in with
NaN by default:

In[9]: A = pd.Series([2, 4, 6], index=[0, 1, 2])
B = pd.Series([1, 3, 5], index=[1, 2, 3])A +

B
Out[9]: 0 NaN
1 5.0
2 9.0

3 NaN

dtype: float64

If using NaN values is not the desired behavior, we can modify the fill value using
appropriate object methods in place of the operators. For example, calling
A.add(B)is equivalent to calling A + B, but allows optional explicit specification of the
fill valuefor any elements in Aor Bthat might be missing:

In[10]: A.add(B, fill_value=0)

Out|10]:0 2.0

1 5.0
2 9.0
3 5.0

dtype: float64

Index alignment in DataFrame

A similar type of alignment takes place for both columns and indices when you are
performing operations on DataFrames:

In[11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)),
columns=list('AB"))
A
Out[11]: A B
0111
15 1
In[12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)),
columns=list('BAC"))
B
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Out[12]: B A CO

4009
1580
2926
In[13]: A+ B
Out[13]: A B CO
1.0 15.0 NaN

1 13.0 6.0 NaN
2 NaN NaN NaN

Notice that indices are aligned correctly irrespective of their order in the two objects, and
indices in the result are sorted. As was the case with Series, we can use the asso-ciated
object’s arithmetic method and pass any desired fill_valueto be used in placeof missing
entries. Here we’ll fill with the mean of all values in A(which we computeby first stacking the
rows of A):

In[14]: fill = A.stack().mean()
A.add(B, fill_value=fill)
Qut[14jA B C
0 1.0 15.0 135
1 13.06.0 45
2 6.5 135 105

Table. Lists Python operators and their equivalent Pandas object methods.

Table . Mapping between Python operators and Pandas methods

Python operator Pandas method(s)

+ add()

- sub(), subtract()

* mul(), multiply()

/ truediv(), div(), divide()
// floordiv()

% mod)

i pow()

Ufuncs: Operations Between DataFrame and Series

When you are performing operations between a DataFrame and a Series, the index and
column alignment is similarly maintained. Operations between a DataFrame and a Series are
similar to operations between a two-dimensional and one-dimensional NumPy array.
Consider one common operation, where we find the difference of a two-dimensional array
and one of its rows:
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In[15]: A = rng.randint(10, size=(3, 4))A
Out[15]: array([[3, 8, 2, 4],
[2,6,4,38],
[6,1,3,8]])

In[16]: A - A[0]

Out[16]: array([[0, O, 0, O],

[-1, -2, 2, 4],
[3,-7, 1, 4]])

In Pandas, the convention similarly operates row-wise by default:
In[17]: df = pd.DataFrame(A,
columns=list('QRST'))df - df.iloc[0]

Qut[17j

Q
0
1-
2

wkFk o =

If you would instead like to operate column-wise, you can use the object methods
mentioned earlier, while specifying the axiskeyword:

In[18]: df.subtract(df['R'], axis=0)

Out|18]

Note that these DataFrame/Series operations, like the operations discussed before, will
automatically align indices between the two elements:

In[19]: halfrow = df.iloc[0, ::2]
halfrow

Out[19]:Q 3

Name: O, dtype: int64

In[20]: df - halfrow
out20|Q R S T

0 0.0 Na 0.0 Na

N N
1-1.0 Na 2.0 Na
N N

2 3.0 Na 1.0 Na
N N
This preservation and alignment of indices and columns means that operations ondata

in Pandas will always maintain the data context, which prevents the types of sillyerrors that
might come up when you are working with heterogeneous and/or mis- aligned data in raw
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NumPy arrays.
Handling Missing Data

The difference between data found in many tutorials and data in the real world is thatreal-
world data is rarely clean and homogeneous. In particular, many interesting datasets will
have some amount of data missing. To make matters even more compli-cated, different data
sources may indicate missing data in different ways.

we will discuss some general considerations for missing data, discuss how Pandas chooses
to represent it, and demonstrate some built-in Pandas tools for handling missing data in
Python. Here and throughout the book, we’ll refer to miss- ing data in general as null, NaN,
or NA values.

Trade-Offs in Missing Data Conventions

A number of schemes have been developed to indicate the presence of missing data ina table
or DataFrame. Generally, they revolve around one of two strategies: using a mask that
globally indicates missing values, or choosing a sentinel value that indicatesa missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or
it may involve appropriation of one bit in the data representation to locally indicate
the null status of a value.

In the sentinel approach, the sentinel value could be some data-specific convention, such as
indicating a missing integer value with —9999 or some rare bit pattern, or it could be a more
global convention, such as indicating a missing floating-point value with NaN (Not a
Number), a special value which is part of the IEEE floating-point specification.

None of these approaches is without trade-offs: use of a separate mask array requires
allocation of an additional Boolean array, which adds overhead in both storage and
computation. A sentinel value reduces the range of valid values that can be repre- sented,
and may require extra (often non-optimized) logic in CPU and GPU arith- metic. Common
special values like NaN are not available for all data types.

As in most cases where no universally optimal choice exists, different languages and systems
use different conventions. For example, the R language uses reserved bit pat-terns within
each data type as sentinel values indicating missing data, while the SciDBsystem uses an extra
byte attached to every cell to indicate a NA state.

Missing Data in Pandas

The way in which Pandas handles missing values is constrained by its reliance on
theNumPy package, which does not have a built-in notion of NA values for non-
floating-point data types.

Pandas could have followed R’s lead in specifying bit patterns for each individual data type to
indicate nullness, but this approach turns out to be rather unwieldy. While R contains four
basic data types, NumPy supports far more than this: for example,while R has a single
integer type, NumPy supports fourteen basic integer types once you account for available
precisions, signedness, and endianness of the encoding. Reserving a specific bit pattern in
all available NumPy types would lead to anunwieldy amount of overhead in special-
casing various operations for various types, likely even requiring a new fork of the NumPy
package. Further, for the smaller data types (such as 8-bit integers), sacrificing a bit to use
as a mask will significantly reduce the range of values it can represent.

NumPy does have support for masked arrays—that is, arrays that have a separate Boolean
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mask array attached for marking data as “good” or “bad.” Pandas could havederived from
this, but the overhead in both storage, computation, and code mainte- nance makes that an
unattractive choice.

With these constraints in mind, Pandas chose to use sentinels for missing data, and further
chose to use two already-existing Python null values: the special floating- point NaN value,
and the Python None object. This choice has some side effects, as we will see, but in practice
ends up being a good compromise in most cases of interest.

None: Pythonic missing data

The first sentinel value used by Pandas is None, a Python singleton object that is oftenused
for missing data in Python code. Because None is a Python object, it cannot be used in any
arbitrary NumPy/Pandas array, but only in arrays with data type 'object'(i.e., arrays of Python
objects):

In[1]: import as
import as

In[2]: vals1l = np.array([1, None, 3, 4])
valsl

Out[2]: array([1, None, 3, 4], dtype=object)

This dtype=object means that the best common type representation NumPy could infer for
the contents of the array is that they are Python objects. While this kind of object array is
useful for some purposes, any operations on the data will be done at the Python level, with
much more overhead than the typically fast operations seen forarrays with native types:

In[3]: for dtype in ['object’, 'int']:
print("dtype =", dtype)
%timeit np.arange(1E6, dtype=dtype).sum()
print()

dtype = object

10 loops, best of 3: 78.2 ms per loop

dtype =int
100 loops, best of 3: 3.06 ms per loop

The use of Python objects in an array also means that if you perform aggregationslike
sum()or min()across an array with a Nonevalue, you will generally get an error:

In[4]: vals1.sum()

TypeError Traceback (most recent call last)

<ipython-input-4-749fd8ae6030> in <module>()

----> 1 valsl.sum()

/Users/jakevdp/anaconda/lib/python3.5/site-packages/numpy/core/_methods.py ...
30
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31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):

--->32 return umr_sum(a, axis, dtype, out,
keepdims)33
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

This reflects the fact that addition between an integer and Noneis undefined.
NaN: Missing numerical data

The other missing data representation, NaN (acronym for Not a Number), is
different;it is a special floating-point value recognized by all systems that use the

standard IEEE floating-point representation:

In[5]: vals2 = np.array([1, np.nan, 3, 4])
vals2.dtype

Out[5]: dtype('float64’)

Notice that NumPy chose a native floating-point type for this array: this means that unlike
the object array from before, this array supports fast operations pushed into compiled code.
You should be aware that NaN is a bit like a data virus—it infects any other object it touches.
Regardless of the operation, the result of arithmetic with NaN will be another NaN:

In[6]: 1 + np.nan

Out[6]: nan

In[7]: 0 * np.nan

Out[7]: nan
Note that this means that aggregates over the values are well defined (i.e., they
don’t result in an error) but not always useful:

In[8]: vals2.sum(), vals2.min(), vals2.max()

Out[8]: (nan, nan, nan)

NumPy does provide some special aggregations that will ignore these missing values:
In[9]: np.nansum(vals2), np.nanmin(vals2),

np.nanmax(vals2)Out[9]: (8.0, 1.0, 4.0)

Keep in mind that NaN is specifically a floating-point value; there is no equivalent
NaN value for integers, strings, or other types.

NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle the two of them
nearly interchangeably, converting between them where appropriate:

In[10]: pd.Series([1, np.nan, 2, None])
Out[10]:0 1.0
1 NaN
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2 20
3 NaN
dtype: float64

For types that don’t have an available sentinel value, Pandas automatically type-castswhen
NA values are present. For example, if we set a value in an integer array to np.nan, it will
automatically be upcast to a floating-point type to accommodate the NA:

In[11]: x = pd.Series(range(2), dtype=int)x

Out[11]:0 O
1 1
dtype: int64

In[12]: x[0] = Nonex
Out[12]:0 NaN
1 1.0
dtype: float64

Notice that in addition to casting the integer array to floating point, Pandas automati- cally
converts the None to a NaN value. (Be aware that there is a proposal to add a native integer
NA to Pandas in the future; as of this writing, it has not been included.)

While this type of magic may feel a bit hackish compared to the more unified approach to
NA values in domain-specific languages like R, the Pandas sentinel/cast-ing approach works
quite well in practice and in my experience only rarely causes issues.

Operating on Null Values

As we have seen, Pandas treats None and NaN as essentially interchangeable for indi- cating
missing or null values. To facilitate this convention, there are several useful methods for
detecting, removing, and replacing null values in Pandas data structures. They are:

isnull()
Generate a Boolean mask indicating missing values
notnull()
Opposite of isnull()
dropna()
Return a filtered version of the data
fillna()

Return a copy of the data with missing values filled or imputed

We will conclude this section with a brief exploration and demonstration of these
routines.

Detecting null values

Pandas data structures have two useful methods for detecting null data: isnull()and
notnull(). Either one will return a Boolean mask over the data. For example:
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In[13]: data = pd.Series([1, np.nan, 'hello’, None])
In[14]: data.isnull()

Out[14]: 0 False

1 True

2 False

3 True

dtype: bool
In[15]: data[data.notnull()]
Out[15]: 0 1

2 hello
dtype: object

The isnull() and notnull() methods produce similar Boolean results for Data Frames.

Dropping null values

In addition to the masking used before, there are the convenience methods,
dropna()(which removes NA values) and fillna() (which fills in NA values). For a
Series,the result is straightforward:

In[16]: data.dropna()
Out[16]: 0 1

2 hello
dtype: object

For a DataFrame, there are more options. Consider the following DataFrame:
In[17]: df = pd.DataFrame({[[1, np.nan, 2],
[2, 3, 5],
[np.nan, 4, 611)

df
Out[17]: 0 12
0 1.0 NaN 2
1 20 305
2 NaN 4.0 6

We cannot drop single values from a DataFrame; we can only drop full rows or full columns.
Depending on the application, you might want one or the other, so dropna()gives a number
of options for a DataFrame.

By default, dropna()will drop all rows in which any null value is present:
In[18]: df.dropna()
Out[18]: 0 12

120 305

Alternatively, you can drop NA values along a different axis; axis=1 drops all col-
umns containing a null value:

In[19]: df.dropna(axis='columns')
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Out|19]

2
2
5
6

N~ O

But this drops some good data as well; you might rather be interested in dropping rows or
columns with all NA values, or a majority of NA values. This can be specifiedthrough the how
or thresh parameters, which allow fine control of the number of nulls to allow through.

The default is how="any', such that any row or column (depending on the axis key-
word) containing a null value will be dropped. You can also specify how="all', which
will only drop rows/columns that are all null values:

In[20]: df[3] = np.nan
df

Out[20) 0 1 23
0 1.0 Na 2 Na

N N
120 3.0 5 Na
N

2 Na 4.0 6 Na
N N

In[21]: df.dropna(axis='columns', how="all")

out[21 0 1 2
0 1.0 Na 2

W =

120 305
2 Na 40 6

=22

For finer-grained control, the thresh parameter lets you specify a minimum number
of non-null values for the row/column to be kept:

In[22]: df.dropna(axis="rows', thresh=3)

Out[22]: 0 12 3

1 2.0 3.0 5NaN

Here the first and last row have been dropped, because they contain only two non- null
values.

Filling null values

Sometimes rather than dropping NA values, you’d rather replace them with a valid value.
This value might be a single number like zero, or it might be some sort of imputation or
interpolation from the good values. You could do this in-place usingthe isnull() method as

a mask, but because it is such a common operation Pandas provides the fillna() method,
which returns a copy of the array with the null valuesreplaced.

Consider the following Series:

In[23]: data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))
data
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Out[23]:a 1.0

b NaN
c 20
d NaN
e 30

dtype: float64
We can fill NA entries with a single value, such as zero:

In[24]: data.fillna(0)

Out|24]:a 1.0

b 0.0
C 2.0
d 0.0
e 3.0

dtype: float64

We can specify a forward-fill to propagate the previous value forward:
In[25]: # forward-fill
data.fillna(method="ffill")

Out|25]:a 1.0

b 1.0
c 2.0
d 2.0
e 3.0

dtype: float64

Or we can specify a back-fill to propagate the next values backward:
In[26]: # back-fill
data.fillna(method="bfill")

Out|26]:a 1.0

b 2.0
C 2.0
d 3.0
e 3.0

dtype: float64

For DataFrames, the options are similar, but we can also specify an axisalong which
the fills take place:

In[27]: df

out277 0 1 23
0 1.0 Na 2 Na

N N
120 3.0 5Na
N
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2 Na 4.0 6 Na
N N

In[28]: df.fillna(method="ffill', axis=1)

Out|28) 0 1 2 3

010 10 2.0 2.0

120 3.0 50 5.0
2 Na 4.0 6.0 6.0

Notice that if a previous value is not available during a forward fill, the NA valueremains.
Hierarchical Indexing

Up to this point we’ve been focused primarily on one-dimensional and two- dimensional
data, stored in Pandas Seriesand DataFrameobjects, respectively. Oftenit is useful to go
beyond this and store higher-dimensional data—that is, data indexedby more than one or
two keys. While Pandas does provide Paneland Panel4Dobjectsthat natively handle three-
dimensional and four-dimensional data a far more common pattern in practice is to make
use of hierarchical indexing (also known as multi-indexing) to incorporate multiple index
levels within a single index. In this way, higher-dimensional data can be compactly
represented within the familiar one-dimensional Seriesand two-dimensional DataFrame
objects.

In this section, we’ll explore the direct creation of Multilndexobjects; considerationsaround
indexing, slicing, and computing statistics across multiply indexed data; and useful routines
for converting between simple and hierarchically indexed representa- tions of your data.

We begin with the standard imports:

In[1]: import as
import as

A Multiply Indexed Series

Let’s start by considering how we might represent two-dimensional data within a
one-dimensional Series. For concreteness, we will consider a series of data where
each point has a character and numerical key.

The bad way

Suppose you would like to track data about states from two different years. Using thePandas
tools we’ve already covered, you might be tempted to simply use Python tuples as keys:

In[2]: index = [('California’, 2000), ('California’, 2010),
(‘New York', 2000), (‘New York', 2010),
('Texas', 2000), ('Texas', 2010)]
populations = [33871648, 37253956,
18976457, 19378102,

20851820, 25145561]
pop = pd.Series(populations,
index=index)pop

Out|2]: (Calitornia, 2000) 3387164
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8

(California, 2010) 3725395
6

(New York, 2000) 1897645
7

(New York, 2010) 1937810
2

(Texas, 2000) (2)085182

(Texas, 2010) 25145561
dtype: int64

With this indexing scheme, you can straightforwardly index or slice the series based
on this multiple index:

In[3]: pop[('California’, 2010):('Texas', 2000)]

Out|3]: (Calitornia, 2010) %725395
(New York, 2000) 1897645

7

(New York, 2010) 1937810
2

(Texas, 2000) 2085182
0

dtype: int64

But the convenience ends there. For example, if you need to select all values from 2010,
you'll need to do some messy (and potentially slow) munging to make it happen:

In[4]: pop[[i for iin pop.indexif i[1] == 2010]]

Out|4]: (Calitornia, 2010) %725395

(New York, 2010) 1937810
2
(Texas, 2010) 2514556

1
dtype: int64

This produces the desired result, but is not as clean (or as efficient for large datasets) as the
slicing syntax we’ve grown to love in Pandas.

The better way: Pandas Multilndex

Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a
rudimentary multi-index, and the Pandas Multilndextype gives us the type of opera-tions we
wish to have. We can create a multi-index from the tuples as follows:

In[5]: index =
pd.Multilndex.from_tuples(index)index

Out[5]: Multilndex(levels=[['California’, 'New York', 'Texas'], [2000, 2010]],
|abe|s:[[ol OI 1; 11 21 2]1 [OI 11 01 11 OI 1]])

Notice that the Multilndexcontains multiple /evels of indexing—in this case, the statenames
and the years, as well as multiple labels for each data point which encode theselevels.
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If we reindex our series with this Multilndex, we see the hierarchical representation of the
data:

In[6]: pop = pop.reindex(index)
pop

Out|6]: California 2000 3387164

2010 3725395
6

New York 2000 1897645
7

2010 %937810

Texas 200020851820
2010 25145561
dtype: int64

First two columns of the Series representation show the multiple index val-ues, while the
third column shows the data. Notice that some entries are missing in the first column:in
this multi-index representation, any blank entry indicates thesame value as the line above
it.

Now to access all data for which the second index is 2010, we can simply use the Pan-das
slicing notation:

In[7]: popl[:, 2010]

Out|7]: California gg2539
New York 193781

02
Texa 251455
S 61

dtype: int64

The result is a singly indexed array with just the keys we’re interested in. This syntaxis much
more convenient (and the operation is much more efficient!) than the home- spun tuple-
based multi-indexing solution that we started with. We’ll now further dis- cuss this sort of
indexing operation on hierarchically indexed data.

Multilndex as extra dimension

You might notice something else here: we could easily have stored the same data using a
simple DataFrame with index and column labels. In fact, Pandas is built with this equivalence
in mind. The unstack() method will quickly convert a multiply- indexed Seriesinto a
conventionally indexed DataFrame:

In[8]: pop_df = pop.unstack()
pop_df
Qut[SJ 2000 2010

California 338716 372539
48 56
New York 189764 193781
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57 02
Texas 208518 251455
20 61

Naturally, the stack()method provides the opposite operation:

In[9]: pop_df.stack()

Out|9]: Calitornia 2000 3387164

2010 3725395
6

New York 2000 1897645
7

2010 1937810
2

Texas 2000 2085182

0
2010 %514556

dtype: int64

Seeing this, you might wonder why would we would bother with hierarchical index- ing at
all. The reason is simple: just as we were able to use multi-indexing to represent two-
dimensional data within a one-dimensional Series, we can also use it to repre- sent data of
three or more dimensions in a Seriesor DataFrame. Each extra level in amulti-index
represents an extra dimension of data; taking advantage of this property gives us much more
flexibility in the types of data we can represent. Concretely, we might want to add another
column of demographic data for each state at each year (say, population under 18); with a
Multilndex this is as easy as adding another col- umn to the DataFrame:

In[10]: pop_df = pd.DataFrame({'total': pop,
'underl8': [9267089, 9284094,
4687374,4318033,
5906301, 68790141})
pop_df

Out|10| total Lljgder

California 200 338716 92670
0 48 89
201 372539 92840
0 56 94

New York 200 189764 46873
0 57 74
201 193781 43180
0 02 33

Texas 200 208518 59063

0 20 01
201 251455 68790
0 61 14

Here we compute the fraction of people under 18 by year, given the above data:

In[11]: f_ul8 = pop_df['underl8'] / pop_df['total']
f ul8.unstack()
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Out|11] 2000 2010
California 0.27359 0.24921

4 1
New York 0.24701 0.22283
0 1

Texas 9.28325 g.27356

This allows us to easily and quickly manipulate and explore even high-dimensional
data.

Methods of Multilndex Creation

The most straightforward way to construct a multiply indexed Seriesor DataFrame
is to simply pass a list of two or more index arrays to the constructor. For example:

In[12]: df = pd.DataFrame(np.random.rand(4, 2),
index=[['a’, 'a', 'b', 'b'], [1, 2, 1, 2]],
columns=['datal’, 'data2'])

df

Qut[lZJ datal data2
al 0.55423 0.35607

3 2
2 0.92524 0.21947
4 4
b1 0.44175 0.61005
9 4

2 0.17149 0.88668
5 8

The work of creating the Multilndexis done in the background.

Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will auto- matically
recognize this and use a Multilndexby default:

In[13]: data = {('California’, 2000): 33871648,
('California‘, 2010): 37253956,
('Texas', 2000): 20851820,
('Texas', 2010): 25145561,
(‘New York', 2000): 18976457,
('New York', 2010): 19378102}
pd.Series(data)

Out|[13]: Calitornia 2000 3387164

2010 3725395
6

New York 2000 1897645
7

2010 1937810
2
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Texas 2000 2085182

0
2010 %514556

dtype: int64

Nevertheless, it is sometimes useful to explicitly create a Multilndex; we’ll see a cou-ple of
these methods here.

Explicit Multilndex constructors

For more flexibility in how the index is constructed, you can instead use the class method
constructors available in the pd.Multilndex. For example, as we did before, you can construct
the Multilndexfrom a simple list of arrays, giving the index valueswithin each level:

In[14]: pd.Multilndex.from_arrays([['a’, 'a’, 'b', 'b'], [1, 2, 1, 2]1])
Out[14]: Multilndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can construct it from a list of tuples, giving the multiple index values of each
point:

In[15]: pd.Multilndex.from_tuples([('a’, 1), ('a’, 2), ('b’, 1), ('b’, 2)])
Out[15]: Multilndex(levels=[['a’, 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, O, 1]])
You can even construct it from a Cartesian product of single indices:
In[16]: pd.Multilndex.from_product([['a’, 'b'], [1, 2]])
Out[16]: Multilndex(levels=[['a’, 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, O, 1]])

Similarly, you can construct the Multilndex directly using its internal encoding by
passing levels (a list of lists containing available index values for each level) and
labels(a list of lists that reference these labels):

In[17]: pd.Multilndex(levels=[['a’, 'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, O, 11])
Out[17]: Multilndex(levels=[['a’, 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, O, 1]])
You can pass any of these objects as the indexargument when creating a Seriesor
DataFrame, or to the reindexmethod of an existing Seriesor DataFrame.
Multilndex level names

Sometimes it is convenient to name the levels of the Multilndex. You can
accomplishthis by passing the names argument to any of the above Multilndex
constructors, or by setting the namesattribute of the index after the fact:

In[18]: pop.index.names = ['state’, 'year']
pop

Out|18]: state year
California 2000 3387164
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8
2010 3725395
6
New York 2000 1897645
7
2010 1937810
2
Texas 2000 2085182

0
2010 %5 14556
dtype: int64

With more involved datasets, this can be a useful way to keep track of the meaning ofvarious
index values.

Multilndex for columns

In a DataFrame, the rows and columns are completely symmetric, and just as the rowscan
have multiple levels of indices, the columns can have multiple levels as well. Con-sider the
following, which is a mock-up of some (somewhat realistic) medical data:

In[19]:
# hierarchical indices and columns
index = pd.Multilndex.from_product([[2013, 2014], [1, 2]],
names=['year', 'visit'])
columns = pd.Multilndex.from_product([['Bob', 'Guido’, 'Sue'], ['HR', 'Temp']],

names=['subject’, 'type'])

# mock some data

data = np.round(np.random.randn(4, 6), 1)
data[;, ::2] *=10

data += 37

# create the DataFrame

health_data = pd.DataFrame(data, index=index,
columns=columns)health_data

Out[19]: subject Bob Guido Sue
type HR  Temp HR  Temp HR Temp
year visit

2013 1 3.0 38.7 32.0 36.7 350 37.2
2 44.0 37.7 50.0 35.0 29.0 36.7
2014 1 30.0 37.4 39.0 37.8 61.0 36.9
2 47.0 37.8 48.0 37.3 51.0 36.5

Here we see where the multi-indexing for both rows and columns can come in very handy.
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This is fundamentally four-dimensional data, where the dimensions are the subject, the
measurement type, the year, and the visit number. With this in place we can, for example,
index the top-level column by the person’s name and get a full DataFramecontaining just
that person’s information:

In[20]: health datal'Guido']

Out[20]: type HR Temp
year visit

2013 1 32.0 36.7

2 50.0 35.0

2014 1 39.0 37.8

2 48.0 37.3

For complicated records containing multiple labeled measurements across multiple times
for many subjects (people, countries, cities, etc.), use of hierarchical rows and columns can
be extremely convenient!

Indexing and Slicing a Multilndex

Indexing and slicing on a Multilndex is designed to be intuitive, and it helps if you think about
the indices as added dimensions. We'll first look at indexing multiply indexed Series, and
then multiply indexed DataFrames.

Multiply indexed Series

Consider the multiply indexed Seriesof state populations we saw earlier:

In[21]: pop

Out|21]: state year

California 2000 33871648
2010 37253956
New York 2000 18976457
2010 19378102

Texas 2000 20851820
2010 25145561

dtype: int64
We can access single elements by indexing with multiple terms:
In[22]: pop['California’, 2000]
Out[22]: 33871648

The Multilndexalso supports partial indexing, or indexing just one of the levels inthe index.
The result is another Series, with the lower-level indices maintained:
In[23]:  pop['California']
Out[23]: year
2000 33871648
2010 37253956
dtype: int64

Partial slicing is available as well, as long as the Multilndexis sorted (see discussion
in “Sorted and unsorted indices” on page 137):
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In[24]: pop.loc['California’:'New York']

Out|24]: state year
California 2000 3387164
8
2010 3725395
6
New York 2000 1897645
7

2010 %9378 10
dtype: int64

With sorted indices, we can perform partial indexing on lower levels by passing
anempty slice in the first index:

In[25]: popl:, 2000]
Out[25]: state
California 33871648
New York 18976457
Texas 20851820
dtype: int64
For example, selection based on Boolean masks:

In[26]: pop[pop > 22000000]

Out|[26]: state year
California 2000 3387164

8
2010 3725395
6
Texas 2010 2514556
1
dtype:
in'g/4

Selection based on fancy indexing also works:

In[27]: popl[['California’, 'Texas']]

Out|27]: state year

California 2000 3387164
8

2010 3725395
6

Texas 2000 2085182

0
2010 %514556

dtype: int64
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Multiply indexed DataFrames

A multiply indexed DataFrame behaves in a similar manner. Consider our toy medical
DataFramefrom before:

In[28]: health_data

%fﬁgﬁﬁﬁ: Bob Suld i;
type HR Tem HR Tem HR Temp
b p
year
visit
2013 1 31. 38.32.0 36. 35.037.2
0 7 7

Remember that columns are primary in a DataFrame, and the syntax used for multi- ply
indexed Seriesapplies to the columns. For example, we can recover Guido’s heartrate data
with a simple operation:

In[29]: health_data['Guido’, 'HR']

Out|29]: visit

year

2013 1 32.0
2 50.0

2014 1 39.0
2 48.0

Name: (Guido, HR), dtype: float64

Also, as with the single-index case, we can use the loc, iloc, and ix indexers intro- duced in
“Data Indexing and Selection” on page 107. For example:

In[30]: health_data.iloc[:2, :2]

Out[30]: subject Bo

type
yearvisit H Te
R mp
20131 31.0 38.
7
2 440 37.
7

These indexers provide an array-like view of the underlying two-dimensional data, but each
individual index in locor iloccan be passed a tuple of multiple indices. Forexample:

In[31]: health_data.loc[:, ('Bob’, 'HR')]

Out|31]: visit

year

2013 1 31.0
2 44.0

2014 1 30.0
2 47.0

Name: (Bob, HR), dtype: float64

Working with slices within these index tuples is not especially convenient; trying to
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create a slice within a tuple will lead to a syntax error:

In[32]: health_data.loc|(:, 1), (:, '"HR")]

File "<ipython-input-32-8e3cc151e316>", line
1lhealth_data.loc[(:, 1), (:, 'HR')]

A

SyntaxError: invalid syntax

You could get around this by building the desired slice explicitly using Python’s
built-in slice() function, but a better way in this context is to use an IndexSlice
object, which Pandas provides for precisely this situation. For example:

In[33]: idx = pd.IndexSlice
health_data.loc[idx[:, 1], idx[:, '"HR']]

Out[33]: subject Bob Guido Sue
type HR HR HR
year visit

20131 31.0 32.0 35.0
20141 30.0 39.0 61.0

There are so many ways to interact with data in multiply indexed Series and Data
Frames, and as with many tools in this book the best way to become familiar with
them is to try them out!

Rearranging  Multi-Indices

One of the keys to working with multiply indexed data is knowing how to effectively
transform the data. There are a number of operations that will preserve all the infor-
mation in the dataset, but rearrange it for the purposes of various computations. Wesaw
a brief example of this in the stack() and unstack() methods, but there are many more
ways to finely control the rearrangement of data between hierarchicalindices and
columns, and we’ll explore them here.

Sorted and unsorted indices

Earlier, we briefly mentioned a caveat, but we should emphasize it more here. Many
ofthe Multilndex slicing operations will fail if the index is not sorted. Let’s take a look at
this here.

We'll start by creating some simple multiply indexed data where the indices are not
lexographically sorted:

In[34]: index = pd.Multilndex.from_product([['a’, 'c', 'b'], [1, 2]])
data = pd.Series(np.random.rand(6), index=index)
data.index.names = ['char’, 'int']

data

Out[34]: char int
a 1 0.003001

2 0.164974
o 1 0.741650
2 0.569264
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b 1 0.001693
2 0.526226
dtype: float64

If we try to take a partial slice of this index, it will result in an error:
In[35]: try:
data['a":'b']

except KeyError as e:
print(type(e))
print(e)

<class 'KeyError'>

'‘Key length (1) was greater than Multilndex lexsort depth (0)'

Although it is not entirely clear from the error message, this is the result of the Multilndex
not being sorted. For various reasons, partial slices and other similar opera- tions require
the levels in the Multilndex to be in sorted (i.e., lexographical) order. Pandas provides a
number of convenience routines to perform this type of sorting; examples are the
sort_index() and sortlevel() methods of the DataFrame. We'll use the simplest, sort_index(),
here:

In[36]: data = data.sort_index()
data

Out[36]: char int
a 1 0.003001

2 0.164974
b 1 0.001693
2 0.526226
o 1 0.741650
2 0.569264

dtype: float64
With the index sorted in this way, partial slicing will work as expected:
In[37]: data['a":'b']

Out[37]: char int
a 1 0.003001

2 0.164974
b 1 0.001693
2 0.526226

dtype: float64

Stacking and unstacking indices

As we saw briefly before, it is possible to convert a dataset from a stacked multi-
indexto a simple two-dimensional representation, optionally specifying the level
to use:

In[38]: pop.unstack(level=0)
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Out[38]: California New Texas

state York

year

2000 33871648 189764 208518
57 20

2010 37253956 193781 251455
02 61

In[39]: pop.unstack(level=1)

Out[39]: 2000 2010
year
state
California 338716 372539
48 56
New York 189764 193781
57 02

Texas 208518 251455
20 61

The opposite of unstack()is stack(), which here can be used to recover the original
series:

In[40]: pop.unstack().stack()

Out|40]: state year

California 2000 3387164
8

2010 3725395
6

New York 2000 1897645
7

2010 1937810
2

Texas 2000 2085182

0
2010 %514556

dtype: int64

Index setting and resetting

Another way to rearrange hierarchical data is to turn the index labels into columns; this
can be accomplished with the reset_index method. Calling this on the popula- tion
dictionary will result in a DataFrame with a state and year column holding the information
that was formerly in the index. For clarity, we can optionally specify the name of the data
for the column representation:

In[41]: pop_flat =
pop.reset_index(name="population’)

pop_flat
Out|41]: state year population
0 California 2000 33871648
1 California 2010 37253956
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2 New York 2000 18976457
3 New York 2010 19378102
4 Texas 2000 20851820
5 Texas 2010 25145561

Often when you are working with data in the real world, the raw input data looks likethis
and it’s useful to build a Multilndex from the column values. This can be done with the
set_index method of the DataFrame, which returns a multiply indexed DataFrame:

In[42]: pop_flat.set_index(['state’, 'year'])

Out[42] populatio

state yea "
r

California 200 33871648
0

201 37253956
0

New York 200 18976457
0

201 19378102
0

Texas 200 20851820

0
281 25145561

In practice, | find this type of reindexing to be one of the more useful patterns
when lencounter real-world datasets.
Data Aggregations on Multi-Indices

We've previously seen that Pandas has built-in data aggregation methods, such as
mean(), sum(), and max(). For hierarchically indexed data, these can be passed a
levelparameter that controls which subset of the data the aggregate is computed
on.

For example, let’s return to our health data:

In[43]: health_data

éf@ﬂfiﬁ Bob Suid iﬁ

type HR Tem HR Tem HR Temp
p b

year

visit

2013 1 31.0 38. 32.0 36. 35.0 37.2
7 7

Perhaps we’d like to average out the measurements in the two visits each year. We
cando this by naming the index level we’d like to explore, in this case the year:

In[44]: data_mean =
health_data.mean(level="year')
data_mean
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Out[44]: subject Bob Guido Sue

type HR Temp HR Temp HR
Tempyear

2013 37.5 38.2 41.0 35.85 32.0 36.95
2014 38,5 37.6 43.5 37.55 56.0 36.70

By further making use of the axis keyword, we can take the mean among levels on the
columns as well:

In[45]: data_mean.mean(axis=1, level="type')

Out[45]: HR Temp

type

year

2013 36.83333 37.00000
3 0

2014 86.00000 37.28333

Combining Datasets: Merge and Join

One essential feature offered by Pandas is its high-performance, in-memory join and
merge operations. If you have ever worked with databases, you should be familiar with this
type of data interaction. The main interface for this is the pd.merge func- tion, and we’ll
see a few examples of how this can work in practice.

Categories of Joins

The pd.merge() function implements a number of types of joins: the one-to-one, many-to-
one, and many-to-many joins. All three types of joins are accessed via an identical call to
the pd.merge() interface; the type of join performed depends on the form of the input
data. Here we will show simple examples of the three types of merges, and discuss detailed
options further below.

One-to-one joins

Perhaps the simplest type of merge expression is the one-to-one join, which is in many
ways very similar to the column-wise concatenation. As a concrete example, consider the
followingtwo DataFrames, which contain information on several employees in a company:

In[2]:
dfl = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],
'group': ['Accounting’, 'Engineering', 'Engineering’, 'HR']})
df2 = pd.DataFrame({'employee': ['Lisa’, 'Bob’, 'Jake', 'Sue'],
'hire_date': [2004, 2008, 2012, 2014]})
print(df1); print(df2)

dtl dat2
employee group employee hire_date
0 Bob Accountin 0 Lisa 2004
g
1 Jake Engineerin 1 Bob 2008
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2 Lisa Engineerin 2 Jake 2012
g
3 Sue HR 3 Sue 2014

To combine this information into a single DataFrame, we can use the pd.merge()
function:

In[3]: df3 = pd.merge(dfl, df2)
df3

Out|3] employ group hire_dat
: ee e
0 Bob Accounting 2008

1 Jake Engineerin 2012
g

2 Lisa Engineerin 2004
g
3 Sue HR 2014

The pd.merge()function recognizes that each DataFramehas an “employee” column,and
automatically joins using this column as a key. The result of the merge is a new DataFrame that
combines the information from the two inputs. Notice that the order of entries in each column is not
necessarily maintained: in this case, the order of the “employee” column differs between dfl and
df2, and the pd.merge() function cor- rectly accounts for this.

Many-to-one joins

Many-to-one joins are joins in which one of the two key columns contains duplicate
entries. For the many-to-one case, the resulting DataFrame will preserve those dupli- cate
entries as appropriate. Consider the following example of a many-to-one join:

In[4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering’, 'HR'],
'supervisor': ['Carly', 'Guido', 'Steve']})

print(df3); print(df4); print(pd.merge(df3, df4))

df3 dfa

employee group hire_date group supervisor
0 Bob Accounting 2008 0 Accounting  Carly
1 Jake Engineering 2012 1 Engineering Guido
2 Lisa Engineering 2004 2 HR Steve
3 Sue HR 2014

pd.merge(df3, df4)

employee group hire_dat superviso
e r
0 Accounting 2008 Carly
Bo
b
1 Jake Engineerin 2012 Guido
g

2 Lisa Engineerin 2004 Guido

8
3 HR 2014 Steve
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The resulting DataFramehas an additional column with the “supervisor” information,where
the information is repeated in one or more locations as required by the inputs.

Many-to-many joins

Many-to-many joins are a bit confusing conceptually, but are nevertheless welldefined. If
the key column in both the left and right array contains duplicates, thenthe result is a
many-to-many merge. This will be perhaps most clear with a concrete example. Consider
the following, where we have a DataFrame showing one or more skills associated with a
particular group.

By performing a many-to-many join, we can recover the skills associated with any
individual person:

In[5]: df5 = pd.DataFrame({'group': ['Accounting', '‘Accounting’,
'Engineering', 'Engineering', 'HR', 'HR'],
'skills': ['math’, 'spreadsheets’, 'coding’, 'linux’,
'spreadsheets’, 'organization']})

print(dfl); print(df5); print(pd.merge(df1, df5))

dfl df5
employ group group skills
ee
0Bob Accounting 0  Accounting math
1Jake Engineerin 1  Accounting spreadsheet
g S
2Lisa Engineerin 2 Engineerin coding
8 8
3Sue HR 3 Engineerin linux
8
4 HR spreadsheet
s
5 HR organizatio
n

pd.merge(df1, df5)

employee group skills
0 Accounting math
Bo
b
1 Accounting spreadsheet
Bo S
b
2 Jake Engineerin coding
g
3 Jake Engineerin linux
g
4 Lisa Engineerin coding
g
5 Lisa Engineerin linux
g
6 HR spreadsheet
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Su S

e

7 HR organizatio
Su n

e

These three types of joins can be used with other Pandas tools to implement a wide array
of functionality. But in practice, datasets are rarely as clean as the one we’re working with
here. In the following section, we’ll consider some of the options pro- vided by pd.merge()
that enable you to tune how the join operations work.

Specification of the Merge Key

We've already seen the default behavior of pd.merge(): it looks for one or more matching
column names between the two inputs, and uses this as the key. However, often the
column names will not match so nicely, and pd.merge() provides a variety of options for
handling this.

The on keyword

Most simply, you can explicitly specify the name of the key column using the on key- word,
which takes a column name or a list of column names:

In[6]: print(dfl); print(df2); print(pd.merge(dfl, df2, on="employee'))

dtl dt2
employ group employ hire_dat
ee ee e

0Bob Accounting Lisa 2004
1Jake Engineerin 1 Bob 2008

g
2Lisa Engineerin 2 Jake 2012

o

3Sue Ig-|R 3 Sue 2014
pd.merge(dfl, df2, on='employee')
employee group gire_dat
0 Accounting 2008

Bo
b
1 Jake Engineerin 2012

g
2 Lisa Engineerin 2004

g
3 HR 2014
Su
e

This option works only if both the left and right DataFrames have the specified col- umn
name.
The left_on and right_on keywords

At times you may wish to merge two datasets with different column names; for exam-ple,
we may have a dataset in which the employee name is labeled as “name” rather than
“employee”. In this case, we can use the left_on and right_on keywords to specify the two
column names:

In[7]:
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df3 = pd.DataFrame({'name': ['Bob’, 'Jake', 'Lisa’, 'Sue'],

'salary': [70000, 80000, 120000, 900001})
print(dfl); print(df3);
print(pd.merge(dfl, df3, left_on="employee", right_on="name"))

dfl df3
employee group name salary
0 Bob Accounting 0 Bbo 70000
1 Jake Engineerin 1 Jak 8000
g e 0
2 Lisa Engineerin 2 Lisa 1200
g 00
3 Sue HR 3 Su 9000
e 0

pd.merge(dfl, df3, left_on="employee", right_on="name")

employee group na salary
me
0 Accounting Bo 70000
Bo b
b
1 Jake Engineerin Jak 80000
g e
2 Lisa Engineerin Lisa 12000
g 0
3 HR Su 90000
Su e

e

The result has a redundant column that we can drop if desired—for example, byusing
the drop()method of DataFrames:

In[8]:

pd.merge(df1, df3, left_on="employee", right_on="name").drop('name’, axis=1)

Qut[SJ employee group salary

0 Accounting 70000
Bo

b

1 Engineerin 80000
Jak g

e

2 Lisa Engineerin 12000

g 0
3 HR 90000
. Su

The left_index and right_index keywords

Sometimes, rather than merging on a column, you would instead like to merge on an
index. For example, your data might look like this:

In[9]: dfla = dfl.set_index('employee')
df2a =

Page 131 of 580



df2.set_index('employee’)
print(dfla); print(df2a)

dtla dt2a

group hire_dat
e

employ employ

ee ee

Bob Accounting Lisa 2004

Jake Engineerin Bob 2008
g

Lisa Engineerin Jak 2012
g e

Sue HR Sue 2014

You can use the index as the key for merging by specifying the left_indexand/or
right_indexflags in pd.merge():

In[10]:
print(dfla); print(df2a);
print(pd.merge(dfla, df2a, left_index=True, right_index=True))

dtla dt2a

group hire_dat

e

employ employ
ee ee
Bob Accounting Lisa 2004
Jake Engineerin Bob 2008

g
Lisa Engineerin Jake 2012
Sue E|R Sue 2014

pd.merge(dfla, df2a, left_index=True, right_index=True)

group gire_dat
employ
ee
Lisa Engineering 2004
Bob Accounting 2008
Jake Engineering 2012
Sue HR 2014

For convenience, DataFrames implement the join() method, which performs amerge that
defaults to joining on indices:

In[11]: print(dfla); print(df2a); print(dfla.join(df2a))

dfla df2a

group hire_dat
e
employ employ
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ee ee
Bob Accounting Lisa 2004

Jake Engineerin Bob 2008
g
Lisa Engineerin Jake 2012
g
Sue HR Sue 2014
dfla.join(df2a)
group hire_dat
e
employee
Bob 2008
Accountin
g
Jake 2012
Engineerin
g
Lisa 2004
Engineerin
g
Sue 2014
H
R

If you’d like to mix indices and columns, you can combine left_indexwith right_on

or left_onwith right_indexto get the desired behavior:
In[12]:
print(dfla); print(df3);
print(pd.merge(dfla, df3, left_index=True, right_on='name'))

dfla df3

employ group nNam gajary

ee e

Bob Accounting O Bo 70000

b

Jake Engineerin 1  Jak 80000
g e

Lisa Engineerin 2  Lisa 12000
g 0

Sue HR 3 Seu 90000

pd.merge(dfla, df3, left_index=True,
right_on='name')group name salary

0 Accounting Bob 70000
1 Engineering Jake 80000

2 Engineering Lisa
1200003 HR Sue 90000
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Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important consideration
in performing a join: the type of set arithmetic used in the join. This comes up
when a value appears in one key column but not the other. Consider this example:

In[13]: df6 = pd.DataFrame({'name': ['Peter’, 'Paul’, 'Mary'],
'food": ['fish', 'beans’, 'bread']},
columns=['name’, 'food'])
df7 = pd.DataFrame({'name": ['Mary', 'Joseph'],
'drink": ['wine', 'beer']},
columns=['name’, 'drink'])

print(df6); print(df7); print(pd.merge(df6, df7))

c61f dat7 pd.merge(dt6, di7)
nam food name name food drink
e drink
0 Pete fish 0 Mary 0O Mary bread wine
r wine
1 Paul bean 1 Joseph beer
s
2 Mar brea
y d

Here we have merged two datasets that have only a single “name” entry in common:
Mary. By default, the result contains the intersection of the two sets of inputs; this is what
is known as an inner join. We can specify this explicitly using the how keyword, which defaults
to 'inner":
In[14]: pd.merge(df6, df7,
how='"inner')Out[14]: name
food drink

0 Mary bread wine

Other options for the how keyword are 'outer’, 'left’, and 'right'. An outer join returns a join
over the union of the input columns, and fills in all missing values with NAs:

In[15]: print(df6); print(df7); print(pd.merge(df6, df7,

how='outer'))df6 df7 pd.merge(df6, df7,

how='outer')

name food name drink name food drink

0 Pete tish 0O Mary wine O Peter tish I\,l\la
r

1 Paubean 1 Josep beer 1 Paul bean Na

| s h S N
2 Mar brea 2 Mary brea win
y d d e

3 Josep NaN bee
h r

The left join and right join return join over the left entries and right entries,
respec-tively. For example:

In[16]: print(df6); print(df7); print(pd.merge(df6, df7, how='left'))
dfé df7 pd.merge(df6, df7, how='"left')
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name food name drink name food drink
0 Petertish 0 Mary wineO Peter fish I\,l\la

1 Paulbean 1 Josep beer 1 Paul bean Na

s h s N
2 brea 2 Mary brea win
Mar d d e

Yy

The output rows now correspond to the entries in the left input. Using how="right'
works in a similar manner.

All of these options can be applied straightforwardly to any of the preceding
jointypes.
Overlapping Column Names: The suffixes Keyword

Finally, you may end up in a case where your two input DataFrames have conflicting
column names. Consider this example:

In[17]: df8 = pd.DataFrame({'name": ['Bob’, 'Jake', 'Lisa’, 'Sue'],
rank': [1, 2, 3, 41})
df9 = pd.DataFrame({'name': ['Bob’, 'Jake', 'Lisa’, 'Sue'],
rank': [3, 1, 4, 21})
print(df8); print(df9); print(pd.merge(df8, df9, on="name"))

df8 df9 pd.merge(df8, df9,
on="name")name rank name rank
name rank_x rank_y

O Bob 1 0 Bob 3 0 Bob 1 3
1 Jake 2 1 Jake 1 1 Jake 2 1
2 Lisa 3 2 Lisa 4 2 Lisa 3 4
3 Sue 4 3 Sue 2 3 Sue 4 2

Because the output would have two conflicting column names, the merge function
automatically appends a suffix _x or _y to make the output columns unique. If these
defaults are inappropriate, it is possible to specify a custom suffix using the suffixes
keyword:

In[18]:
print(df8); print(df9);
print(pd.merge(df8, df9, on="name", suffixes=["_L", " R"]))

df df
nam ran 9 nam ran
e k e k
0O Bob 1 0 Bob 3
1 Jake 2 1 Jake 1
2 Lisa 3 2 Lisa 4
3 Sue 4 3 Sue 2

pd.merge(df8, df9, on="name", suffixes=["_L",
" _R"])name rank_L rank_R
0 Bob 1 3

1 Jake 2 1
2 Lisa 3 4
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3 Sue 4 2

These suffixes work in any of the possible join patterns, and work also if there are
multiple overlapping columns.
Day 05- Descriptive Statistics

Cleansing Data with Pandas
Example: US States Data

Merge and join operations come up most often when one is combining data from dif-
ferent sources. Here we will consider an example of some data about US states and their
populations. The data files can be found at http://github.com/jakevdp/data-USstates/-

In[19]:
# Following are shell commands to download the data

# lcurl -O
https://raw.githubusercontent.com/jakevdp/#

data-USstates/master/state-
population.csv

# Icurl -O
https://raw.githubusercontent.com/jakevdp/#
data-USstates/master/state-areas.csv

# lcurl -O
https://raw.githubusercontent.com/jakevdp/#
data-USstates/master/state-abbrevs.csv

Let’s take a look at the three datasets, using the Pandas read_csv()function:

In[20]: pop = pd.read_csv('state-population.csv')
areas = pd.read_csv('state-areas.csv')
abbrevs = pd.read_csv('state-
abbrevs.csv')

print(pop.head()); print(areas.head()); print(abbrevs.head())

pop.head(). areas.head()
state/reglonages yea populatio state area (sq. mi)
0 AL gnderl Zél 2117489. 0 Alabama 52423
1 AL total 201 4817528. 1 Alaska 656425
2 0
2 AL underl 201 1130966. 2 Arizona 114006
8 0 o0
3 AL total 201 4785570. 3 Arkansas 53182
0 o0
4 AL underl 201 1125763. 3 Arkansas 53182
8 10

4  Calitornia 163707

abbrevs.head()

state abbreviation
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0 Alabama AL

1 Alaska AK
2 Arizona AZ
3 Arkansas AR
4 California CA

Given this information, say we want to compute a relatively straightforward
result: rank US states and territories by their 2010 population density. We clearly
have the data here to find this result, but we’ll have to combine the datasets to
getit.

We'll start with a many-to-one merge that will give us the full state name within the
population DataFrame. We want to merge based on the state/regioncolumn of pop,and
the abbreviation column of abbrevs. We'll use how='outer' to make sure no data is thrown
away due to mismatched labels.

In[21]: merged = pd.merge(pop, abbrevs, how="'outer",

left_on='state/region’, right_on='abbreviation')
merged = merged.drop(‘abbreviation', 1) # drop duplicate
info merged.head()

Out|21]: state/region ages year population state
0 AL underl8 2012 1117489.0 Alabama
1 AL total 2012 4817528.0 Alabama
2 AL underl8 2010 1130966.0 Alabama
3 AL total 2010 4785570.0 Alabama
4 AL underl8 2011 1125763.0 Alabama

Let’s double-check whether there were any mismatches here, which we can do by looking
for rows with nulls:

In[22]: merged.isnull().any()

Out[22]: state/region False

ages False
year False
population True
state True
dtype: bool

Some of the populationinfo is null; let’s figure out which these are!

In[23]: merged[merged['population'].isnull()].head()

Qut[23jstate/region ages year ﬁopulatio state
2448 underl 199 NaN NaN
P 8 0
R
2449 total 199 NaN NaN
P 0
R
2450 total 199 NaN NaN
P 1
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2451 underl 199 NaN NaN
P 8 1

R

2452 p total %99 NaN NaN

R

It appears that all the null population values are from Puerto Rico prior to the

year 2000; this is likely due to this data not being available from the original
source.

More importantly, we see also that some of the new stateentries are also null, whichmeans

that there was no corresponding entry in the abbrevs key! Let’s figure out which regions
lack this match:

In[24]: merged.loc[merged['state'].isnull(), 'state/region'].unique()

Out[24]: array(['PR', 'USA'], dtype=object)

We can quickly infer the issue: our population data includes entries for Puerto
Rico (PR) and the United States as a whole (USA), while these entries do not
appear in thestate abbreviation key. We can fix these quickly by filling in
appropriate entries:

In[25]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'
merged.isnull().any()

Out[25]: state/region False

ages False
year False
population True
state False
dtype: bool

No more nulls in the statecolumn: we’re all set!

Now we can merge the result with the area data using a similar procedure. Examiningour
results, we will want to join on the statecolumn in both:

In[26]: final = pd.merge(merged, areas, on="state’, how='left')

final.head()
Qut[26] state/region ages yerza popt#atio state area (sq. mi)

0 underl 201 1117489 Alabam 52423.0
A 8 2 .0 a

L

1 total 201 4817528 Alabam 52423.0
A 2 .0 a

L

2 underl 201 1130966 Alabam 52423.0
A 8 0 .0 a

L
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3 total 201 4785570 Alabam 52423.0

A 0 .0 a
L
4 underl 201 1125763 Alabam 52423.0
) A 8 1 .0 a

Again, let’s check for nulls to see if there were any mismatches:

In[27]: final.isnull().any()

Out[27]: state/region  False

ages False
year False
population True
state False

area (sq. mi) True
dtype: bool

There are nulls in the area column; we can take a look to see which regions were
ignored here:

In[28]: final['state'][final['area (sqg. mi)'].isnull()].unique()
Out[28]: array(['United States'], dtype=object)

We see that our areas DataFrame does not contain the area of the United States as a
whole. We could insert the appropriate value (using the sum of all state areas, for
instance), but in this case we'll just drop the null values because the population den- sity of
the entire United States is not relevant to our current discussion:

In[29]: final.dropna(inplace=True)

final.head()
Out|29]state/region  ages y$a popt#llatio state  area (sq. mi)

0 underl 201 1117489 Alabam 52423.0
A 8 2 .0 a

L

1 total 201 4817528 Alabam 52423.0
A 2 .0 a

L

2 underl 201 1130966 Alabam 52423.0
A 8 0 .0 a

L

3 total 201 4785570 Alabam 52423.0
A 0 .0 a

L

4 underl 201 1125763 Alabam 52423.0

] A 8 1 .0 a

Now we have all the data we need. To answer the question of interest, let’s first selectthe
portion of the data corresponding with the year 2000, and the total population. We'll use
the query() function to do this quickly (this requires the numexpr packageto be installed;
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In[30]: data2010 = final.query("year == 2010 & ages ==
'total"")data2010.head()

Out[30]:  state/region ages year population state area (sq. mi)3
AL total 2010 4785570.0 Alabama 52423.0

91 AK total 2010 713868.0 Alaska 656425.0
101 AZ total (2)01 6408790 Arizona 114006.0

189 AR total 201 2922280 Arkansas 53182.0

0
197 CA total (2)01 373%360 Calitornia 163707.0

Now let’s compute the population density and display it in order. We’'ll start by
rein- dexing our data on the state, and then compute the result:

In[31]: data2010.set_index('state’, inplace=True)
density = data2010['population'] / data2010['area (sq. mi)']

In[32]: density.sort_values(ascending=False,
inplace=True)density.head()

Out[32]: state
District ot Columbia 8898.89705

Puerto Rico 1058.66514
9

New Jersey 1009.25326
8

Rhode Island 681.339159

Connecticut 645.600649

dtype: tloat64

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order oftheir
2010 population density, in residents per square mile. We can see that by far thedensest
region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the
densest is New Jersey.

We can also check the end of the list:

In[33]: density.tail()
Quii33l;istate

0.583512
North Dakota 9.537565
Montana 6.736171
Wyoming 5.768079
Alaska 1.087509
dtype:
floato4d

We see that the least dense state, by far, is Alaska, averaging slightly over one residentper
square mile.

This type of messy data merging is a common task when one is trying to answer questions
using real-world data sources. | hope that this example has given you an idea of the ways
you can combine tools we’ve covered in order to gain insight from your data!
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Aggregation and Grouping

An essential piece of analysis of large data is efficient summarization: computing

aggregations like sum(), mean(), median(), min(), and max(), in which a single num-ber

gives insight into the nature of a potentially large dataset. In this section, we’ll explore
aggregations in Pandas, from simple operations akin to what we’ve seen on NumPy arrays,

to more sophisticated operations based on the concept of a groupby.

Planets Data

Here we will use the Planets dataset, available via the Seaborn package (see “Visuali- zation with
Seaborn” on page 311). It gives information on planets that astronomers have discovered around
other stars (known as extrasolar planets or exoplanets for short). It can be downloaded with a simple
Seaborn command:

In[2]: import as

planets = sns.load_dataset('planets')
planets.shape

Out[2]: (1035, 6)

In[3]: planets.head()

Out|3]: method pumbe 8rbita|_perio mass distance year

0 Radial Velocity 1 269.300 7.10 77.40 200

1 Radial Velocity 1 874.774 2.21 56.95 gOO

2 Radial Velocity 1 763.000 2.60 19.84 301
1

3 Radial Velocity 1 326.030 19.40 110.62 200

4 Radial Velocity 1 516.220 10.50 119.47 éOO

This has some details on the 1,000+ exoplanets discovered up to 2014.
Simple Aggregation in Pandas

Earlier we explored some of the data aggregations available for NumPy arrays
(“Aggregations: Min, Max, and Everything in Between” on page 58). As with a one-
dimensional NumPy array, for a Pandas Seriesthe aggregates return a single value:

In[4]: rng =
np.random.RandomState(42)
ser = pd.Series(rng.rand(5)) ser

Out|4]: 0 0.374540

1 0.950714
2 0.731994
3 0.598658
4 0.156019

dtype: float64

In[5]: ser.sum()

Out[5]: 2.8119254917081569
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In[6]: ser.mean()
Out[6]: 0.56238509834163142

For a DataFrame, by default the aggregates return results within each column:

In[7]: df = pd.DataFrame({'A": rng.rand(5),
‘B': rng.rand(5)})

df
out7] A B
0 0.15599 0.02058
5 4
1 0.05808 0.96991
4 0
2 0.86617 0.83244
6 3
3 0.60111 0.21233
5 9

4 0.70807 0.18182
3 5

In[8]: df.mean()
Out[8]: A 0.477888
B 0.443420
dtype: float64
By specifying the axisargument, you can instead aggregate within each row:

In[9]: df.mean(axis="columns')

Out[9]: 0 0.088290

1 0.513997
2 0.849309
3 0.406727
4 0.444949

dtype: float64

Pandas Series and DataFrames include all of the common aggregates mentioned in
“Aggregations: Min, Max, and Everything in Between” on page 58; in addition, thereis a
convenience method describe() that computes several common aggregates for each
column and returns the result. Let’s use this on the Planets data, for now drop- ping rows
with missing values:

In[10]: planets.dropna().describe()

Out|10]: number 8rbita|_perio mass distance year
count 498.0000 498.000000 498.0000 498.0000 498.00000
0 00 00 0
mean 1.73494 835.778671 2.509320 52.06821 2007.3775
3 10
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std 1.17572 1469.128259 3.636274 46.59604 4.167284

1
min 1.00000 1.328300 0.003600 1.350000 1989.0000
00
25% 1.00000 38.272250 0.212500 24.49750 2005.0000
0 00
50% 1.00000 357.000000 1.245000 39.94000 2009.0000
0 00
75% 2.00000 999.600000 2.867500 59.33250 2011.0000
0 00

max 6.00000 17337.50000 25.00000 354.0000 2014.0000
0 0 00 00

This can be a useful way to begin understanding the overall properties of a dataset. For
example, we see in the year column that although exoplanets were discovered asfar back
as 1989, half of all known exoplanets were not discovered until 2010 or after.This is largely
thanks to the Kepler mission, which is a space-based telescope specifi-cally designed for
finding eclipsing planets around other stars.

GroupBy: Split, Apply, Combine

Simple aggregations can give you a flavor of your dataset, but often we would prefer to
aggregate conditionally on some label or index: this is implemented in the so- called
groupby operation. The name “group by” comes from a command in the SQL database
language, but it is perhaps more illuminative to think of it in the terms first coined by
Hadley Wickham of Rstats fame: split, apply, combine.

Split, apply, combine
» The split step involves breaking up and grouping a DataFramedepending on
thevalue of the specified key.

» The apply step involves computing some function, usually an aggregate,
transfor-mation, or filtering, within the individual groups.

* The combine step merges the results of these operations into an output array.

Split
Apply (sum
key | data pply (sum)
key |data
Input Al 1 |—» 7 T
key |data Al 4
Combine
A1
key |data
B | 2 key |data
key |data L )
C|3|—»|B|2|—» >
B |7 B |7
Al 4 B|S5
€ ||
B |5
C| e \ key |data /
key |data
c|3 |—»
cl9
cle6
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While we could certainly do this manually using some combination of the masking,
aggregation, and merging commands covered earlier, it's important to realize that the
intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can (often)
do this in a single pass over the data, updating the sum, mean, count, min, or other
aggregate for each group along the way. The power of the GroupBy is that it abstracts
away these steps: the user need not think about how the computation isdone under
the hood, but rather thinks about the operation as a whole.
We'll start by creating the input DataFrame:

In[11]: df = pd.DataFrame({'key": ['A", 'B', 'C', 'A", 'B', 'C'],

'data’: range(6)}, columns=['key', 'data'])

df
Out[11]: key data
0 A O
1 B 1
2 C 2
3 A 3
4 B 4
5 C 5

We can compute the most basic split-apply-combine operation with the groupby()
method of DataFrames, passing the name of the desired key column:
In[12]: df.groupby('key')

Out[12]: <pandas.core.groupby.DataFrameGroupBy object at 0x117272160>

Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy object.
This object is where the magic is: you can think of it as a special view of the DataFrame,
which is poised to dig into the groups but does no actual computation until the
aggregation is applied. This “lazy evaluation” approach means that commonaggregates
can be implemented very efficiently in a way that is almost transparent to the user.

To produce a result, we can apply an aggregate to this DataFrameGroupBy object, which
will perform the appropriate apply/combine steps to produce the desired result:

In[13]: df.groupby('key"').sum()

Data  key

A 3
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B 5
C 7

The sum() method is just one possibility here; you can apply virtually any
common Pandas or NumPy aggregation function, as well as virtually any valid
DataFrame operation, as we will see in the following discussion.
The GroupBy object
The GroupByobject is a very flexible abstraction. In many ways, you can simply treatit as if
it’s a collection of DataFrames, and it does the difficult things under the hood. Let’s see
some examples using the Planets data.
Perhaps the most important operations made available by a GroupBy are aggregate,
filter, transform, and apply. We’ll discuss each of these more fully in “Aggregate, filter,
transform, apply” on page 165, but before that let’s introduce some of the other func-
tionality that can be used with the basic GroupByoperation.
Column indexing

The GroupBy object supports column indexing in the same way asthe DataFrame, and returns
a modified GroupByobject. For example:

In[14]: planets.groupby('method")

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at
0x1172727b8>In[15]: planets.groupby('method')['orbital_period']

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Here we’ve selected a particular Seriesgroup from the original DataFramegroup by
reference to its column name. As with the GroupBy object, no computation is done until
we call some aggregate on the object:

In[16]: planets.groupby('method')['orbital_period'].median()

Out[16]: method

Astrometry 631.180000
Eclipse Timing Variations 4343.500000
Imaging 27500.000000
Microlensing 3300.000000
Orbital Brightness Modulation  0.342887
Pulsar Timing 66.541900
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Pulsation Timing Variations

Radial Velocity

Transit

Transit Timing Variations

1170.000000

360.200000
5.714932

57.011000

Name: orbital_period, dtype: float64

Iteration over groups. The GroupBy object supports direct iteration over the groups,

returning each group as a Seriesor DataFrame:
In[17]: for (method, group) in planets.groupby(‘'method'):

print("{0:30s} shape={1}".format(method, group.shape))

Astrometry

shape=(2, 6)

Eclipse Timing Variations shape=(9, 6)

Imaging
6)

Microlensing

shape=(38,

shape=(23,

6) Orbital Brightness Modulation

shape=(3, 6) Pulsar Timing
Pulsation Timing Variations

Radial Velocity
6)

Transit

Transit Timing Variations

shape=(5, 6)
shape=(1, 6)
shape=(553,

shape=(397, 6)

shape=(4, 6)

This can be useful for doing certain things manually, though it is often much faster touse
the built-in applyfunctionality, which we will discuss momentarily.

Dispatch methods.

Through some Python class magic, any method not explicitly

implemented by the GroupByobject will be passed through and called on the groups,
whether they are DataFrame or Series objects. For example, you can use the describe()
method of DataFrames to perform a set of aggregations that describe eachgroup in the

data:
In[18]: planets.groupby('method')['year'].describe().unstack()
Out[18]:

H (o)
method count |mean std min 25% \\
Astrometry 2.0 2011.500000 |2.121320 [2010.0 2010.75
Eclipse Timing Variations 9.0 2010.000000 |1.414214 [2008.0 2009.00
Imaging 38.0 2009.131579 |2.781901 [2004.0 2008.00
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Microlensing 23.0 2009.782609 [2.859697 [2004.0 2008.00

Orbital Brightness 3.0 2011.666667 [1.154701 [2011.0 2011.00
Modulation

Aggregate, filter, transform, apply.

The preceding discussion focused on aggregation for the combine operation, but
there are more options available. In particular, GroupBy objects have aggregate(), filter(),

transform(), and apply() methods that efficiently implement a variety ofuseful operations
before combining the grouped data.

For the purpose of the following subsections, we’ll use this DataFrame:
In[19]: rng = np.random.RandomState(0)

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
'datal': range(6),
‘data2': rng.randint(0, 10, 6)},

columns = ['key', 'datal’, 'data2'])
df

Out|19] key ({ata data

2
0 AO 5
1 B1 0
2 C2 3
3 A 3 3
4 B 4 7
5 C 5 9

Aggregation. We're now familiar with GroupBy aggregations with sum(), median(), and the
like, but the aggregate()method allows for even more flexibility. It can takea string, a
function, or a list thereof, and compute all the aggregates at once. Here is aquick example
combining all these:

In[20]: df.groupby('key').aggregate(['min’, np.median, max])

Out[20]: datal data2
min median max min median max
key
A 0 15 3 340 5
B 1 25 4 0 35 7
C 2 3.5 5 3 60 9

Another useful pattern is to pass a dictionary mapping column names to
operationsto be applied on that column:
In[21]: df.groupby('key').aggregate({'datal’: 'min’,
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Out[21]:

datal
data2key
A 0
B 1
C 2

'data2': 'max'})

Filtering. A filtering operation allows you to drop data based on the group proper- ties.
For example, we might want to keep all groups in which the standard deviation islarger
than some critical value:

In[22]:

def filter_func(x):

return x['data2'].std() > 4

print(df); print(df.groupby('key').std());
print(df.groupby('key').filter(filter_func))

df

3
4
5

A
B

C

A

B
C

0
1

3

4
5

5
0

3

3
7
9

df.groupby('key').std()

key datal data2 key datal

data2
A 2.12132 1.4142
14

B 212132 4.9497
47

C 212132 4.2426
41

df.groupby('key').filter(filter_func)

1

2

4
5

B

C

B
C

1

2

4
5

key datal data2

0

3

7
9

The filter() function should return a Boolean value specifying whether the group passes
the filtering. Here because group A does not have a standard deviation greater than 4, it
is dropped from the result.

Page 148 of 580



Transformation. While aggregation must return a reduced version of the data, trans-
formation can return some transformed version of the full data to recombine. For
such a transformation, the output is the same shape as the input. A common example is
to center the data by subtracting the group-wise mean:

In[23]: df.groupby('key').transform(lambda x: x -
x.mean())Out[23]: datal data2

0 -15 1.0
1 -15 -35
2 -1.5 -3.0
3 15 -1.0
4 15 35
5 15 3.0

The apply() method. The apply() method lets you apply an arbitrary function to the group
results. The function should take a DataFrame, and return either a Pandasobject
(e.g., DataFrame, Series) or a scalar; the combine operation will be tailored tothe type of
output returned.

For example, here is an apply() that normalizes the first column by the sum of

the second:
In[24]: def norm_by data2(x):

# x is a DataFrame of group
valuesx['datal'] /=
x['data2'].sum() return x

print(df);
pgnt(gf%oucpl%( ke\égyapply&ngrqw by, data2))df
S 5 odf.groupby(tkey'h apply(norm_by_data
2 1 0 1 B 8.14285 0
2¢c 2 3 2 ¢ 3.16666 3

7
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apply()within a GroupByis quite flexible: the only criterion is that the function takesa
DataFrame and returns a Pandas object or scalar; what you do in the middle is up toyou!

Specifying the split key
In the simple examples presented before, we split the DataFrame on a single column
name. This is just one of many options by which the groups can be defined, and we’llgo
through some other options for group specification here.
A'list, array, series, or index providing the grouping keys. The key can be any series or list
with a length matching that of the DataFrame. For example:

In[25]:L=1[0, 1,0, 1,2, 0]
print(df); print(df.groupby(L).sum())

df df.groupby(L).sum()
key datal data2 datal
data20 A 0 50 7
17

1 B 1 0 1 3

2 C 2 3 2 7

3 A 3 3

4 B 4 7

5 C 5 9

Of course, this means there’s another, more verbose way of accomplishing the
df.groupby('key') from before:

In[26]: print(df);
print(df.groupby(df['key']).sum())df

key datal data2 datal data
df.groupby{df['key']).sum
3 8

0 A O 5 A

I() B 1 0 B 5 7
2 C 2 3 C 7 12
3 A3 3

4 B 4 7
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A dictionary or series mapping index to group. Another method is to provide a dictionary that
maps index values to the group keys:

In[27]: df2 = df.set_index('key')
mapping = {'A": 'vowel', 'B": 'consonant’, 'C": 'consonant'}

print(df2); print(df2.groupby(mapping).sum())

EfZ deﬁroupby(mapping).s
ey um

iiata gata datal data2
A O 5 consonant 12 19

B 1 0 vowel 3 8

c 2 3

A 3 3

B 4 7

C 5 9
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Week 3- Data Cleaning and Summarization

Descriptive statistics and data summarization
Data visualization using Matplotlib and Seaborn
Exploring relationships and patterns in data

Day 01- Pandas String Operations

We saw in previous sections how tools like NumPy and Pandas generalize
arithmetic operations so that we can easily and quickly perform the same
operation on many array elements. For example:

In[1]: import as
x =np.array([2, 3,5, 7,11, 13])
x*2

Out[1]: array([ 4, 6, 10, 14, 22, 26])

This vectorization of operations simplifies the syntax of operating on arrays of data: we
no longer have to worry about the size or shape of the array, but just about what
operation we want done. For arrays of strings, NumPy does not provide such simple
access, and thus you’re stuck using a more verbose loop syntax:

In[2]: data = ['peter’, 'Paul’, 'MARY', 'gUIDO']
[s.capitalize() for s in data]

Out[2]: ['Peter’, 'Paul’, 'Mary', 'Guido']

This is perhaps sufficient to work with some data, but it will break if there are any missing
values. For example:

In[3]: data = ['peter’, 'Paul’, None, 'MARY', 'gUIDQ']
[s.capitalize() for s in data]

Pandas includes features to address both this need for vectorized string operations
and for correctly handling missing data via the str attribute of Pandas Series and Index
objects containing strings. So, for example, suppose we create a Pandas Serieswith this
data:

In[4]: import as
names =
pd.Series(data)names
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Out[4]: 0  peter

1 Paul
2 None
3 MARY

4 gUIDO
dtype:
object

We can now call a single method that will capitalize all the entries, while
skipping over any missing values:

In[5]: names.str.capitalize()
Out[5]: 0 Peter

Paul
None
Mary

4 Guido
dtype:
object

W DN —

Using tab completion on this str attribute will list all the vectorized string
methods available to Pandas.

Tables of Pandas String Methods

If you have a good understanding of string manipulation in Python, most of Pandas’ string
syntax is intuitive enough that it’s probably sufficient to just list a table of avail-able
methods; we will start with that here, before diving deeper into a few of the sub-tleties.
The examples in this section use the following series of names:

In[6]: monte = pd.Series(['Graham Chapman’, 'John Cleese', 'Terry Gilliam',

'Eric Idle', 'Terry Jones', 'Michael Palin'])

Methods similar to Python string methods

Nearly all Python’s built-in string methods are mirrored by a Pandas vectorized
stringmethod. Here is a list of Pandas strmethods that mirror Python string
methods:

len() lower() translate() islower()
ljust() upper() startswith() isupper()
rjiust()  find() endswith() isnumeric()

center() rfind() isalnum()  isdecimall()
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zfill() index() isalpha()
strip()  rindex() isdigit()
rstrip() capitalize() isspace()

Istrip() swapcase() istitle()

split()
rsplit()
partition()
rpartition()

Notice that these have various return values. Some, like lower(), return a series of strings:

In[7]: monte.str.lower()
Out[7]: 0  graham

chapman
1 john cleese
2 terry gilliam
3 ericidle
4 terry jones
5 michael
palindtype:
object

But some others return numbers:

In[8]: monte.str.len()

Out[8]:0 14
1 11
2 13
3 9
4 11
5 13
dtype: int64

Or Boolean values:

In[9]: monte.str.startswith('T')
Out[9]: 0  False

False
True
False
True

5 False
dtype:
bool

S W DN

Still others return lists or other compound values for each element:
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In[10]: monte.str.split()
Out[10]: 0 [Graham,

Chapman]
1 [John, Cleese]
2 [Terry, Gilliam]
3 [Eric, Idle]
4 [Terry, Jones]
5 [Michael,

Palin]dtype: object
We'll see further manipulations of this kind of series-of-lists object as we
continue our discussion.
Methods using regular expressions
In addition, there are several methods that accept regular expressions to

examine the content of each string element, and follow some of the API
conventions of Python’s built-in remodule.

Table . Mapping between Pandas methods and functions in Python’s re module

Method Description
match()  Call re.match()on each element, returning a Boolean.

extract()  Call re.match() on each element, returning matched groups as strings.
findall() Call re.findall()on each element.

replace()  Replace occurrences of pattern with some other string.
contains() Call re.search() on each element, returning a

Boolean.count() Count occurrences of pattern.

split() Equivalent to str.split(), but accepts regexps.

rsplit() Equivalent to str.rsplit(), but accepts regexps.

With these, you can do a wide range of interesting operations. For example, we
can extract the first name from each by asking for a contiguous group of
characters at the beginning of each element:

In[11]: monte.str.extract('([A-Za-z]+)')
Out[11]:0 Graham
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1 John

2 Terry

3 Eric

4 Terry

5  Michae

| dtype:

object
Or we can do something more complicated, like finding all names that start and end with
a consonant, making use of the start-of-string (*) and end-of-string ($) regular expression

characters:
In[12]:
monte.str.findall(r'A[*AEIOU].*[*aeiou]S')
Out[12]: 0 [Graham Chapman]

1 [l
2 [Terry Gilliam]
3 [l

4 [Terry Jones]
5 [Michael
Palin]dtype: object
The ability to concisely apply regular expressions across Series or DataFrame entries opens up
many possibilities for analysis and cleaning of data.
Vectorized item access and slicing. The get() and slice() operations, in particular, enable
vectorized element access from each array. For example, we can get a slice of the
first three characters of each array using str.slice(0, 3). Note that this behav- ior
is also available through Python’s normal indexing syntax—for example,
df.str.slice(0, 3)is equivalent to df.str[0:3]:

In[13]:
monte.str[0:3]
Out[13]:0 Gra

1 Joh
2 Ter
3 Eri

4 Ter
5 Mic

dtype: object
Indexing via df.str.get(i) and df.str[i]is similar.

These get()and slice()methods also let you access elements of arrays returned
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bysplit(). For example, to extract the last name of each entry, we can
combinesplit()and get():

In[14]: monte.str.split().str.get(-1)
Out[14]:0 Chapman

1 Cleese
2 Gilliam
3 Idle
4 Jones
5 Palin
dtype: object

Indicator variables. Another method that requires a bit of extra explanation is the get_dummies()
method. This is useful when your data has a column containing somesort of coded
indicator. For example, we might have a dataset that contains informa- tion in the form
of codes, such as A=“born in America,” B="born in the United King-dom,” C="likes
cheese,” D="likes spam”:

In[15]:

full_monte = pd.DataFrame({'name': monte,

'info": ['B|C| D', 'B|D', 'A|C', 'B| D', 'B|C,

'BIC|D'TH
full_monte
Out[15]: info name
0 B|C|D Graham Chapman
1 B|D JohnCleese
2 A|C TerryGilliam
3 B|D Eric Idle

o~

B|C  Terrylones
5 B|C|D Michael Palin

The get_dummies()routine lets you quickly split out these indicator variables into a
DataFrame:

In[16]: full_monte['info'].str.get_dummies('|"')
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Out[16]:

Dl WD~ O

DO O~ OO =
_—= = O = =
—_—_ O = O =0
— O = O~ =g

With these operations as building blocks, you can construct an endless range of
stringprocessing procedures when cleaning your data.

Miscellaneous methods

Finally, there are some miscellaneous methods that enable other convenient operations.

Table . Other Pandas string methods

Method Description

get() Index each element
slice() Slice each element

slice_replace() Replace slice in each element with passed value

cat() Concatenate strings

repeat() Repeat values

normalize() Return Unicode form of string

pad() Add whitespace to left, right, or both sides of strings
wrap() Split long strings into lines with length less than a given
width join() Join strings in each element of the Series with passed

separatorget_dummies() Extract dummy variables as a DataFrame

Dates and Times in Python

The Python world has several available representations of dates, times, deltas, and
timespans. While the time series tools provided by Pandas tend to be the most useful for
data science applications, it is helpful to see their relationship to other packages used in
Python.

Native Python dates and times: datetime and dateutil
Python’s basic objects for working with dates and times reside in the built-in date time

module. Along with the third-party dateutil module, you can use it to quicklyperform a
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host of useful functionalities on dates and times. For example, you can manually build a
date using the datetimetype:

In[1]: from import datetime
datetime(year=2015, month=7,
day=4)

Out[1]: datetime.datetime(2015, 7, 4, 0, 0)

Or, using the dateutilmodule, you can parse dates from a variety of string formats:
In[2]: from import parser

date = parser.parse("4th of July,
2015")date

Out[2]: datetime.datetime(2015, 7, 4, 0, 0)

Once you have a datetimeobject, you can do things like printing the day of the week:
In[3]: date.strftime('%A")
Out[3]: 'Saturday'

In the final line, we’ve used one of the standard string format codes for printing dates
("%A"), which you can read about in the strftime section of Python’s datetime
documentation. Documentation of other useful date utilities can be found in dateutil’s
online documentation. A related package to be aware of is pytz, which contains toolsfor
working with the most migraine-inducing piece of time series data: time zones.

The power of datetime and dateutil lies in their flexibility and easy syntax: you can use these
objects and their built-in methods to easily perform nearly any operation you might be
interested in. Where they break down is when you wish to work with large arrays of
dates and times: just as lists of Python numerical variables are subopti-mal compared to
NumPy-style typed numerical arrays, lists of Python datetimeobjects are suboptimal
compared to typed arrays of encoded dates.

Typed arrays of times: NumPy’s datetime64

The weaknesses of Python’s datetime format inspired the NumPy team to add a set of
native time series data type to NumPy. The datetime64dtype encodes dates as 64-bit
integers, and thus allows arrays of dates to be represented very compactly. The date
time64requires a very specific input format:

In[4]: import as
date = np.array('2015-07-04',
dtype=np.datetime64)date
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Out[4]: array(datetime.date(2015, 7, 4), dtype='datetime64[D]’)
Once we have this date formatted, however, we can quickly do vectorized operations on
it:
In[5]: date +
np.arange(12)0Out[5]:
array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',
'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11",
'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15"],
dtype='datetime64[D]')

Because of the uniform type in NumPy datetime64 arrays, this type of operation canbe
accomplished much more quickly than if we were working directly with Python’s datetime
objects, especially as arrays get large.

One detail of the datetime64and timedeltab4objects is that they are built on a fun-
damental time unit. Because the datetime64 object is limited to 64-bit precision, the range

of encodable times is 264 times this fundamental unit. In other words, date time64imposes
a trade-off between time resolution and maximum time span.

For example, if you want a time resolution of one nanosecond, you only have enough

information to encode a range of 264 nanoseconds, or just under 600 years. NumPy will
infer the desired unit from the input; for example, here is a day-based datetime:

In[6]: np.datetime64('2015-07-04")
Out[6]: numpy.datetime64('2015-
07-04")
Here is a minute-based datetime:
In[7]: np.datetime64('2015-07-04 12:00')
Out[7]: numpy.datetime64('2015-07-04T12:00')

Notice that the time zone is automatically set to the local time on the computer exe-
cuting the code. You can force any desired fundamental unit using one of many for- mat
codes; for example, here we’ll force a nanosecond-based time:
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In[8]: np.datetime64('2015-07-04 12:59:59.50', 'ns")

Out[8]: numpy.datetime64('2015-07-

04T12:59:59.500000000')

Table 3-6. Description of date and time codes

Code Meaning

Time span (relative) Time span (absolute)

y  Year 19.2e18 [9.2¢18 BC, 9.2¢18 AD]
years

M Month t7.6el7 [7.6e17 BC, 7.6e17 AD]
years

w  Week +1.7e17 [1.7e17 BC, 1.7e17 AD]
years

Code Meaning

Time span (relative) Time span (absolute)

D Day +2.5e16 years [2.5e16 BC, 2.5¢16 AD]
h  Hour +1.0e15 years [1.0e15 BC, 1.0e15 AD]
m  Minute  117el3years [1.7e13 BC, 1.7e13 AD]
s  Second 1 2.9e12 years [2.9¢9 BC, 2.9e9 AD]
ms Millisecon 12.9e9 years [ 2.9e6 BC, 2.9¢6 AD]
d
us Microsecon t2.9e6 years [290301 BC, 294241
d AD]
ns Nanosecon 292 years [1678 AD, 2262 AD]
d

ps Picosecond * 106 days

fs  Femtosecon t2.6hours
d

as Attosecon t9.2 seconds
d

(1969 AD, 1970 AD]
(1969 AD, 1970 AD]

(1969 AD, 1970 AD]

For the types of data we see in the real world, a useful default is datetime64[ns], as itcan
encode a useful range of modern dates with a suitably fine precision.

Finally, we will note that while the datetime64 data type addresses some of the defi- ciencies
of the built-in Python datetime type, it lacks many of the convenient meth- ods and
functions provided by datetime and especially dateutil. More information can be found in
NumPy’s datetime64 documentation.
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Dates and times in Pandas: Best of both worlds

Pandas builds upon all the tools just discussed to provide a Timestamp object,
which combines the ease of use of datetime and dateutil with the efficient
storage and vectorized interface of numpy.datetime64. From a group of these
Timestamp objects, Pandas can construct a Datetimelndex that can be used to
index data in a Series or DataFrame; we’ll see many examples of this below.

For example, we can use Pandas tools to repeat the demonstration from above. We can
parse a flexibly formatted string date, and use format codes to output the day of the
week:

In[9]: import as

date = pd.to_datetime("4th of July,
2015")date

Out[9]: Timestamp('2015-07-04 00:00:00')

In[10]:
date.strftime('%A")
Out[10]: 'Saturday'

Additionally, we can do NumPy-style vectorized operations directly on this same
object:
In[11]: date + pd.to_timedelta(np.arange(12), 'D')
Out[11]: Datetimelndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07",
'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11",
'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15",
dtype='datetime64[ns]', freq=None)

In the next section, we will take a closer look at manipulating time series data
with the tools provided by Pandas.

Pandas Time Series: Indexing by Time

Where the Pandas time series tools really become useful is when you begin to index data
by timestamps. For example, we can construct a Series object that has time- indexed
data:

In[12]: index = pd.Datetimelndex(['2014-07-04', '2014-08-04',
'2015-07-04', '2015-08-04"])
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data = pd.Series([0, 1, 2, 3], index=index)
data

Out[12]: 2014-07-04 O
2014-08-04 1
2015-07-04 2
2015-08-04 3
dtype: int64

Now that we have this data in a Series, we can make use of any of the Seriesindex-ing
patterns we discussed in previous sections, passing values that can be coerced intodates:
In[13]: data['2014-07-04":'2015-07-
04'10ut[13]: 2014-07-04 O
2014-08-04 1
2015-07-04 2
dtype: int64
There are additional special date-only indexing operations, such as passing a year to
obtain a slice of all data from that year:
In[14]: data['2015']
Out[14]: 2015-07-04

2015-08-04 3
dtype: int64
Later, we will see additional examples of the convenience of dates-as-indices. But
first,let’s take a closer look at the available time series data structures.
Pandas Time Series Data Structures
This section will introduce the fundamental Pandas data structures for working
with time series data:

For time stamps, Pandas provides the Timestamp type. As mentioned before, it
isessentially a replacement for Python’s native datetime, but is based on the
more efficient numpy.datetime64 data type. The associated index structure
isDatetimelndex.
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e For time periods, Pandas provides the Period type. This encodes a fixed-
frequency interval based on numpy.datetime64. The associated index
structure isPeriodindex.

e For time deltas or durations, Pandas provides the Timedeltatype. Timedeltais
amore efficient replacement for Python’s native datetime.timedelta type, and
is based on numpy.timedeltab4. The associated index structure is
Timedeltalndex.

The most fundamental of these date/time objects are the Timestamp and
Datetimelndex objects. While these class objects can be invoked directly, it is
more common to use the pd.to_datetime() function, which can parse a wide
variety of formats. Pass-ing a single date to pd.to_datetime() yields a Timestamp;
passing a series of dates by default yields a Datetimelndex:

In[15]: dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015,
'2015-Jul-6', '07-07-2015', '20150708'])
dates
Out[15]: Datetimelndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07",
'2015-07-08'],
dtype='datetime64[ns]', freq=None)

Any Datetimelndexcan be converted to a Periodindexwith the to_period()func-
tion with the addition of a frequency code; here we’ll use 'D' to indicate daily
frequency:

In[16]: dates.to_period('D')
Out[16]: PeriodIindex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',
'2015-07-08'],
dtype='int64', freq='D")
A Timedeltalndexis created, for example, when one date is subtracted from another:

In[17]: dates - dates[0]
Out[17]:

Timedeltalndex(['0 days', '1 days', '3 days', '4 days', '5 days'],
dtype='timedelta64[ns]', freq=None)

Page 164 of 580



Regular sequences: pd.date_range()

To make the creation of regular date sequences more convenient, Pandas offers
a few functions for this purpose: pd.date range() for timestamps,
pd.period_range()forperiods, and pd.timedelta_range() for time deltas. We've
seen that Python’s

range()and NumPy’s np.arange()turn a startpoint, endpoint, and optional stepsizeinto a
sequence. Similarly, pd.date_range() accepts a start date, an end date, and anoptional
frequency code to create a regular sequence of dates. By default, the fre- quency is one
day:

In[18]: pd.date_range('2015-07-03', '2015-07-10')
Out[18]: Datetimelndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
dtype='datetime64[ns]', freq='D')

Alternatively, the date range can be specified not with a start- and endpoint, but with a
startpoint and a number of periods:

In[19]: pd.date_range('2015-07-03', periods=8)
Out[19]: Datetimelndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
dtype='datetime64[ns]', freq='D’)

You can modify the spacing by altering the freq argument, which defaults to D.
For example, here we will construct a range of hourly timestamps:

In[20]: pd.date_range('2015-07-03', periods=8, freq="H')
Out[20]: Datetimelndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00',
'2015-07-03 02:00:00', '2015-07-03 03:00:00',
'2015-07-03 04:00:00', '2015-07-03 05:00:00',
'2015-07-03 06:00:00', '2015-07-03 07:00:00'],
dtype='datetime64[ns]', freq="H')

To create regular sequences of period or time delta values, the very similar
pd.period_range()and pd.timedelta_range()functions are useful. Here are some
monthly periods:
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In[21]: pd.period_range('2015-07', periods=8,
freq="M")Out[21]:
PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11", '2015-12',
'2016-01', '2016-02'],
dtype='int64', freq="M')
And a sequence of durations increasing by an hour:
In[22]: pd.timedelta_range(0, periods=10,
freq="H')Out[22]:
Timedeltalndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00',
'05:00:00', '06:00:00', '07:00:00', '08:00:00", '09:00:00'],
dtype="timedelta64[ns]', freq="H')

All of these require an understanding of Pandas frequency codes, which we’ll summa-rize
in the next section.

Frequencies and Offsets

Fundamental to these Pandas time series tools is the concept of a frequency or date
offset. Just as we saw the D (day) and H (hour) codes previously, we can use such codes to
specify any desired frequency spacing. Table 3-7 summarizes the main codes available.

Table 3-7. Listing of Pandas frequency codes

Code Description Code Description

p Calendarday g Business day

W Weekly

M  Monthend B  Business month
M end

Q  Quarterend BQ, Business quarter

end

A Yearend BA  Businessyear end

H  Hours BH Business hours

T  Minutes

S Seconds

L Milliseonds

U  Microsecond

S
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N  Nanosecon
ds

The monthly, quarterly, and annual frequencies are all marked at the end of the speci-
fied period. Adding an S suffix to any of these marks it instead at the beginning (Table 3-
8).

Table. Listing of start-indexed frequency codes
MS  Month start
BMS  Business month start
QS Quarter start
BQS Business quarter start
AS  Yearstart
BAS  Business year start

Additionally, you can change the month used to mark any quarterly or annual codeby
adding a three-letter month code as a suffix:

¢ Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc.
¢ A-JAN, BA-FEB, AS-MAR, BAS-APR, etc.

In the same way, you can modify the split-point of the weekly frequency by
adding a three-letter weekday code:

¢ W-SUN, W-MON, W-TUE, W-WED, etc.

On top of this, codes can be combined with numbers to specify other
frequencies. Forexample, for a frequency of 2 hours 30 minutes, we can
combine the hour (H) and minute (T) codes as follows:

In[23]: pd.timedelta_range(0, periods=9,

freq="2H30T")Out[23]:

Timedeltalndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00',
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'12:30:00°', '15:00:00', '17:30:00', '20:00:00'],
dtype="timedelta64[ns]', freq="150T")
All of these short codes refer to specific instances of Pandas time series offsets, whichcan

be found in the pd.tseries.offsetsmodule. For example, we can create a busi-ness day
offset directly as follows:

In[24]: from import BDay
pd.date_range('2015-07-01', periods=5,
freq=BDay())
Out[24]: Datetimelndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06',
'2015-07-07'],
dtype='datetime64[ns]', freq='B')
For more discussion of the use of frequencies and offsets, see the “DateOffset
objects”section of the Pandas online documentation.
Resampling, Shifting, and Windowing
The ability to use dates and times as indices to intuitively organize and access data is an
important piece of the Pandas time series tools. The benefits of indexed data in general

(automatic alignment during operations, intuitive data slicing and access,etc.) still
apply, and Pandas provides several additional time series—specific operations.

We will take a look at a few of those here, using some stock price data as an example.
Because Pandas was developed largely in a finance context, it includes some very spe-cific
tools for financial data. For example, the accompanying pandas-datareader package
(installable via conda install pandas-datareader) knows how to import financial data
from a number of available sources, including Yahoo finance, GoogleFinance, and
others. Here we will load Google’s closing price history:

In[25]: from import data

goog = data.DataReader('GOOG', start='2004', end="'2016',
data_source='google')

goog.head()

Out[25] Ope Hig Low Clos Volum

: Date n h e e
2004-08- 49.9 51.9 47.93 50.1 NaN
19 6 8 2
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2004-08- 50.6

20 9
2004-08- 55.3
23 2
2004-08- 55.5
24 6
2004-08- 52.4
25 3

For simplicity, we’ll use just the closing price:

54.4 50.20
9

56.6 54.47
8

55.7 51.73

4
53.9 51.89
5

In[26]: goog = goog['Close']

We can visualize this using the plot() method, after the normal Matplotlib

setupboilerplate :

In[27]: %matplotlib inline

54.1 NaN
0

54.6 NaN
5

52.3 NaN

8
52.9 NaN
5

import as
import
seaborn.set()
In[28]: goog.plot();
00
TO00
600
500
400
200
200
100
o
° < * o 0
Date

Figure 3-5. Google’s closing stock price over time

Resampling and converting frequencies

One common need for time series data is resampling at a higher or lower
frequency.You can do this using the resample() method, or the much simpler
asfreq()method. The primary difference between the two is that resample()is
fundamentallya data aggregation, while asfreq()is fundamentally a data selection.
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Taking a look at the Google closing price, let’s compare what the two return when we
down-sample the data. Here we will resample the data at the end of business year :

In[29]: goog.plot(alpha=0.5, style="-')
goog.resample('BA').mean().plot(style='

!
goog.asfreq('BA').plot(style="--');

plt.legend(['input’, 'resample’, 'asfreq'],
loc="'upper left');

nput
resample
= = asfreq

©°

o o o

Figure . Resamplings of Google’s stock price

Notice the difference: at each point, resample reports the average of the previous
year, while asfreqreports the value at the end of the year.

For up-sampling, resample() and asfreq() are largely equivalent, though resamplehas
many more options available. In this case, the default for both methods is to leavethe up-
sampled points empty—that is, filled with NA values. Just as with the pd.fillna()function
discussed previously, asfreq()accepts a methodargument tospecify how values are
imputed. Here, we will resample the business day data at a daily frequency (i.e., including
weekends); see Figure 3-7:

In[30]: fig, ax = plt.subplots(2, sharex=True)
data = goog.iloc[:10]
data.asfreq('D').plot(ax=ax[0], marker='0")
data.asfreq('D', method="bfill').plot(ax=ax[1], style='-0")

data.asfreq('D', method="ffill').plot(ax=ax[1], style='--0')
Page 170 of 580



ax[1].legend(["back-fill", "forward-fill"]);

The top panel is the default: non-business days are left as NA values and do not appear
on the plot. The bottom panel shows the differences between two strategiesfor filling
the gaps: forward-filling and backward-filling.

Time-shifts

Another common time series—specific operation is shifting of data in time. Pandashas
two closely related methods for computing this: shift() and tshift(). In short,the difference
between them is that shift() shifts the data, while tshift() shifts the index. In both cases, the
shift is specified in multiples of the frequency.

Here we will both shift()and tshift()by 900 days (Figure 3-8):

In[31]: fig, ax = plt.subplots(3, sharey=True)

# apply a frequency to the data
goog = goog.asfreq('D', method="pad')

goog.plot(ax=ax[0])
goog.shift(900).plot(ax=ax[1]
)
goog.tshift(900).plot(ax=ax[2
1)

# legends and annotations

local_max = pd.to_datetime('2007-
11-05")offset = pd.Timedelta(900, 'D')

ax[0].legend(['input'], loc=2)
ax[0].get_xticklabels()[4].set(weight="heavy',
color="red")ax[0].axvline(local_max, alpha=0.3,
color="red')

ax[1].legend(['shift(900)'], loc=2)
ax[1].get_xticklabels()[4].set(weight="heavy’,
color="red")ax[1].axvline(local_max + offset, alpha=0.3,
color="red")
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ax[2].legend(['tshift(900)'], loc=2)
ax[2].get_xticklabels()[1].set(weight="heavy’,

200
700 - nput
&0 "
500
400
00
200
100

a
00 2006 2008 2010 2012 014
TO0 = chift(o00)
&0
500
400
00
200
100

a
00 2006 2008 010 2012 014
TO0 = hift{I00)
&0
500
400
00
200
100

a

008 010 012 014 016 018
Date

color="red")ax[2].axvline(local_max + offset, alpha=0.3,
color="red");

Figure . Comparison between shift and tshift
We see here that shift(900) shifts the data by 900 days, pushing some of it off the

end of the graph (and leaving NA values at the other end), while tshift(900) shifts
the index values by 900 days.

A common context for this type of shift is computing differences over time. For
example, we use shifted values to compute the one-year return on investment
for Google stock over the course of the dataset (Figure 3-9):

In[32]: ROI = 100 * (goog.tshift(-365) / goog - 1)
ROl.plot()

plt.ylabel('% Return on Investment');
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Figure . Return on investment to present day for Google stock

This helps us to see the overall trend in Google stock: thus far, the most profitable times
to invest in Google have been (unsurprisingly, in retrospect) shortly after its IPO, and in
the middle of the 2009 recession.

Rolling windows

Rolling statistics are a third type of time series—specific operation implemented by
Pandas. These can be accomplished via the rolling() attribute of Series and DataFrame
objects, which returns a view similar to what we saw with the groupby operation. This
rolling view makes availablea number of aggregation operations by default.

For example, here is the one-year centered rolling mean and standard deviation
of theGoogle stock prices (Figure 3-10):

In[33]: rolling = goog.rolling(365, center=True)

data = pd.DataFrame({'input': goog,

'‘one-year rolling_mean":
rolling.mean(),'one-year rolling_std":
rolling.std()})

ax = data.plot(style=['"-', '--', ":'])
ax.lines[0].set_alpha(0.3)
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nput
= one-year rolling_mean
one-year rolling_std
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Figure 3-10. Rolling statistics on Google stock prices

As with groupby operations, the aggregate() and apply() methods can be used for
custom rolling computations.

Where to Learn More

This section has provided only a brief summary of some of the most essential featuresof
time series tools provided by Pandas; for a more complete discussion, you can referto the
“Time Series/Date” section of the Pandas online documentation.

Another excellent resource is the textbook Python for Data Analysis by Wes McKin- ney
(O’Reilly, 2012). Although it is now a few years old, it is an invaluable resource onthe use of
Pandas. In particular, this book emphasizes time series tools in the context of business
and finance, and focuses much more on particular details of business cal- endars, time
zones, and related topics.

As always, you can also use the IPython help functionality to explore and try
further options available to the functions and methods discussed here. | find
this often is the best way to learn a new Python tool.

Example: Visualizing Seattle Bicycle Counts

As a more involved example of working with some time series data, let’s take a look at
bicycle counts on Seattle’s Fremont Bridge. This data comes from an automated bicy-cle
counter, installed in late 2012, which has inductive sensors on the east and west
sidewalks of the bridge. The hourly bicycle counts can be downloaded from http.//
data.seattle.gov/; here is the direct link to the dataset.
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As of summer 2016, the CSV can be downloaded as follows:

In[34]:

# Icurl -o FremontBridge.csv

# https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Once this dataset is downloaded, we can use Pandas to read the CSV output into
a DataFrame. We will specify that we want the Date as an index, and we want
these dates to be automatically parsed:

In[35]:

data = pd.read_csv('FremontBridge.csv', index_col='Date’,
parse_dates=True)data.head()

Out[35]:

Date
2012-10-
03
2012-10-
03
2012-10-
03
2012-10-

03
2012-10-
03

Date

2012-10-
03
2012-10-
03
2012-10-
03
2012-10-

03
2012-10-
03

Fremont Bridge West Sidewalk \\

00:00:0 4.0
0

01:00:0 4.0
0
02:00:0 1.0
0
03:00:0 2.0
0
04:00:0 6.0
0
Fremont Bridge East
Sidewalk
00:00:0 9.0
0
01:00:0 6.0
0
02:00:0 1.0
0
03:00:0 3.0

0
04:00:0 1.0
0

For convenience, we’ll further process this dataset by shortening the column
names and adding a “Total” column:
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In[36]: data.columns = ['West', 'East']
data['Total'] = data.eval('West + East')

Now let’s take a look at the summary statistics for this data:

In[37]: data.dropna().describe()

Out[37]

coun 33544.0000

t

West

00

mean61.726568
std 83.210813
min 0.000000

25%
50%

75%
max

8.000000
33.000000

80.000000
825.000000

East

33544.0000

00
53.541706
76.380678
0.000000
7.000000
28.000000

66.000000
717.000000

Total

33544.0000
00
115.268275
144.773983
0.000000
16.000000
64.000000
151.000000

%186.00000

Visualizing the data

We can gain some insight into the dataset by visualizing it. Let’s start by
plotting theraw data:

In[38]: %matplotlib inline

import seaborn; seaborn.set()
In[39]: data.plot()

plt.ylabel('Hourly Bicycle Count');
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Date

Figure . Hourly bicycle counts on Seattle’s Fremont bridge
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The ~25,000 hourly samples are far too dense for us to make much sense of. We
can gain more insight by resampling the data to a coarser grid. Let’s resample by
week:

In[40]: weekly =
data.resample('W').sum()
weekly.plot(style=["', '--', '-'])
plt.ylabel("Weekly bicycle count');

This shows us some interesting seasonal trends: as you might expect, people bicycle
more in the summer than in the winter, and even within a particular season the bicycle
use varies from week to week .

40000

35000  —— Total

30000

25000

20000

15000

Weekly bicycle count

10000

Jan Jul A Jul Jan Jul Jan Jul

Figure . Weekly bicycle crossings of Seattle’s Fremont bridge

Another way that comes in handy for aggregating the data is to use a rolling mean,
utilizing the pd.rolling_mean()function. Here we’ll do a 30-day rolling mean of ourdata,
making sure to center the window :

In[41]: daily = data.resample('D").sum()
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daily.rolling(30, center=True).sum().plot(style=[":", '--', '-'])
plt.ylabel(‘'mean hourly count');
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140000

120000
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80000

60000

mean hourly count

40000

20000

0
Jan Jul Jan Jul Jan Jul Jan Jul

Figure . Rolling mean of weekly bicycle counts

The jaggedness of the result is due to the hard cutoff of the window. We can get a
smoother version of a rolling mean using a window function—for example, a Gaus- sian
window. The following code specifies both the widthof the window (we chose 50 days)
and the width of the Gaussian within the window (we chose 10 days):

In[42]:
daily.rolling(50, center=True,

win_type='gaussian').sum(std=10).plot(style=["", '--', '-']);

* 7’ ’
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120000
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80000

60000

40000

20000

dul Jan Jul

Jul Jan Jul

Figure. Gaussian smoothed weekly bicycle counts
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Day-02: Digging into the data

While the smoothed data views in Figure are useful to get an idea of the general trend in
the data, they hide much of the interesting structure. For example, we might want to
look at the average traffic as a function of the time of day. We can do this using the
GroupBy functionality discussed in:

In[43]: by_time = data.groupby(data.index.time).mean()
hourly_ticks =4 * 60 * 60 * np.arange(6)
by time.plot(xticks=hourly_ticks, style=[":", '--', '-']);

The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the morning and
5:00 in the evening. This is likely evidence of a strong component of commuter traffic crossing the
bridge. This is further evidenced by the differences between the western sidewalk (generally used
going toward downtown Seattle), which peaks more strongly in the morning, and the eastern
sidewalk (generally used going away from downtown Seattle), which peaks more strongly in the
evening.

o~ =
00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00
time

Figure . Average hourly bicycle counts

We also might be curious about how things change based on the day of the week.
Again, we can do this with a simple groupby:

In[44]: by_weekday = data.groupby(data.index.dayofweek).mean()
by weekday.index = ['Mon', 'Tues', '"Wed', 'Thurs', 'Fri', 'Sat', 'Sun']
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by_weekday.plot(style=["", --', -']);
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Figure 3-16. Average daily bicycle counts

This shows a strong distinction between weekday and weekend totals, with around twice

as many average riders crossing the bridge on Monday through Friday than on Saturday
and Sunday.

With this in mind, let’s do a compound groupby and look at the hourly trend on

weekdays versus weekends. We'll start by grouping by both a flag marking the week-end,
and the time of day:

In[45]: weekend = np.where(data.index.weekday < 5, 'Weekday',
‘Weekend')by_time = data.groupby([weekend,
data.index.time]).mean()

Now we’ll use some of the Matplotlib tools described in “Multiple Subplots” on
page262 to plot two panels side by side (Figure 3-17):
In[46]:import as

fig, ax = plt.subplots(1, 2, figsize=(14, 5))
by time.ix['Weekday'].plot(ax=ax[0], title="Weekdays',

xticks=hourly_ticks, style=[":', '--', '-'])

* ’

by time.ix['Weekend'].plot(ax=ax[1], title="Weekends',
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xticks=hourly_ticks, style=[":', '--', '-']);
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Figure 3-17. Average hourly bicycle counts by weekday and weekend

The result is very interesting: we see a bimodal commute pattern during the work week,
and a unimodal recreational pattern during the weekends. It would be interesting to dig
through this data in more detail, and examine the effect of weather, temperature, time
of year, and other factors on people’s commuting patterns.

High-Performance Pandas: eval() and query()

As we’ve already seen in previous chapters, the power of the PyData stack is built upon
the ability of NumPy and Pandas to push basic operations into C via an intu- itive syntax:
examples are vectorized/broadcasted operations in NumPy, and grouping-type
operations in Pandas. While these abstractions are efficient and effec tive for many
common use cases, they often rely on the creation of temporary inter- mediate objects,
which can cause undue overhead in computational time and memory use.

As of version 0.13 (released January 2014), Pandas includes some experimental toolsthat
allow you to directly access C-speed operations without costly allocation of inter-mediate
arrays. These are the eval() and query() functions, which rely on the Numexpr package. In
this notebook we will walk through their use and give some rules of thumb about when
you might think about using them.

Motivating query() and eval(): Compound Expressions

We've seen previously that NumPy and Pandas support fast vectorized
operations; forexample, when you are adding the elements of two arrays:

In[1]: import as

rng =
np.random.RandomState(42)
X = rng.rand(1E6)
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y = rng.rand(1E6)
%timeit x +y

100 loops, best of 3: 3.39 ms per loop

As discussed in “Computation on NumPy Arrays: Universal Functions” on page
50, this is much faster than doing the addition via a Python loop or
comprehension:

In[2]:
%timeit np.fromiter((xi + yi for xi, yiin zip(x, y)),

dtype=x.dtype, count=len(x))
1 loop, best of 3: 266 ms per loop

But this abstraction can become less efficient when you are computing compound
expressions. For example, consider the following expression:

In[3]: mask = (x > 0.5) & (y < 0.5)

Because NumPy evaluates each subexpression, this is roughly equivalent to the
following:

In[4]: tmpl = (x > 0.5)

tmp2 =(y<0.5)
mask =tmp1l &
tmp2

In other words, every intermediate step is explicitly allocated in memory. If the x and y arrays
are very large, this can lead to significant memory and computational over- head. The
Numexpr library gives you the ability to compute this type of compound expression
element by element, without the need to allocate full intermediate arrays. The Numexpr
documentation (https://github.com/pydata/numexpr) has more details, but for the time
being it is sufficientto say that the library accepts a string giving the NumPy-style
expression you’d like tocompute:

In[5]:import

mask_numexpr = numexpr.evaluate('(x > 0.5) & (y <
0.5)')np.allclose(mask, mask_numexpr)

Out[5]: True

The benefit here is that Numexpr evaluates the expression in a way that does not use
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full-sized temporary arrays, and thus can be much more efficient than NumPy, espe- cially
for large arrays. The Pandas eval() and query() tools that we will discuss here are conceptually
similar, and depend on the Numexpr package.

pandas.eval() for Efficient Operations

The eval() function in Pandas uses string expressions to efficiently compute
opera- tions using DataFrames. For example, consider the following DataFrames:

In[6]: import as
nrows, ncols = 100000, 100
rng = np.random.RandomState(42)
df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))
for iin range(4))

To compute the sum of all four DataFrames using the typical Pandas approach, we canjust
write the sum:

In[7]: %timeit dfl + df2 + df3 + df4
10 loops, best of 3: 87.1 ms per loop

We can compute the same result via pd.eval by constructing the expression
as astring:

In[8]: %timeit pd.eval('dfl + df2 + df3 + df4')
10 loops, best of 3: 42.2 ms per loop

The eval()version of this expression is about 50% faster (and uses much less
mem-ory), while giving the same result:

In[9]: np.allclose(dfl + df2 + df3 + df4,
pd.eval('dfl + df2 + df3 + df4"))
Out[9]: True

Operations supported by pd.eval()

As of Pandas v0.16, pd.eval()supports a wide range of operations. To demonstratethese,
we’ll use the following integer DataFrames:

In[10]: df1, df2, df3, df4, df5 = (pd.DataFrame(rng.randint(0, 1000, (100, 3)))

for iin range(5))
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Arithmeticoperators. pd.eval()supports all arithmetic operators. For example:

In[11]: resultl = -dfl * df2 / (df3 + df4) - df5

result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5')
np.allclose(resultl, result2)

Out[11]: True

Comparison operators. pd.eval() supports all comparison operators, including
chained expressions:

In[12]: resultl = (dfl < df2) & (df2 <= df3) & (df3 |= df4)
result2 = pd.eval('dfl < df2 <= df3 |= df4")
np.allclose(resultl, result2)

Out[12]: True

Bitwise operators. pd.eval()supports the &and | bitwise operators:
In[13]: resultl = (df1 < 0.5) & (df2 < 0.5) | (df3 < df4)

result2 = pd.eval('(dfl < 0.5) & (df2 < 0.5) | (df3 < df4)')
np.allclose(resultl, result2)

Out[13]: True
In addition, it supports the use of the literal andand orin Boolean expressions:

In[14]: result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)")
np.allclose(resultl, result3)

Out[14]: True

Objectattributesandindices. pd.eval() supports access to object attributes via the
obj.attrsyntax, and indexes via the obj[index] syntax:
In[15]: resultl = df2.T[0] + df3.iloc[1]

result2 = pd.eval('df2.T[0] + df3.iloc[1]')
np.allclose(resultl, result2)
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Out[15]: True

Other operations. Other operations, such as function calls, conditional statements, loops, and
other more involved constructs, are currently not implemented in pd.eval(). If you'd like
to execute these more complicated types of expressions, youcan use the Numexpr library
itself.

DataFrame.eval() for Column-Wise Operations

Just as Pandas has a top-level pd.eval() function, DataFrames have an eval()method that
works in similar ways. The benefit of the eval()method is that columnscan be referred to
by name. We’'ll use this labeled array as an example:

In[16]: df = pd.DataFrame(rng.rand(1000, 3), columns=['A", 'B',

'C')df.head()
_Out[16JA B C

0 0.40693 0.06993

0.375506 9 8

1 0.23561 0.15437

0.069087 5 4

2 0.43383 0.65232

0.677945 9 4

3 0.80805 0.34719

0.264038 5 7

4 0.25241 0.55778

0.589161 8 9

Using pd.eval()as above, we can compute expressions with the three columns
likethis:

In[17]: resultl = (df['A'] + df['B']) / (df['C'] - 1) result2
= pd.eval("(df.A + df.B) / (df.C - 1)")
np.allclose(resultl, result2)

Out[17]: True

The DataFrame.eval()method allows much more succinct evaluation of
expressionswith the columns:

In[18]: result3 = df.eval('(A+B) / (C-1)")
np.allclose(resultl, result3)

Out[18]: True
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Notice here that we treat column names as variables within the evaluated
expression,and the result is what we would wish.

Assignment in DataFrame.eval()

In addition to the options just discussed, DataFrame.eval() also allows assignment
to any column. Let’s use the DataFramefrom before, which has columns 'A’, 'B',
and'C"

In[19]: df.head()

Out[19]: A B C
0. 375506 0.406939 0.069938
0.069087 0.235615 0. 154374
0.677945 0.433839 0.652324
0. 264038 0.808055 0.347197
0. 589161 0.252418 0.557789

B w N = O

We can use df.eval()to create a new column 'D'and assign to it a value computedfrom
the other columns:

In[20]: df.eval('D = (A + B) / C', inplace=True)

df.head()
Out[20]: A B C D
0 0.375506 0.406939 0.069938 11.187620
1 0.069087 0.235615 0.154374  1.973796
2 0.677945 0.433839 0.652324  1.704344
3 0.264038 0.808055 0.347197  3.087857
4 0.589161 0.252418 0.557789  1.508776

In the same way, any existing column can be modified:

In[21]: df.eval('D = (A - B) / C', inplace=True)
df.head()

Out[21]: A B
C DO 0.375506
0.406939 0.069938 -0.449425

1 0.2356 0.154374 -
0.069087 15 1.078728
2 0.4338 0.652324
0.677945 39 0.374209
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3 0.8080 0.347197 -

0.264038 55 1.566886
4 0.2524 0.557789
0.589161 18 0.603708

Local variables in DataFrame.eval()

The DataFrame.eval() method supports an additional syntax that lets it work withlocal
Python variables. Consider the following:

In[22]: column_mean = df.mean(1)
resultl = df['A'] +
column_mean

result2 = df.eval('A +
@column_mean')
np.allclose(resultl, result2)

Out[22]: True
The @ character here marks a variable name rather than a column name, and lets
you efficiently evaluate expressions involving the two “namespaces”: the
namespace of columns, and the namespace of Python objects. Notice that this @

character is only supported by the DataFrame.eval() method, not by the

pandas.eval() function, because the pandas.eval()function only has access to the
one (Python) namespace.

DataFrame.query() Method

The DataFrame has another method based on evaluated strings, called the query()
method. Consider the following:
In[23]: resultl = df[(df.A < 0.5) & (df.B < 0.5)]

result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]")
np.allclose(resultl, result2)

Out[23]: True

As with the example used in our discussion of DataFrame.eval(), this is an expres- sion
involving columns of the DataFrame. It cannot be expressed using the Data Frame.eval()

syntax, however! Instead, for this type of filtering operation, you can use the query()
method:

In[24]: result2 = df.query('A < 0.5 and B< 0.5)
np.allclose(resultl, result2)
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Out[24]: True

In addition to being a more efficient computation, compared to the masking expres- sion

this is much easier to read and understand. Note that the query() method also accepts the
@flag to mark local variables:

In[25]: Cmean = df['C'].mean()

resultl = df[(df.A < Cmean) & (df.B <
Cmean)] result2 = df.query('A < @Cmean

and B < @Cmean')np.allclose(resultl,
result2)

Out[25]: True

Performance: When to Use These Functions

When considering whether to use these functions, there are two considerations: com-
putation time and memory use. Memory use is the most predictable aspect. As already
mentioned, every compound expression involving NumPy arrays or Pandas Data Frames
will result in implicit creation of temporary arrays: For example, this:

In[26]: x = df[(df.A < 0.5) & (df.B < 0.5)]

is roughly equivalent to this:
In[27]: tmpl =df. A< 0.5

tmp2 =df.B<0.5
tmp3 =tmpl &
tmp2x =
df[tmp3]

If the size of the temporary DataFrames is significant compared to your available sys-tem
memory (typically several gigabytes), then it’s a good idea to use an eval() or query()
expression. You can check the approximate size of your array in bytes usingthis:

In[28]:
df.values.nbytes

Out[28]: 32000

On the performance side, eval() can be faster even when you are not maxing out your
system memory. The issue is how your temporary DataFrames compare to the size of the
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L1 or L2 CPU cache on your system (typically a few megabytes in 2016); ifthey are much
bigger, then eval()can avoid some potentially slow movement of val-ues between the
different memory caches. In practice, | find that the difference in computation time
between the traditional methods and the eval/query method is usually not significant—if
anything, the traditional method is faster for smallerarrays! The benefit of eval/query is
mainly in the saved memory, and the sometimescleaner syntax they offer.

We've covered most of the details of eval()and query()here; for more informationon
these, you can refer to the Pandas documentation. In particular, different parsers and
engines can be specified for running these queries; for details on this, see the dis-cussion
within the “Enhancing Performance” section.

Lab Activity -DataFrame Data Structure

This lab activity must be performed using Jupyter Notebook, PyCharm, or any other IDLE .
The lines starting with the # sign are comments in Python and are used to elaborate the
code.

# The DataFrame data structure is the heart of the Panda's library. It is #a primary object you will
work with in data analysis and #cleaning #tasks.

# The DataFrame is conceptually a two-dimensional series object, where # there is an index and
multiple columns of content, with each column #having a label. The distinction between a column
and a row is #only a conceptual distinction. Moreover, you can think of the #DataFrame as simply a
two-axes labeled array.

# Lets start by importing our pandas library

import pandas as pd

## I'm going to jump in with an example. Lets create three school records for students and their
# class grades. I'll create each as a series which has a student name, #the class name, and the
score.

recordl = pd.Series({'"Name': 'Ali','Class': 'Physics', 'Score': 85})

record2 = pd.Series({'Name': 'Javed','Class': 'Chemistry','Score': 82})

record3 = pd.Series({'Name': 'Hafeez', 'Class": '‘Biology','Score': 90})

# Like a Series, the DataFrame object is index. Here I'll use a group of series, where each series

# represents a row of data. Just like the Series function, we can pass in our individual items

#in an array, and we can pass in our index values as a second arguments

df = pd.DataFrame([record1, record2, record3],index=['schooll’, 'school2', 'school1'])

# And just like the Series we can use the head() function to see the first several rows of the

# dataframe, including indices from both axes, and we can use this to verify the columns and the
rows
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df.head()
#The results of the
# dataframe. So we have the index, which is the leftmost column and is #the school name, and
# then we have the rows of data, where each row has a column header which #was given in our
initial
# record dictionaries
# An alternative method is that you could use a list of dictionaries, where each dictionary
# represents a row of data.
students = [{'Name': 'ali’,
'Class': 'Physics’,
'Score': 85},

{'Name': 'Javed',

'Class': 'Chemistry’,

'Score': 82},

{'Name': 'Hafeez',

'Class': 'Biology’,

'Score': 90}]
# Then we pass this list of dictionaries into the DataFrame function
df = pd.DataFrame(students, index=['schooll’, 'school2', 'school1'])
# And lets print the head again
df.head()
# Similar to the series, we can extract data using the .iloc and .loc #attributes. Because the
# DataFrame is two-dimensional, passing a single value to the loc #indexing operator will return
# the series if there's only one row to return.
# For instance, if we wanted to select data associated with school2, we #would just query the
# .loc attribute with one parameter.
df.loc['school2']
# You'll note that the name of the series is returned as the index value, #while the column name is
included in the output.
#We can check the data type of the return using the python type function.
type(df.loc['school2])
# It's important to remember that the indices and column names along #either axes horizontal or
# vertical, could be non-unique. In this example, we see two records for #schooll as different rows.
# If we use a single value with the DataFrame lock attribute, multiple #rows of the DataFrame will
# return, not as a new series, but as a new DataFrame.
# Lets query for schooll records
df.loc['school1']
# And we can see the the type of this is different too
type(df.loc['school1'])
# One of the powers of the Panda's DataFrame is that you can quickly #select data based on
multiple axes.
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# For instance, if you wanted to just list the student names for schooll, #you would supply two
parameters to .loc, one being the row index and the #other being the column name.

# For instance, if we are only interested in school1's student names

df.loc['schooll’, 'Name']

# Remember, just like the Series, the pandas developers have implemented #this using the indexing
operator and not as parameters to a function.

# What would we do if we just wanted to select a single column though? #Well, there are a few

# mechanisms. Firstly, we could transpose the matrix. This pivots all of #the rows into columns
#and all of the columns into rows, and is done with the T attribute

df.T

# Then we can call .loc on the transpose to get the student names only

df.T.loc['Name']

# However, since iloc and loc are used for row selection, Panda reserves #the indexing operator

# directly on the DataFrame for column selection. In a Panda's DataFrame, #columns always have a
name.

# So this selection is always label based, and is not as confusing as it #was when using the square
# bracket operator on the series objects. For those familiar with #relational databases, this
operator

# is analogous to column projection.

df['Name']

# In practice, this works really well since you're often trying to add or #drop new columns. However,
# this also means that you get a key error if you try and use .loc with a #column name
df.loc['Name']

#Note too that the result of a single column projection is a Series object

type(df['Name'])

# Since the result of using the indexing operator is either a DataFrame #or Series, you can chain
# operations together. For instance, we can select all of the rows which #related to schooll using
# .loc, then project the name column from just those rows

df.loc['school1']['Name']

# If you get confused, use type to check the responses from resulting #operations
print(type(df.loc['schooll'])) #should be a DataFrame

print(type(df.loc['schooll']['Name'])) #should be a Series

# Chaining, by indexing on the return type of another index, can come #with some costs and is

# best avoided if you can use another approach. In particular, chaining #tends to cause Pandas

# to return a copy of the DataFrame instead of a view on the DataFrame.

# For selecting data, this is not a big deal, though it might be slower #than necessary.

# If you are changing data though this is an important distinction and #can be a source of error.
# Here's another approach. As we saw, .loc does row selection, and it can #take two parameters,
# the row index and the list of column names. The .loc attribute also #supports slicing.

# If we wanted to select all rows, we can use a colon to indicate a full #slice from beginning to end.
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# This is just like slicing characters in a list in python. Then we can #add the column name as the
# second parameter as a string. If we wanted to include multiple columns, #we could do so in a list.
# and Pandas will bring back only the columns we have asked for.

# Here's an example, where we ask for all the names and scores for all #schools using the .loc
operator.

df.loc[:;,['Name', 'Score']]

# Take a look at that again. The colon means that we want to get all of #the rows, and the list in
the second argument position is the list of #columns we want to get back

# That's selecting and projecting data from a DataFrame based on row and #column labels. The key
# concepts to remember are that the rows and columns are really just for #our benefit. Underneath
# this is just a two axes labeled array, and transposing the columns is #easy. Also, consider the

# issue of chaining carefully, and try to avoid it, as it can cause #unpredictable results, where

# your intent was to obtain a view of the data, but instead Pandas #returns to you a copy.

# Before we leave the discussion of accessing data in DataFrames, lets #talk about dropping data.
# It's easy to delete data in Series and DataFrames, and we can use the #drop function to do so.

# This function takes a single parameter, which is the index or row #label, to drop. This is another
# tricky place for new users -- the drop function doesn't change the #DataFrame by default! Instead,
#the drop function returns to you a copy of the DataFrame with the given #rows removed.
df.drop('schooll’)

# But if we look at our original DataFrame we see the data is still intact.

df

# Drop has two interesting optional parameters. The first is called #inplace, and if it's

# set to true, the DataFrame will be updated in place, instead of a copy #being returned.

# The second parameter is the axes, which should be dropped. By default, #this value is O,

# indicating the row axis. But you could change it to 1 if you want to #drop a column.

# For example, lets make a copy of a DataFrame using .copy()

copy_df = df.copy()

# Now lets drop the name column in this copy

copy_df.drop("Name", inplace=True, axis=1)

copy_df

# There is a second way to drop a column, and that's directly through the #use of the indexing

# operator, using the del keyword. This way of dropping data, however, #takes immediate effect
# on the DataFrame and does not return a view.

del copy_df['Class']

copy_df

## Finally, adding a new column to the DataFrame is as easy as assigning #it to some value using
# the indexing operator. For instance, if we wanted to add a class #ranking column with default

# value of None, we could do so by using the assignment operator after #the square brackets.

# This broadcasts the default value to the new column immediately.

df['ClassRanking'] = None
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df

# In this LAB ACTIVTIY you've learned about the data structure you'll use #the most in pandas, the
DataFrame. The dataframe is indexed both by row #and column, and you can easily select
individual rows and project the #columns you're interested in using the familiar indexing methods
from #the Series class.

Lab Activity -Merging DataFrames
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The
lines starting with # sign are comments in Python and are used to elaborate the code.

# In this lab we're going to address how you can bring multiple dataframe #objects together, either
by merging them horizontally, or by #concatenating them vertically. import pandas as pd

# First we create two DataFrames, staff and students.
staff_df = pd.DataFrame([{'Name': 'Kiran', 'Role": 'Director of HR'},
{'Name': 'Salma’, 'Role': 'Course liasion'},
{'Name': 'Jameel', 'Role": 'Grader'}])
# And lets index these staff by name
staff_df = staff_df.set_index('Name')
# Now we'll create a student dataframe
student_df = pd.DataFrame([{'Name': 'Jameel', 'School": 'Business'},
{'Name': 'Mushahid', 'School": 'Law'},
{'Name": 'Salma’, 'School": 'Engineering'}])
# And we'll index this by name too
student_df = student_df.set_index('Name')

# And lets just print out the dataframes

print(staff_df.head())

print(student_df.head())

# There's some overlap in these DataFrames in that Jameel and Salma are #both students and staff,
but Mushahid and

# Kiran are not. Importantly, both DataFrames are indexed along the value
pd.merge(staff_df, student_df, how="outer', left_index=True, right_index=True)
pd.merge(staff_df, student_df, how='inner', left_index=True, right_index=True)
pd.merge(staff_df, student_df, how='"left’, left_index=True, right_index=True)
pd.merge(staff_df, student_df, how='"right', left_index=True, right_index=True)
staff_df = staff_df.reset_index()
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student_df = student_df.reset_index()
# Now lets merge using the on parameter
pd.merge(staff_df, student_df, how='"right', on="Name')
# So what happens when we have conflicts between the DataFrames? Let's #take a look by creating
new staff and
# student DataFrames that have a location information added to them.
staff _df = pd.DataFrame([{'Name': 'Kiran', 'Role": 'Director of HR',
'Location': 'Sukkur'},
{'Name': 'Salma’', 'Role": 'Course liasion’,
'Location': 'Karachi'},
{'Name': 'Jameel', 'Role": 'Grader',
'Location': 'Hyderabad'}])
student_df = pd.DataFrame([{'Name': 'Jameel', 'School": 'Business',
'Location': 'Lateefabad 7'},
{'Name': 'Mushahid', 'School": 'Law’,
'‘Location': 'Nawab Shah'},
{'Name': 'Salma’, 'School': 'Engineering',
‘Location': 'Korangi 2'}])

pd.merge(staff_df, student_df, how='left’, on="Name')

# Here's an example with some new student and staff data
staff_df = pd.DataFrame([{'First Name': 'Kiran', 'Last Name'": 'Khan',
'Role": 'Director of HR'},
{'First Name": 'Salma’, 'Last Name': '"Mughal’,
'Role": 'Course liasion'},
{'First Name': 'Jameel', 'Last Name": 'Malik’,
'Role': 'Grader'}])
student_df = pd.DataFrame([{'First Name': 'Jameel', 'Last Name': 'Mughal’,
'School": 'Business'},
{'First Name': 'Mushahid', 'Last Name': 'Uqaili’,
'School': 'Law'},
{'First Name': 'Salma’, 'Last Name': 'Mughal’,
'School': 'Engineering'}])
# As you see here, Jameel malik and Jameel Mughal don't match on both keys since they have
different last names. So we would expect that an #inner join doesn't include these individuals in the
output, and only #Salma Mughal will be retained.
pd.merge(staff_df, student_df, how='inner', on=['First Name','Last Name'])

get_ipython().run_cell_magic('capture’, ", 'df_2011 =
pd.read_csv("datasets/college_scorecard/MERGED2011_12_PP.csv",
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error_bad_lines=False)\ndf_2012 =
pd.read_csv("datasets/college_scorecard/MERGED2012_13 PP.csv",
error_bad_lines=False)\ndf_2013 =
pd.read_csv("datasets/college_scorecard/MERGED2013_14 PP.csv", error_bad_lines=False)\n')
df 2011.head(3)

print(len(df_2011))

print(len(df_2012))

print(len(df_2013))

#Let's see what it looks like

frames = [df 2011, df 2012, df 2013]

pd.concat(frames)

# As you can see, we have more observations in one dataframe and columns remain the same. If we
scroll down to

# the bottom of the output, we see that there are a total of 30,832 rows after concatenating three
dataframes.

# Let's add the number of rows of the three dataframes and see if the two numbers match
len(df_2011)+len(df_2012)+len(df_2013)

# Now let's try it out

pd.concat(frames, keys=['2011','2012','2013'])

# Now you know how to merge and concatenate datasets together. You will #find such functions
very useful for combining data to get more complex #or complicated results and to do analysis
with. A solid understanding of #how to merge data is absolutely essentially when you are procuring,
#cleaning, and manipulating data. It's worth knowing how to join #different datasets quickly, and
the different options you can use when #joining datasets, and | would encourage you to check out
the pandas docs #for joining and concatenating data.

Lab activity - DataFrame’ Indexing and Loading
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The
lines starting with # sign are comments in Python and are used to elaborate the code.

#lets look at the content of a CSV file

get_ipython().system('more Admission_Predict.csv')

import pandas as pd

df = pd.read_csv('Admission_Predict.csv')

df.head()

df = pd.read_csv('datasets/Admission_Predict.csv', index_col=0)

df.head()

new_df=df.rename(columns={'GRE Score':'"GRE Score', 'TOEFL Score':'TOEFL Score',
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'University Rating':'University Rating',
'SOP': 'Statement of Purpose','LOR": 'Letter of Recommendation’,
'CGPA'":'CGPA', 'Research':'Research’,
'Chance of Admit':'Chance of Admit'})
new_df.head()
new_df.columns
# way would be to change a column by including the space in the name
new_df=new_df.rename(columns={'"LOR ": 'Letter of Recommendation'})
new_df.head()
# What if that was a tab instead of a space? Or two spaces?
# Another way is to create some function that does the cleaning and then #tell renamed to apply
that function
# across all of the data. Python comes with a handy string function to strip white space called
“strip()".
# When we pass this in to rename we pass the function as the mapper #parameter, and then
indicate whether the
# axis should be columns or index (row labels)
new_df=new_df.rename(mapper=str.strip, axis='columns')
new_df.head()
df.columns
cols = list(df.columns)
# Then a little list comprehenshion
cols = [x.lower().strip() for x in cols]
# Then we just overwrite what is already in the .columns attribute
df.columns=cols
# And take a look at our results
df.head()
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Day-03: Pivot Tables

We have seen how the GroupByabstraction lets us explore relationships within a data-set.
A pivot table is a similar operation that is commonly seen in spreadsheets and other
programs that operate on tabular data. The pivot table takes simple column- wise data as
input, and groups the entries into a two-dimensional table that providesa
multidimensional summarization of the data. The difference between pivot tables and
GroupBy can sometimes cause confusion; it helps me to think of pivot tables as
essentially a multidimensional version of GroupBy aggregation. That is, you split- apply-
combine, but both the split and the combine happen across not a one- dimensional

index, but across a two-dimensional grid
Motivating Pivot Tables

For the examples in this section, we’ll use the database of passengers on the
Titanic, available through the Seaborn library (see “Visualization with Seaborn” ):

In[1]: import as
import as
import as

titanic = sns.load_dataset('titanic')

In[2]: titanic.head()

Out[2]:

survived pclass  sex

age sibsp parch

22.0
38.0
26.0
35.0
35.0

1

o = O B

0 7.2500
0 71.2833
0 7.9250
0 53.1000
0 8.0500

who adult_male deck embark_town alive alone

\\O 0 3  male

1 1 1 female

2 1 3 female

3 1 1 female

4 0 3  male

0  man True NaN Southampton
1 woman False C

2 woman False NaN Southampton
3 woman False C Southampton
4

no False

Cherbourg yes False

man True NaN Southampton

yes True
yes False
no True

fare embarked class

S Third
C First
S Third
S First
S Third

This contains a wealth of information on each passenger of that ill-fated voyage,
including gender, age, class, fare paid, and much more.
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Pivot Tables by Hand
To start learning more about this data, we might begin by grouping it according to
gender, survival status, or some combination thereof. If you have read the previous
section, you might be tempted to apply a GroupBy operation—for example, let’s look at
survival rate by gender:

In[3]: titanic.groupby('sex')[['survived']].mean()

Out[3]:
survive
dsex

female 0.742038
male 0.188908

This immediately gives us some insight: overall, three of every four females on

boardsurvived, while only one in five males survived!
This is useful, but we might like to go one step deeper and look at survival by both sexand,
say, class. Using the vocabulary of GroupBy, we might proceed using something like this:
we group by class and gender, select survival, apply a mean aggregate, com-bine the
resulting groups, and then unstack the hierarchical index to reveal the hidden
multidimensionality. In code:

In[4]: titanic.groupby(['sex’, ‘class'])['survived'].aggregate('mean').unstack()

Out[4]: class First Second Third

sex
femal 0.96808 0.92105 0.50000
e 5 3 0

male 0.36885 0.15740 0.13544
2 7 7

This gives us a better idea of how both gender and class affected survival, but the code is

starting to look a bit garbled. While each step of this pipeline makes sense in light of the

tools we’ve previously discussed, the long string of code is not particularlyeasy to read or

use. This two-dimensional GroupBy is common enough that Pandas includes a

convenience routine, pivot_table, which succinctly handles this type of multidimensional

aggregation.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_tablemethod of
DataFrames:

In[5]: titanic.pivot_table('survived', index="sex’, columns='class')

Page 198 of 580



Out[5]: class First Second Third

sex
femal 0.96808 0.92105 0.50000
e 5 3 0

male 0.36885 0.15740 0.13544
2 7 7

This is eminently more readable than the GroupBy approach, and produces the
same result. As you might expect of an early 20th-century transatlantic cruise,
the survival gradient favors both women and higher classes. First-class women
survived with nearcertainty (hi, Rose!), while only one in ten third-class men
survived (sorry, Jack!).
Multilevel pivot tables
Just as in the GroupBy, the grouping in pivot tables can be specified with multiple lev-els,
and via a number of options. For example, we might be interested in looking at age as a
third dimension. We'll bin the age using the pd.cutfunction:
In[6]: age = pd.cut(titanic['age'], [0, 18, 80])
titanic.pivot_table('survived', ['sex’, age], 'class’)

Out[6]: class First Second Third
SeX  age
femal (0, 18] 0.90909 1.00000 0.51162
e 1 0 8
(18, 80] 0.97297 0.90000 0.42372
3 0 9
male (0, 18] 0.80000 0.60000 0.21568
0 0 6

(18, 80] 8.37500 8.07142 9.13366

We can apply this same strategy when working with the columns as well; let’s add infoon
the fare paid using pd.qcutto automatically compute quantiles:
In[7]: fare = pd.qcut(titanic['fare'], 2)
titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

Out[7]
fare [0, 14.454]
class First Second Third \\
sex age
femal (0, 18] NaN 1.00000 0.71428
e 0 6

(18, 80] NaN 0.88000 0.44444

0 4

male (0, 18] NaN 0.00000 0.26087
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0 0

(18, 80 0.0 (9).09803 8.12500
fare (14.454,512.329]
class First Second Third
SeX  Lge
femal (0, 18] 0.909091 1.00000 0.31818
e 0 2
(18,80] 0.972973 0.91428 0.39130
6 4
male (0,18] 0.800000 0.81818 0.17857
2 1

(18,80] 0.391304 g.03030 g.19230

The result is a four-dimensional aggregation with hierarchical indices, shown in
a grid demonstrating the relationship between the values.

Additional pivot table options
The full call signature of the pivot_table method of DataFrames is as follows:

# call signature as of Pandas 0.18

DataFrame.pivot_table(data, values=None, index=None, columns=None,

aggfunc='mean’, fill_value=None,
margins=False,dropna=True,
margins_name="All")

We’ve already seen examples of the first three arguments; here we’ll take a quick lookat
the remaining ones. Two of the options, fill_value and dropna, have to do with missing
data and are fairly straightforward; we will not show examples of them here.
The aggfunc keyword controls what type of aggregation is applied, which is a mean by
default. As in the GroupBy, the aggregation specification can be a string represent-ing
one of several common choices ('sum’, 'mean’, 'count’, 'min', 'max’, etc.) or afunction that
implements an aggregation (np.sum(), min(), sum(), etc.). Additionally,it can be specified
as a dictionary mapping a column to any of the above desired options:

In[8]: titanic.pivot_table(index="'sex’, columns='class’,

aggfunc={'survived':sum, 'fare':'mean'})
Out[8]: fare survived

class First Second Third  First Second
Thirdsex
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female 106.125798 21.970121 16.118810 91.0 70.0 72.0
male  67.226127 19.741782 12.661633 45.0 17.0 47.0

Notice also here that we’ve omitted the values keyword; when you’re specifying a

mapping for aggfunc, this is determined automatically.

At times it’s useful to compute totals along each grouping. This can be done via the
margins keyword:

In[9]: titanic.pivot_table('survived', index="sex', columns='class’, margins=True)

Out[9]: class First Second Third All
sex

femal 0.96808 0.92105 0.50000 0.74203
e 5 3 0 8
male 0.36885 0.15740 0.13544 0.18890

2 7 7 8
All 0.62963 0.47282 0.24236 0.38383
0 6 3 8

Here this automatically gives us information about the class-agnostic survival rate by

gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%.The
margin label can be specified with the margins_name keyword, which defaults to "All".

Example: Birthrate Data
As a more interesting example, let’s take a look at the freely available data on births inthe
United States, provided by the Centers for Disease Control (CDC). This data can be found
at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv (this
dataset has been analyzed rather extensively by Andrew Gelman and his group; see, for
example, this blog post):

In[10]:

# shell command to download the data:

# lcurl -O
https://raw.githubusercontent.com/jakevdp/data-
CDCbirths/# master/births.csv

In[11]: births = pd.read_csv('births.csv')

Taking a look at the data, we see that it’s relatively simple—it contains the
number ofbirths grouped by date and gender:
In[12]: births.head()

Out[12]: year month day gender births
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0 1969 1 1 F 4046
1 1969 1 1 M 4440
2 1969 1 2 F 4454
3 1969 1 2 M 4548
4 1969 1 3 F 4548

We can start to understand this data a bit more by using a pivot table. Let’s add
a dec-ade column, and take a look at male and female births as a function of

decade:
In[13]:

births['decade'] = 10 * (births['year'] // 10)

births.pivot_table('births', index="'decade’, columns="'gender’, aggfunc="'sum’)

Out[13]: gender |F M
decade

1960 1753634 1846572
1970 16263075 17121550
1980 18310351 19243452
1990 19479454 20420553
2000 18229309 19106428

We immediately see that male births outnumber female births in every decade. To see
this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visual-ize
the total number of births by year (Figure 3-2; see Chapter 4 for a discussion of plotting

with Matplotlib):
In[14]:

%matplotlib inline
import as

sns.set() # use Seaborn styles

births.pivot_table('births', index="year', columns='gender’,
aggfunc="'sum’).plot()plt.ylabel('total births per year');

Page 202 of 580



2300000
gender

T

200000  — "\
M N

i
2100000
2000000
1900000

1800000

total births per year

1700000

1600000

1500000

1970 1975 1980 1985 1990 1995 2000 2005
year

Figure . Total number of US births by year and gender

With a simple pivot table and plot() method, we can immediately see the annual trend in
births by gender. By eye, it appears that over the past 50 years male births have
outnumbered female births by around 5%.

Further data exploration

Though this doesn’t necessarily relate to the pivot table, there are a few more interest-ing
features we can pull out of this dataset using the Pandas tools covered up to this point.
We must start by cleaning the data a bit, removing outliers caused by mistypeddates
(e.g., June 31st) or missing values (e.g., June 99th). One easy way to remove these all at

once is to cut outliers; we’ll do this via a robust sigma-clipping operation:1
In[15]: quartiles = np.percentile(births['births'], [25, 50, 75])
mu = quartiles[1]
sig = 0.74 * (quartiles[2] - quartiles[0])

This final line is a robust estimate of the sample mean, where the 0.74 comes from the
interquartile range of a Gaussian distribution. With this we can use the query() method
to filter out rows with births outside these values:

In[16]:

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)")

Next we set the day column to integers; previously it had been a string because some

columns in the dataset contained the value 'null":
In[17]: # set 'day’' column to integer; it originally was a string due to nulls
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births['day'] = births['day'].astype(int)

Finally, we can combine the day, month, and year to create a Date index (see “Work-ing
with Time Series” on page 188). This allows us to quickly compute the weekday

corresponding to each row:
In[18]: # create a datetime index from the year, month, day

births.index = pd.to_datetime (10000 * births.year +

100 * births.month +
births.day,
format='%Y%m%d')

births['dayofweek'] = births.index.dayofweek

Using this we can plot births by weekday for several decades (Figure 3-3):
In[19]:

import matplotlib.pyplot as
pltimport matplotlib as mpl

births.pivot_table('births', index="'dayofweek’,

columns='decade’, aggfunc="mean’).plot()
plt.gca().set_xticklabels(['Mon', 'Tues', '"Wed', 'Thurs', 'Fri', 'Sat’, 'Sun'])

decade
= 1960
- 1970
- 1980

mean births by day

3300
Mon Tues Wed Thurs Fri Sat Sun

dayofweek

plt.ylabel('mean births by day');
Figure . Average daily births by day of week and decade
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Apparently births are slightly less common on weekends than on weekdays! Note thatthe
1990s and 2000s are missing because the CDC data contains only the month of birth

starting in 1989.

Another interesting view is to plot the mean number of births by the day of the year.
Let’s first group the data by month and day separately:

In[20]:

births_by_date = births.pivot_table('births’,

[births.index.month, births.index.day])

births_by_date.head()

Oout[20]: 1
1

2
3
4
5

4009.225

4247.400
4500.900

4571.350
4603.625

Name: births, dtype: float64

The result is a multi-index over months and days. To make this easily plottable, let’s turn
these months and days into a date by associating them with a dummy year vari- able

(making sure to choose a leap year so February 29th is correctly handled!)
In[21]: births_by date.index = [pd.datetime(2012, month, day)

for (month, day) in births_by_date.index]

births_by date.head()

8ft[21]:2012-01- 4009.225

2012-01-02
2012-01-03

2012-01-04
2012-01-05

4247.400
4500.900

4571.350
4603.625

Name: births, dtype: float64

Focusing on the month and day only, we now have a time series reflecting the average
number of births by date of the year. From this, we can use the plot method to plot the

data. It reveals some interesting trends:
In[22]: # Plot the results
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fig, ax = plt.subplots(figsize=(12, 4))

Feb Mar Por May Jun Jul Aug Sep Oct Nov Dec

births_by_date.plot(ax=ax);

Figure. Average daily births by date

Lab Activity
This lab activity need to performed using Jupyter Notebook, PyCharm, or any other IDLE

# Pivot Tables

# A pivot table is a way of summarizing data in a DataFrame for a #particular purpose. It makes
heavy use of the aggregation function. A #pivot table is itself a DataFrame, where the rows
represent one variable #that you're interested in, the columns another, and the cell's some
#aggregate value. A pivot table also tends to includes marginal values as #well, which are the sums
for each column and row. This allows you to be #able to see the relationship between two variables
at just a glance.

import pandas as pd

import numpy as np

#Here we have the Times Higher Education World University Ranking dataset, #which is one of the
most

#influential university measures. Let's import the dataset and see what it #looks like

df = pd.read_csv('cwurData.csv')

df.head()

# Here we can see each institution's rank, country, quality of education, #other metrics, and overall
score.

# Let's say we want to create a new column called Rank_Level, where #institutions with world
ranking 1-100 are

# categorized as first tier and those with world ranking 101 - 200 are #second tier, ranking 201 -
300 are # third tier, after 301 is other top #universities.

# Now, you actually already have enough knowledge to do this, so why don't #you pause the video
and give it try?
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# Create a function called create_category which will operate on the first
# column in the dataframe, world_rank
def create_category(ranking):
if (ranking >= 1) & (ranking <= 100):
return "First Tier Top Unversity"
elif (ranking >= 101) & (ranking <= 200):
return "Second Tier Top Unversity"
elif (ranking >= 201) & (ranking <= 300):
return "Third Tier Top Unversity"
return "Other Top Unversity"
# Now we can apply this to a single column of data to create a new series
df['Rank_Level'] = df['world_rank'].apply(lambda x: create_category(x))
# And lets look at the result
df.head()
# A pivot table allows us to pivot out one of these columns a new column #headers and compare it
against
# another column as row indices. Let's say we want to compare rank level #versus country of the
universities
# and we want to compare in terms of overall score
# To do this, we tell Pandas we want the values to be Score, and index to #be the country and the
columns to be
# the rank levels. Then we specify that the aggregation function, and here #we'll use the NumPy
mean to get the
# average rating for universities in that country
df.pivot_table(values='score’, index='country', columns='Rank_Level', aggfunc=[np.mean]).head()
# We can see a hierarchical dataframe where the index, or rows, are by #country and the columns
have two levels, the top level indicating that the #mean value is being used and the second level
being our ranks. In this #example we only have one variable, the mean, that we are looking at, so
we #don't really need a heirarchical index.
# We notice that there are some NaN values, for example, the first row, Argentia. The NaN values
indicate that
# Argentia has only observations in the "Other Top Unversities" category
# Now, pivot tables aren't limited to one function that you might want to #apply. You can pass a
named
# parameter, aggfunc, which is a list of the different functions to apply, #and pandas will provide
you with
# the result using hierarchical column names. Let's try that same query, #but pass in the max()
function too
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean,
np.max]).head()
# So now we see we have both the mean and the max. As mentioned earlier, we #can also
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summarize the values

# within a given top level column. For instance, if we want to see an #overall average for the

country for the

# mean and we want to see the max of the max, we can indicate that we want #pandas to provide

marginal values

df.pivot_table(values='score', index="'country', columns='Rank_Level', aggfunc=[np.mean, np.max],
margins=True).head()

# A pivot table is just a multi-level dataframe, and we can access series #or cells in the dataframe in

a similar way

# as we do so for a regular dataframe.

# Let's create a new dataframe from our previous example

new_df=df.pivot_table(values='score’, index="country',columns='Rank_Level', aggfunc=[np.mean,

np.max], margins=True)

# Now let's look at the index

print(new_df.index)

# And let's look at the columns

print(new_df.columns)

# We can see the columns are hierarchical. The top level column indices #have two categories:

mean and max, and

# the lower level column indices have four categories, which are the four #rank levels. How would

we query this

# if we want to get the average scores of First Tier Top Unversity levels #in each country? We would

just need

# to make two dataframe projections, the first for the mean, then the #second for the top tier

new_df['mean']['First Tier Top Unversity'].head()

# We can see that the output is a series object which we can confirm by #printing the type.

Remember that when

# you project a single column of values out of a DataFrame you get series.

type(new_df['mean']['First Tier Top Unversity'])

# What if we want to find the country that has the maximum average score on #First Tier Top

University level?

# We can use the idxmax() function.

new_df['mean']['First Tier Top Unversity'].idxmax()

# Now, the idxmax() function isn't special for pivot tables, it's a built in function to the Series object.

# We don't have time to go over all pandas functions and attributes, and | #want to encourage you

to explore

# the API to learn more deeply what is available to you.

# If you want to achieve a different shape of your pivot table, you can do #so with the stack and

unstack

# functions. Stacking is pivoting the lowermost column index to become the #innermost row index.

Unstacking is
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# the inverse of stacking, pivoting the innermost row index to become the #lowermost column
index. An example

# will help make this clear

# Let's look at our pivot table first to refresh what it looks like

new_df.head()

# Now let's try stacking, this should move the lowermost column, so the #tiers of the university
rankings, to

# the inner most row

new_df=new_df.stack()

new_df.head()

# In the original pivot table, rank levels are the lowermost column, after stacking, rank levels
become the

# innermost index, appearing to the right after country

# Now let's try unstacking

new_df.unstack().head()

# That seems to restore our dataframe to its original shape. What do you #think would happen if
we unstacked twice in a row?

new_df.unstack().unstack().head()

# We actually end up unstacking all the way to just a single column, so a #series object is returned.
This column is just a "value", the meaning of #which is denoted by the #heirarachical index of
operation, rank, and #country.

# So that's pivot tables. This has been a pretty short description, but #they're incredibly useful when
dealing with numeric data, especially if #you're trying to summarize the data in some form. You'll
regularly be #creating new pivot tables on slices of data, whether you're exploring the #data
yourself or preparing data for others to report on. And of course, #you can pass any function you
want to the aggregate function, including those that you define yourself.

Day-04: What Is Machine Learning?

Before we take a look at the details of various machine learning methods, let’s start bylooking
at what machine learning is, and what it isn’t. Machine learning is often cate-gorized as a
subfield of artificial intelligence, but I find that categorization can often be misleading at first
brush. The study of machine learning certainly arose from research in this context, but in the
data science application of machine learning meth-ods, it's more helpful to think of machine
learning as a means of building models of data.

Fundamentally, machine learning involves building mathematical models to help understand
data. “Learning” enters the fray when we give these models tunable parameters that can be
adapted to observed data; in this way the program can be con-sidered to be “learning” from
the data. Once these models have been fit to previouslyseen data, they can be used to predict
and understand aspects of newly observed data.l'll leave to the reader the more philosophical
digression regarding the extent to which this type of mathematical, model-based “learning” is
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similar to the “learning” exhibited by the human brain.

Understanding the problem setting in machine learning is essential to using these tools
effectively, and so we will start with some broad categorizations of the types of approaches
we’ll discuss here.

Categories of Machine Learning

At the most fundamental level, machine learning can be categorized into two main
types: supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured features
of data and some label associated with the data; once this model is deter- mined, it can be
used to apply labels to new, unknown data. This is further subdivi- ded into classification tasks
and regression tasks: in classification, the labels are discrete categories, while in regression,
the labels are continuous quantities. We will see examples of both types of supervised learning
in the following section.

Unsupervised learning involves modeling the features of a dataset without reference to
any label, and is often described as “letting the dataset speak for itself.” These models
include tasks such as clustering and dimensionality reduction. Clustering algorithms

identify distinct groups of data, while dimensionality reduction algorithms search for more
succinct representations of the data. We will see examples of both types of unsupervised
learning in the following section.

In addition, there are so-called semi-supervised learning methods, which fall some- where
between supervised learning and unsupervised learning. Semi-supervised learning methods
are often useful when only incomplete labels are available.

Qualitative Examples of Machine Learning Applications

To make these ideas more concrete, let’s take a look at a few very simple examples of a machine
learning task. These examples are meant to give an intuitive, non- quantitative overview of
the types of machine learning tasks we will be looking at in this chapter. In later sections, we
will go into more depth regarding the particular models and how they are used. For a preview
of these more technical aspects, you canfind the Python source that generates the figures in
the online appendix.

Classification: Predicting discrete labels

We will first take a look at a simple classification task, in which you are given a set oflabeled
points and want to use these to classify some unlabeled points.

Imagine that we have the data shown in Figure 5-1 (the code used to generate this figure, and
all figures in this section, is available in the online appendix).
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Figure 5-1. A simple data set for classification

Here we have two-dimensional data; that is, we have two features for each point, rep-resented
by the (x,y) positions of the points on the plane. In addition, we have one of two class labels for
each point, here represented by the colors of the points. From these features and labels, we
would like to create a model that will let us decide whether a new point should be labeled
“blue” or “red.”

There are a number of possible models for such a classification task, but here we willuse an
extremely simple one. We will make the assumption that the two groups canbe separated by
drawing a straight line through the plane between them, such that points on each side of the
line fall in the same group. Here the model is a quantitativeversion of the statement “a straight
line separates the classes,” while the model param-eters are the particular numbers
describing the location and orientation of that linefor our data. The optimal values for
these model parameters are learned from thedata (this is the “learning” in machine
learning), which is often called training the model.

Figure 5-2 is a visual representation of what the trained model looks like for this data.
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Figure 5-2. A simple classification model

Now that this model has been trained, it can be generalized to new, unlabeled data. Inother
words, we can take a new set of data, draw this model line through it, andassign labels to
the new points based on this model. This stage is usually called predic-tion. See Figure 5-3.

icted Lat

Figure 5-3. Applying a classification model to new data

This is the basic idea of a classification task in machine learning, where “classifica- tion”
indicates that the data has discrete class labels. At first glance this may look fairly trivial: it
would be relatively easy to simply look at this data and draw such a discriminatory line to
accomplish this classification. A benefit of the machine learn- ing approach, however, is that it
can generalize to much larger datasets in many moredimensions.

For example, this is similar to the task of automated spam detection for email; in this
case, we might use the following features and labels:
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e feature 1, feature 2, etc. normalized counts of important words or
phrases(“Viagra,” “Nigeriant prince,” etc.)

* label—> “spam” or “not spam”

For the training set, these labels might be determined by individual inspection of a small
representative sample of emails; for the remaining emails, the label would be determined
using the model. For a suitably trained classification algorithm withenough well-
constructed features (typically thousands or millions of words or phrases), this type of
approach can be very effective. We will see an example of suchtext-based classification in “In
Depth: Naive Bayes Classification” on page 382.

Some important classification algorithms that we will discuss in more detail are Gaus-sian
naive Bayes (see “In Depth: Naive Bayes Classification” on page 382), support vector
machines (see “In-Depth: Support Vector Machines” on page 405), and ran- dom forest
classification (see “In-Depth: Decision Trees and Random Forests” on page 421).

Regression: Predicting continuous labels

In contrast with the discrete labels of a classification algorithm, we will next look at asimple
regression task in which the labels are continuous quantities.

Consider the data shown in Figure 5-4, which consists of a set of points, each with a
continuous label.
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Figure 5-4. A simple dataset for regression

As with the classification example, we have two-dimensional data; that is, there are
two features describing each data point. The color of each point represents the con-
tinuous label for that point.
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There are a number of possible regression models we might use for this type of data, but here
we will use a simple linear regression to predict the points. This simple linearregression
model assumes that if we treat the label as a third spatial dimension, we can fit a plane to the
data. This is a higher-level generalization of the well-known problem of fitting a line to data
with two coordinates.

We can visualize this setup as shown in Figure 5-5.

abel

feature 1

Figure 5-5. A three-dimensional view of the regression data

Notice that the feature 1-feature 2 plane here is the same as in the two-dimensional plot from
before; in this case, however, we have represented the labels by both color and three-
dimensional axis position. From this view, it seems reasonable that fitting aplane through
this three-dimensional data would allow us to predict the expectedlabel for any set of
input parameters. Returning to the two-dimensional projection, when we fit such a plane we
get the result shown in Figure 5-6.
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Input Data with Linear Fit

feature 2

feature 1

Figure 5-6. A representation of the regression model

This plane of fit gives us what we need to predict labels for new points. Visually, wefind the
results shown in Figure 5-7.

Unknown Data

Predicted Labels
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Figure 5-7. Applying the regression model to new data

As with the classification example, this may seem rather trivial in a low number of

dimensions. But the power of these methods is that they can be straightforwardly
applied and evaluated in the case of data with many, many features.

For example, this is similar to the task of computing the distance to galaxies observedthrough
a telescope—in this case, we might use the following features and labels:

e feature 1, feature 2, etc. — brightness of each galaxy at one of several
wavelengthsor colors

e label — distance or redshift of the galaxy

Page 215 of 580




The distances for a small number of these galaxies might be determined through an
independent set of (typically more expensive) observations. We could then estimate distances
to remaining galaxies using a suitable regression model, without the need toemploy the more
expensive observation across the entire set. In astronomy circles, this is known as the
“photometric redshift” problem.

Some important regression algorithms that we will discuss are linear regression (see “In
Depth: Linear Regression” on page 390), support vector machines (see “In-Depth:Support
Vector Machines” on page 405), and random forest regression (see “In- Depth: Decision Trees
and Random Forests” on page 421).

Clustering: Inferring labels on unlabeled data

The classification and regression illustrations we just looked at are examples of super-vised
learning algorithms, in which we are trying to build a model that will predict labels for new
data. Unsupervised learning involves models that describe data withoutreference to any
known labels.

One common case of unsupervised learning is “clustering,” in which data is automati-cally
assigned to some number of discrete groups. For example, we might have some two-
dimensional data like that shown in Figure 5-8.
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Figure 5-8. Example data for clustering

By eye, it is clear that each of these points is part of a distinct group. Given this input,a
clustering model will use the intrinsic structure of the data to determine which points are
related. Using the very fast and intuitive k-means algorithm (see “In Depth:k-Means
Clustering” on page 462), we find the clusters shown in Figure 5-9.
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k-means fits a model consisting of k cluster centers; the optimal centers are assumed to be
those that minimize the distance of each point from its assigned center. Again, this might
seem like a trivial exercise in two dimensions, but as our data becomes larger and more
complex, such clustering algorithms can be employed to extract use- ful information from the
dataset.

We will discuss the k-means algorithm in more depth in “In Depth: k-Means Cluster-ing” on
page 462. Other important clustering algorithms include Gaussian mixture models (see “In
Depth: Gaussian Mixture Models” on page 476) and spectral cluster-ing (see Scikit-Learn’s
clustering documentation).
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Figure 5-9. Data labeled with a k-means clustering model

Dimensionality reduction: Inferring structure of unlabeled data

Dimensionality reduction is another example of an unsupervised algorithm, in which labels or
other information are inferred from the structure of the dataset itself.Dimensionality
reduction is a bit more abstract than the examples we looked at before, but generally it seeks
to pull out some low-dimensional representation of datathat in some way preserves relevant
qualities of the full dataset. Different dimension-ality reduction routines measure these
relevant qualities in different ways, as we will see in “In-Depth: Manifold Learning” on page
445,

As an example of this, consider the data shown in Figure 5-10.

Visually, it is clear that there is some structure in this data: it is drawn from a one-
dimensional line that is arranged in a spiral within this two-dimensional space. In a sense, you
could say that this data is “intrinsically” only one dimensional, though thisone-dimensional
data is embedded in higher-dimensional space. A suitable dimen- sionality reduction model in
this case would be sensitive to this nonlinear embedded structure, and be able to pull out this
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lower-dimensionality representation.
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Figure 5-10. Example data for dimensionality reduction

Figure 5-11 presents a visualization of the results of the Isomap algorithm, a manifoldlearning
algorithm that does exactly this.

Learned Latent Parameter

Figure 5-11. Data with a label learned via dimensionality reduction

Notice that the colors (which represent the extracted one-dimensional latent
variable)change uniformly along the spiral, which indicates that the algorithm
did in factdetect the structure we saw by eye. As with the previous examples,
the power of
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dimensionality reduction algorithms becomes clearer in higher-dimensional cases.For
example, we might wish to visualize important relationships within a dataset that has 100 or
1,000 features. Visualizing 1,000-dimensional data is a challenge, and oneway we can make
this more manageable is to use a dimensionality reduction techni- que to reduce the data to
two or three dimensions.

Some important dimensionality reduction algorithms that we will discuss are princi- pal
component analysis (see “In Depth: Principal Component Analysis” on page 433)and various
manifold learning algorithms, including Isomap and locally linear embedding (see “In-Depth:
Manifold Learning” on page 445).

Summary

Here we have seen a few simple examples of some of the basic types of machine learn-ing
approaches. Needless to say, there are a number of important practical details thatwe have
glossed over, but [ hope this section was enough to give you a basic idea of what types of
problems machine learning approaches can solve.

In short, we saw the following:

Supervised learning

Models that can predict labels based on labeled training data
Classification

Models that predict labels as two or more discrete categories
Regression

Models that predict continuous labels
Unsupervised learning

Models that identify structure in unlabeled data
Clustering

Models that detect and identify distinct groups in the data
Dimensionality reduction

Models that detect and identify lower-dimensional structure in higher-
dimensional data

In the following sections we will go into much greater depth within these categories,and see
some more interesting examples of where these concepts can be useful.

All of the figures in the preceding discussion are generated based on actual machinelearning
computations; the code behind them can be found in the online appendix.
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Day-05: Introducing Scikit-Learn

There are several Python libraries that provide solid implementations of a range of machine
learning algorithms. One of the best known is Scikit-Learn, a package that provides efficient
versions of a large number of common algorithms. Scikit-Learn is characterized by a clean,
uniform, and streamlined API, as well as by very useful andcomplete online documentation. A
benefit of this uniformity is that once you under- stand the basic use and syntax of Scikit-
Learn for one type of model, switching to a new model or algorithm is very straightforward.

This section provides an overview of the Scikit-Learn API; a solid understanding of these API
elements will form the foundation for understanding the deeper practical discussion of
machine learning algorithms and approaches in the following chapters.

We will start by covering data representation in Scikit-Learn, followed by covering the Estimator
API, and finally go through a more interesting example of using these toolsfor exploring a set
of images of handwritten digits.

Data Representation in Scikit-Learn

Machine learning is about creating models from data: for that reason, we’ll start by discussing
how data can be represented in order to be understood by the computer. The best way to
think about data within Scikit-Learn is in terms of tables of data.

Data as table

A basic table is a two-dimensional grid of data, in which the rows represent individ- ual
elements of the dataset, and the columns represent quantities related to each of these
elements. For example, consider the Iris dataset, famously analyzed by Ronald Fisher in 1936.
We can download this dataset in the form of a Pandas DataFFrame using the Seaborn library:

In[1]: import as

iris = sns. load dataset('iris')
iris. head()

Out[1l] sepal length sepal wid petal leng petal wid specie

th th th s
0 3.5 1.4 0.2 setos
5. a
1
1 3.0 1.4 0.2 setos
4. a
9
2 3.2 1.3 0.2 setos
4. a
7
3 3.1 1.5 0.2 setos
4. a
6
4 3.6 1.4 0.2 setos
5. a
0

Here each row of the data refers to a single observed flower, and the number of rows is the
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total number of flowers in the dataset. In general, we will refer to the rows of the matrix as
samples, and the number of rows asn_samples.

Likewise, each column of the data refers to a particular quantitative piece of informa-tion that
describes each sample. In general, we will refer to the columns of the matrixas features, and
the number of columns asn_features.

Features matrix

This table layout makes clear that the information can be thought of as a two- dimensional
numerical array or matrix, which we will call the features matrix. By con-vention, this features
matrix is often stored in a variable named X. The features matrixis assumed to be two-
dimensional, with shape [n_samples, n_features], and is most often contained in a NumPy
array or a Pandas DataFrame, though some Scikit- Learn models also accept SciPy sparse
matrices.

The samples (i.e., rows) always refer to the individual objects described by the dataset.For
example, the sample might be a flower, a person, a document, an image, a sound file, a video,
an astronomical object, or anything else you can describe with a set of quantitative
measurements.

The features (i.e., columns) always refer to the distinct observations that describe each
sample in a quantitative manner. Features are generally real-valued, but may be Boolean or
discrete-valued in some cases.

Target array

In addition to the feature matrix X, we also generally work with a label or target array,which
by convention we will usually call y. The target array is usually one dimen- sional, with length
n_samples, and is generally contained in a NumPy array or Pan- das Series. The target array
may have continuous numerical values, or discrete classes/labels. While some Scikit-Learn
estimators do handle multiple target values inthe form of a two-dimensional [n_samples,
n_targets] targetarray, we will pri- marily be working with the common case of a one-
dimensional target array.

Often one point of confusion is how the target array differs from the other features columns.
The distinguishing feature of the target array is that it is usually the quantitywe want to
predict from the data: in statistical terms, it is the dependent variable. Forexample, in the
preceding data we may wish to construct a model that can predict the species of flower based
on the other measurements; in this case, the species columnwould be considered the feature.

With this target array in mind, we can use Seaborn (discussed earlier in “Visualiza-tion with
Seaborn” on page 311) to conveniently visualize the data (see Figure 5-12):

In[2]: %matplotlib inline
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import seaborn as sns; sns. set()
sns. pairplot (iris, hue='species', size=1.5);
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Figure 5-12. A visualization of the Iris dataset

For use in Scikit-Learn, we will extract the features matrix and target array from the
DataFrame, which we can do using some of the Pandas DataFrame operations dis- cussed in
Chapter 3:

In[3]: X iris = iris.drop('species', axis=1)
X iris. shape

Out[3]: (150, 4)

In[4]: vy iris = iris['species']
y iris. shape

Out[4]: (150,)

To summarize, the expected layout of features and target values is visualized in
Figure 5-13.
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n_features —

ples
ples

~—— n_sam
~—— n_sam

Figure 5-13. Scikit-Learn’s data layout

With this data properly formatted, we can move on to consider the estimator API ofScikit-

Learn.

Scikit-Learn’s Estimator AP

The Scikit-Learn API is designed with the following guiding principles in mind, as
outlined in the Scikit-Learn API paper:

Consistency

All objects share a common interface drawn from a limited set of methods,
withconsistent documentation.

Inspection

All specified parameter values are exposed as public attributes.
Limited object hierarchy
Only algorithms are represented by Python classes; datasets are represented in

standard formats (NumPy arrays, Pandas DatalFrames, SciPy sparse matrices)
andparameter names use standard Python strings.

Composition

Many machine learning tasks can be expressed as sequences of more
fundamen-tal algorithms, and Scikit-Learn makes use of this wherever possible.

Sensible defaults

When models require user-specified parameters, the library defines an
appropri- ate default value.

In practice, these principles make Scikit-Learn very easy to use, once the basic princi-ples are
understood. Every machine learning algorithm in Scikit-Learn is imple- mented via the
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Estimator API, which provides a consistent interface for a wide range of machine learning
applications.

Basics of the API

Most commonly, the steps in using the Scikit-Learn estimator API are as follows (we
will step through a handful of detailed examples in the sections that follow):

1. Choose a class of model by importing the appropriate estimator class from Scikit-
Learn.
2. Choose model hyperparameters by instantiating this class with desired values.

3. Arrange data into a features matrix and target vector following the
discussionfrom before.

4. Fit the model to your data by calling the fit () method of the model instance.
5. Apply the model to new data:

. For supervised learning, often we predict labels for unknown data using the
predict () method.

* For unsupervised learning, we often transform or infer properties of the
datausing the transform() orpredict () method.

We will now step through several simple examples of applying supervised and unsu- pervised
learning methods.

Supervised learning example: Simple linear regression

As an example of this process, let’s consider a simple linear regression—that is, the common
case of fitting a line to x, y data. We will us¢ the)following simple data for our regression
example (Figure 5-14):

In[5]: import as
import as
rng = np. random. RandomState (42)
x = 10 * rng. rand (50)

y =2 * x — 1 + rng. randn (50)
plt. scatter (x, y);
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Figure 5-14. Data for linear regression

With this data in place, we can use the recipe outlined earlier. Let’s walk through theprocess:

1. Choose aclass of model.

In Scikit-Learn, every class of model is represented by a Python class. So, for example, if we
would like to compute a simple linear regression model, we can import the linear
regression class:

In[6]: from import LinearRegression
Note that other, more general linear regression models exist as well; you can readmore
about them in the sklearn. linear model module documentation.
2. Choose model hyperparameters.
An important point is that a class of model is not the same as an instance of a model.
Once we have decided on our model class, there are still some options open to us.
Depending on the model class we are working with, we might need to answerone or
more questions like the following:
* Would we like to fit for the offset (i.e., intercept)?
* Would we like the model to be normalized?
* Would we like to preprocess our features to add model flexibility?
¢ What degree of regularization would we like to use in our model?
¢ How many model components would we like to use?

These are examples of the important choices that must be made once the modelclass is
selected. These choices are often represented as hyperparameters, or parameters that
must be set before the model is fit to data. In Scikit-Learn, we choose hyperparameters
by passing values at model instantiation. We will explore how you can quantitatively
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motivate the choice of hyperparameters in “Hyperparameters and Model Validation” on
page 359.

For our linear regression example, we can instantiate the LinearRegression class and
specify that we would like to fit the intercept using the fit_inter cept
hyperparameter:

In[7]: model = LinearRegression(fit intercept=True)model

Out[7]: LinearRegression(copy X=True, fit intercept=True, n_jobs=1,
normalize=False)

Keep in mind that when the model is instantiated, the only action is the storingof these
hyperparameter values. In particular, we have not yet applied the model to any data:
the Scikit-Learn API makes very clear the distinctionbetween choice of model and
application of model to data.

3. Arrange data into a features matrix and target vector.

Previously we detailed the Scikit-Learn data representation, which requires a two-
dimensional features matrix and a one-dimensional target array. Here our target variable y
is already in the correct form (a length-n_samples array), but weneed to massage the data x
to make it a matrix of size [n_samples, n_features].In this case, this amounts to a simple
reshaping of the one-dimensional array:

In[8]: X = x[:, np.newaxis]X. shape

Out[8]: (50, 1)

4. Fit the model to your data.

Now it is time to apply our model to data. This can be done with the fit()
method of the model:

In[9]: model. fit (X, y)Out[9]:
LinearRegression(copy X=True, fit intercept=True, n_jobs=1,

normalize=False)

This fit() command causes a number of model-dependent internal computa- tions to
take place, and the results of these computations are stored in model- specific attributes
that the user can explore. In Scikit-Learn, by convention all model parameters that were
learned during the fit () process have trailing underscores; for example, in this linear
model, we have the following:

In[10]: model. coef
Out[10]: array ([ 1.9776566])

In[11]: model. intercept
Out[11]: -0.90331072553111635
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These two parameters represent the slope and intercept of the simple linear fit
to the data. Comparing to the data definition, we see that they are very close to
the input slope of 2 and intercept of -1.

One question that frequently comes up regards the uncertainty in such internal
model parameters. In general, Scikit-Learn does not provide tools to draw con-
clusions from internal model parameters themselves: interpreting model
parame- ters is much more a statistical modeling question than a machine
learning question. Machine learning rather focuses on what the model predicts.
If you would like to dive into the meaning of fit parameters within the model,
other tools are available, including the StatsModels Python package.

Predict labels for unknown data.

Once the model is trained, the main task of supervised machine learning is to
evaluate it based on what it says about new data that was not part of the
training set. In Scikit-Learn, we can do this using the predict () method. For
the sake of this example, our “new data” will be a grid of x values, and we will
ask what y values the model predicts:

Inl[12]: xfit = np. linspace(-1, 11)
As before, we need to coerce these x values into a [n_samples, n features]

features matrix, after which we can feed it to the model:

In[13]: Xfit = xfit[:, np. newaxis]
yfit = model. predict (Xfit)

Finally, let’s visualize the results by plotting first the raw data, and then this
model fit (Figure 5-15):

In[14]: plt. scatter (x, y)

plt.plot (xfit, yfit);

Typically one evaluates the efficacy of the model by comparing its results to some
known baseline, as we will see in the next example.
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Figure 5-15. A simple linear regression fit to the data

Supervised learning example: Iris classification

Let’s take a look at another example of this process, using the Iris dataset we discussedearlier.
Our question will be this: given a model trained on a portion of the Iris data, how well can we
predict the remaining labels?

For this task, we will use an extremely simple generative model known as Gaussian naive
Bayes, which proceeds by assuming each class is drawn from an axis-aligned Gaussian
distribution (see “In Depth: Naive Bayes Classification” on page 382 for more details). Because
itis so fast and has no hyperparameters to choose, Gaussian naive Bayes is often a good
model to use as a baseline classification, before you explore whether improvements can be
found through more sophisticated models.

We would like to evaluate the model on data it has not seen before, and so we will split the
data into a training set and a testing set. This could be done by hand, but it ismore convenient
touse the train_test_split utility function:

In[15]: from import train_test_split
Xtrain, Xtest, ytrain, ytest = train test split(X iris, y iris,
random state=1)

With the data arranged, we can follow our recipe to predict the labels:

In[16]: from import GaussianNB # 1. choose model class
model = GaussianNB () # 2. instantiate model
model. fit (Xtrain, ytrain) # 3. fit model to data
y model = model. predict (Xtest) # 4. predict on new data

Finally, we can use the accuracy_score utility to see the fraction of predicted labelsthat
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match their true value:
In[17]: from import accuracy_score
accuracy score(ytest, y model)

Out[17]: 0.97368421052631582

With an accuracy topping 97%, we see that even this very naive classification algo-
rithm is effective for this particular dataset!

Unsupervised learning example: Iris dimensionality

As an example of an unsupervised learning problem, let’s take a look at reducing the
dimensionality of the Iris data so as to more easily visualize it. Recall that the Iris datais four
dimensional: there are four features recorded for each sample.

The task of dimensionality reduction is to ask whether there is a suitable lower- dimensional
representation that retains the essential features of the data. Often dimensionality reduction
is used as an aid to visualizing data; after all, it is much eas-ier to plot data in two dimensions
than in four dimensions or higher!

Here we will use principal component analysis (PCA; see “In Depth: Principal Com- ponent
Analysis” on page 433), which is a fast linear dimensionality reduction techni-que. We will ask
the model to return two components—that is, a two-dimensional representation of the data.

Following the sequence of steps outlined earlier, we have:

In[18]:

from import PCA # 1. Choose the model class

model = PCA(n_components=2) # 2. Instantiate the model with hyperparameters
model. fit (X_iris) # 3. Fit to data. Notice y is not specified!

X 2D = model. transform(X iris) # 4. Transform the data to two dimensions

Now let’s plot the results. A quick way to do this is to insert the results into the origi-
nal Iris DataFrame, and use Seaborn’s Implot to show the results (Figure 5-16):

In[19]: iris['PCAL'] = X 2D[:, 0]
iris['PCA2'] = X 2D[:, 1]
sns. Implot ("PCA1", "PCA2", hue='species', data=iris, fit reg=False);

We see that in the two-dimensional representation, the species are fairly well separa- ted,
even though the PCA algorithm had no knowledge of the species labels! This indicates to us
that a relatively straightforward classification will probably be effectiveon the dataset, as we
saw before.
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Figure 5-16. The Iris data projected to two dimensions

Unsupervised learning: Iris clustering

Let’s next look at applying clustering to the Iris data. A clustering algorithm attemptsto find
distinct groups of data without reference to any labels. Here we will use a powerful clustering
method called a Gaussian mixture model (GMM), discussed in more detail in “In Depth:
Gaussian Mixture Models” on page 476. A GMM attempts to model the data as a collection of
Gaussian blobs.

We can fit the Gaussian mixture model as follows:
In[20]:
from sklearn.mixture import GMM # 1. Choose the model class
model = GMM(n_components=3,

covariance_type='full') # 2. Instantiate the model w/ hyperparameters
model. fit (X_iris) # 3. Fit to data. Notice y is not specified!
y_gmm = model.predict(X iris) # 4. Determine cluster labels

As before, we will add the cluster label to the Iris DataFrame and use Seaborn to
plotthe results (Figure 5-17):

In[21]:

iris['cluster'] = y gmm

sns. Implot ("PCA1", "PCA2", data=iris, hue='species',
col="cluster', fit reg=False);

By splitting the data by cluster number, we see exactly how well the GMM algorithmhas
recovered the underlying label: the setosa species is separated perfectly within cluster 0,
while there remains a small amount of mixing between versicolor and vir- ginica. This means
that even without an expert to tell us the species labels of the indi-vidual flowers, the
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measurements of these flowers are distinct enough that we could automatically identify the
presence of these different groups of species with a simple clustering algorithm! This sort of
algorithm might further give experts in the fieldclues as to the relationship between the
samples they are observing.

FCAZ
.
'

Figure 5-17. k-means clusters within the Iris data

Application: Exploring Handwritten Digits

To demonstrate these principles on a more interesting problem, let’s consider one piece of the
optical character recognition problem: the identification of handwritten digits. In the wild,
this problem involves both locating and identifying characters in an image. Here we’ll take a
shortcut and use Scikit-Learn’s set of preformatted digits,which is built into the library.

Loading and visualizing the digits data

We'll use Scikit-Learn’s data access interface and take a look at this data:

In[22]: from import load_digits
digits = load digits()
digits. images. shape

Out[22]: (1797, 8, 8)

The images data is a three-dimensional array: 1,797 samples, each consisting of an 8x8 grid of
pixels. Let’s visualize the first hundred of these (Figure 5-18):

In[23]: import as

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict (hspace=0. 1, wspace=0.1))
for i, ax in enumerate (axes. flat) :

ax. imshow(digits. images[i], cmap='binary', interpolation='nearest')
ax. text (0. 05, 0.05, str(digits. targetlil),

transform=ax. transAxes, color='green')
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Figure 5-18. The handwritten digits data; each sample is represented by one 8x8 grid of
pixels

In order to work with this data within Scikit-Learn, we need a two-dimensional, [n_samples,
n_features] representation. We can accomplish this by treating each pixel in the image as a
feature—that is, by flattening out the pixel arrays so that we have a length-64 array of pixel
values representing each digit. Additionally, we need the target array, which gives the
previously determined label for each digit. These twoquantities are built into the digits
dataset under the data and target attributes,respectively:

In[24]: X = digits. data
X. shape

Out[24]: (1797, 64)

In[25]: y = digits. target
y. shape

out[25]: (1797,)

We see here that there are 1,797 samples and 64 features.

Unsupervised learning: Dimensionality reduction

We’d like to visualize our points within the 64-dimensional parameter space, but it’s difficult
to effectively visualize points in such a high-dimensional space. Instead we'llreduce the
dimensions to 2, using an unsupervised method. Here, we'll make use of a manifold learning
algorithm called Isomap (see “In-Depth: Manifold Learning” onpage 445), and transform the
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data to two dimensions:

In[26]: from sklearn.manifold import Isomap
iso = Isomap(n components=2)
iso. fit(digits. data)
data projected = iso. transform(digits. data)
data projected. shape

Out[26]: (1797, 2)

We see that the projected data is now two-dimensional. Let’s plot this data to see if
wecan learn anything from its structure (Figure 5-19):

In[27]: plt. scatter(data projected[:, 0], data projected[:, 1], c=digits. target
edgecolor="none', alpha=0.5
cmap=plt. cm. get cmap ('spectral', 10))

plt. colorbar (label="'digit label', ticks=range(10))
plt.clim(-0.5, 9.5);
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Figure 5-19. An Isomap embedding of the digits data

This plot gives us some good intuition into how well various numbers are separatedin the
larger 64-dimensional space. For example, zeros (in black) and ones (in purple)have very
little overlap in parameter space. Intuitively, this makes sense: a zero is empty in the middle
of the image, while a one will generally have ink in the middle. On the other hand, there seems
to be a more or less continuous spectrum between ones and fours: we can understand this by
realizing that some people draw ones with “hats” on them, which cause them to look similar to
fours.

Overall, however, the different groups appear to be fairly well separated in the param-eter
space: this tells us that even a very straightforward supervised classification algo-rithm
should perform suitably on this data. Let’s give it a try.
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Classification on digits

Let’s apply a classification algorithm to the digits. As with the Iris data previously, we
will split the data into a training and test set, and fit a Gaussian naive Bayes model:

In[28]: Xtrain, Xtest, ytrain, ytest = train test split(X, y, random state=0)

In[29]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB ()

model. fit (Xtrain, ytrain)
y model = model. predict (Xtest)

Now that we have predicted our model, we can gauge its accuracy by comparing the true
values of the test set to the predictions:

In[30]: from sklearn.metrics import accuracy score
accuracy score (ytest, y model)

Out[30]: 0.83333333333333337

With even this extremely simple model, we find about 80% accuracy for classificationof the
digits! However, this single number doesn’t tell us where we’ve gone wrong—one nice way to
do this is to use the confusion matrix, which we can compute with Scikit-Learn and plot with
Seaborn (Figure 5-20):

In[31]: from sklearn.metrics import confusion matrix

mat = confusion matrix(ytest, y model)

sns. heatmap (mat, square=True, annot=True, cbar=False)
plt. xlabel ('predicted value')

plt.ylabel ('true value');

true value

predicted value

Figure 5-20. A confusion matrix showing the frequency of misclassifications by our
classifier
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This shows us where the mislabeled points tend to be: for example, a large number oftwos
here are misclassified as either ones or eights. Another way to gain intuition intothe
characteristics of the model is to plot the inputs again, with their predicted labels. We’ll use
green for correct labels, and red for incorrect labels (Figure 5-21):

In[32]:

fig, axes = plt. subplots (10,

10, figsize=(8, 8),

subplot kw={'xticks

for i, ax in enumerate (axes. flat):

",
gridspec kw=dict (hspace=0. 1,

"yticks

SRS

wspace=0. 1))

ax. imshow(digits. images[i],
ax. text (0. 05, 0.05, str(y mo

cmap='binary', interpolation='nearest')

del[il]),

transform=ax. transAxes,

color='green’

if (ytest[i] == y model[i]) else

"red")
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Figure 5-21. Data showing correct (green) and incorrect (red) labels; for a color versionof
this plot, see the online appendix

Examining this subset of the data, we can gain insight regarding where the algorithm might not
be performing optimally. To go beyond our 80% classification rate, we might move to a more
sophisticated algorithm, such as support vector machines (see “In-Depth: Support Vector
Machines” on page 405) or random forests (see ‘I
Forests” on page 421), or another classification approach.
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Week 4- Data visualization using Matplotlib

Day-01: Data visualization using Matplotlib

Introduction and brief histroy

Matplotlib is a multiplatform data visualization library built on NumPy arrays, and designed
to work with the broader SciPy stack. It was conceived by John Hunter in 2002, originally
as a patch to IPython for enabling interactive MATLAB-style plottingvia gnuplot from the
IPython command line. IPython’s creator, Fernando Perez, was at the time scrambling to
finish his PhD, and let John know he wouldn’t have time to review the patch for several
months. John took this as a cue to set out on his own, andthe Matplotlib package was born,
with version 0.1 released in 2003. It received an early boost when it was adopted as the
plotting package of choice of the Space Tele- scope Science Institute (the folks behind the
Hubble Telescope), which financially supported Matplotlib’s development and greatly
expanded its capabilities.

One of Matplotlib’s most important features is its ability to play well with many operating
systems and graphics backends. Matplotlib supports dozens of backends and output types,
which means you can count on it to work regardless of which operating system you are
using or which output format you wish. This cross-platform, everything-to-everyone
approach has been one of the great strengths of Matplotlib. It has led to a large userbase,
which in turn has led to an active developer base and Mat-plotlib’s powerful tools and
ubiquity within the scientific Python world.

Importing  matplotlib

Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we willuse
some standard shorthands for Matplotlib imports:

In[1]: import as
import as

The pltinterface is what we will use most often, as we’ll see throughout this chapter.

Setting Styles

We will use the plt.styledirective to choose appropriate aesthetic styles for our fig-ures.
Here we will set the classic style, which ensures that the plots we create use the classic
Matplotlib style:

In[2]: plt.style.use('classic')
show() or No show()? How to Display Your Plots

A visualization you can’t see won’t be of much use, but just how you view your Mat-
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plotlib plots depends on the context. The best use of Matplotlib differs depending on
how you are using it; roughly, the three applicable contexts are using Matplotlib in a
script, in an IPython terminal, or in an IPython notebook.

Plotting from a script

If you are using Matplotlib from within a script, the function plt.show() is your friend.
plt.show() starts an event loop, looks for all currently active figure objects,and opens
one or more interactive windows that display your figure or figures.

So, for example, you may have a file called myplot.py containing the following:

import as pltimport
as

x = np.linspace(0, 10, 100)
plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))
plt.show()

You can then run this script from the command-line prompt, which will result in a window
opening with your figure displayed:

$ python myplot.py

The plt.show() command does a lot under the hood, as it must interact with your system’s
interactive graphical backend. The details of this operation can vary greatly from system
to system and even installation to installation, but Matplotlib does its best to hide all these
details from you.

One thing to be aware of: the plt.show() command should be used only once per Python
session, and is most often seen at the very end of the script. Multiple show() commands
can lead to unpredictable backend-dependent behavior, and should mostly be avoided.

Plotting from an IPython shell

It can be very convenient to use Matplotlib interactively within an IPython shell (see
Chapter 1). IPython is built to work well with Matplotlib if you specify Matplotlib mode. To
enable this mode, you can use the %matplotlibmagic command after start-ing ipython:

In [1]: %matplotlib
Using matplotlib backend: TkAgg

Page 237 of 580



In[2]:import as

At this point, any plt plot command will cause a figure window to open, and further
commands can be run to update the plot. Some changes (such as modifying proper- ties
of lines that are already drawn) will not draw automatically; to force an update, use
plt.draw(). Using plt.show()in Matplotlib mode is not required.

Plotting from an IPython notebook

Plotting interactively within an IPython notebook can be done with the %matplotlib
command, and works in a similar way to the IPython shell. In the IPython notebook, you
also have the option of embedding graphics directly in the notebook, with two possible
options:

¢ %matplotlib notebook will lead to interactive plots embedded within thenotebook

e %matplotlib inline will lead to static images of your plot embedded in the
notebook

For this book, we will generally opt for %matplotlib inline:
In[3]: %matplotlib inline

After you run this command (it needs to be done only once per kernel/session), any cell
within the notebook that creates a plot will embed a PNG image of the resulting graphic
(Figure 4-1):

In[4]: import as
x = np.linspace(0, 10, 100)
Saving Figures to File

One nice feature of Matplotlib is the ability to save figures in a wide variety of for- mats.
You can save a figure using the savefig() command. For example, to save the previous
figure as a PNG file, you can run this:

In[5]: fig.savefig('my_figure.png')

We now have a file called my_figure.png in the current working directory:
In[6]: !ls -lh my_figure.png
-rw-r--r-- 1 jakevdp staff 16K Aug 11 10:59 my_figure.png

To confirm that it contains what we think it contains, let’s use the IPython Image
object to display the contents of this file .
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In[7]: from import Image
Image('my_figure.png')
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Figure. PNG rendering of the basic plot

In savefig(), the file format is inferred from the extension of the given filename.
Depending on what backends you have installed, many different file formats are
available. You can find the list of supported file types for your system by using the
following method of the figure canvasobject:

In[8]: fig.canvas.get_supported_filetypes()Out[8]:
{'eps': 'Encapsulated Postscript’,
'ipeg': 'Joint Photographic Experts Group','jpg":

'Joint Photographic Experts Group', 'pdf":
'Portable Document Format',

'pgf': 'PGF code for LaTeX',

'png': 'Portable Network Graphics','ps'":
'Postscript’,

'raw': 'Raw RGBA bitmap', 'rgba":
'Raw RGBA bitmap/',

'svg': 'Scalable Vector Graphics', 'svgz":
'Scalable Vector Graphics','tif': 'Tagged
Image File Format', 'tiff": 'Tagged Image
File Format'}

Note that when saving your figure, it’s not necessary to use plt.show() or related
commands discussed earlier.
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Two Interfaces for the Price of One

A potentially confusing feature of Matplotlib is its dual interfaces: a convenient MATLAB-
style state-based interface, and a more powerful object-oriented interface. We’ll quickly
highlight the differences between the two here.

MATLAB-style interface

Matplotlib was originally written as a Python alternative for MATLAB users, and much of
its syntax reflects that fact. The MATLAB-style tools are contained in the pyplot (plt)
interface. For example, the following code will probably look quite familiar to MATLAB
users (Figure ):

In[9]: plt.figure() # create a plot figure

# create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

# create the second panel and set current axis

plt.subplot(2, 1, 2) plt.plot(x,np.cos(x));

2 4 & 8 10

Figure. Subplots using the MATLAB-style interface

It’s important to note that this interface is stateful: it keeps track of the “current” figure
and axes, which are where all pltcommands are applied. You can get a reference to

these using the plt.gcf() (get current figure) and plt.gca() (get current axes) routines.

While this stateful interface is fast and convenient for simple plots, it is easy to run into
problems. For example, once the second panel is created, how can we go back and add
something to the first? This is possible within the MATLAB-style interface, but a bit
clunky. Fortunately, there is a better way.
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Object-oriented interface

The object-oriented interface is available for these more complicated situations, and for
when you want more control over your figure. Rather than depending on some notion of
an “active” figure or axes, in the object-oriented interface the plotting func-tions are
methods of explicit Figure and Axes objects. To re-create the previous plot using this style
of plotting, you might do the following

In[10]: # First create a grid of plots
# ax will be an array of two Axes objects

fig, ax = plt.subplots(2)

# Call plot() method on the appropriate object
ax[0].plot(x, np.sin(x))
ax[1].plot(x, np.cos(x));
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Figure. Subplots using the object-oriented interface

For more simple plots, the choice of which style to use is largely a matter of prefer- ence,
but the object-oriented approach can become a necessity as plots become more
complicated. Throughout this chapter, we will switch between the MATLAB-style and
object-oriented interfaces, depending on what is most convenient. In most cases, the
difference is as small as switching plt.plot() to ax.plot(), but there are a few gotchas that we
will highlight as they come up in the following sections.

Simple Line Plots

Perhaps the simplest of all plots is the visualization of a single function y = f x . Hetewe
will take a first look at creating a simple plot of this type. As with all the followingsections,
we’ll start by setting up the notebook for plotting and importing the func- tions we will
use:
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In[1]: %matplotlib inline

import as
plt.style.use('seaborn-whitegrid')import
as

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest form, a
figure and axes can be created as follows (Figure 4-5):

In[2]: fig = plt.figure()ax =
plt.axes()

08
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0z

00
0o 0z 04 06 08 10

Figure. An empty gridded axes

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a single
container that contains all the objects representing axes, graphics, text, and labels. The
axes (an instance of the class plt.Axes) is what we see above: a boundingbox with ticks
and labels, which will eventually contain the plot elements that make up our
visualization. Throughout this book, we’ll commonly use the variable name fig to refer to
a figure instance, and ax to refer to an axes instance or group of axes instances.

Once we have created an axes, we can use the ax.plot function to plot some data. Let’s
start with a simple sinusoid .

In[3]: fig = plt.figure()ax
= plt.axes()

x = np.linspace(0, 10,
1000)ax.plot(x, np.sin(x));

In[4]: plt.plot(x, np.sin(x));
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Figure . Over-plotting multiple lines

That’s all there is to plotting simple functions in Matplotlib! We’ll now dive into somemore
details about how to control the appearance of the axes and lines.

Adjusting the Plot: Line Colors and Styles

The first adjustment you might wish to make to a plot is to control the line colors and
styles. The plt.plot() function takes additional arguments that can be used to spec-ify
these. To adjust the color, you can use the color keyword, which accepts a string

argument representing virtually any imaginable color. The color can be specified in a

variety of ways (Figure :
In[6]:
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plt.plot(x, np.sin(x - 0), color="blue")
plt.plot(x, np.sin(x - 1), color="g')
plt.plot(x, np.sin(x - 2), color="0.75")
plt.plot(x, np.sin(x - 3), color="#FFDD44")

# specify color by name

# short color code (rgbcmyk)

# Grayscale between 0 and 1

# Hex code (RRGGBB from 00 to

FF)plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1

10
05|\

0o

plt.plot(x, np.sin(x - 5), color="chartreuse'); # all HTML color names

supported

Figure . Controlling the color of plot elements

If no color is specified, Matplotlib will automatically cycle through a set of default

colors for multiple lines.

Similarly, you can adjust the line style using the linestylekeyword (Figure 4-10):

In[7]: plt.plot(x, x + 0, linestyle="solid")

plt.plot(x, x + 1, linestyle='dashed")
plt.plot(x, x + 2, linestyle="dashdot')
plt.plot(x, x + 3, linestyle='dotted');

# For short, you can use the following

codes:plt.plot(x, x + 4, linestyle="-") # solid
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plt.plot(x, x + 5, linestyle="--") # dashed
plt.plot(x, x + 6, linestyle='"-.") # dashdot
plt.plot(x, x + 7, linestyle=""); # dotted

Figure . Example of various line styles

If you would like to be extremely terse, these linestyleand colorcodes can be com-bined
into a single nonkeyword argument to the plt.plot()function (Figure) :

In[8]: plt.plot(x, x + 0, '-g') # solid green
plt.plot(x, x + 1, '--c') # dashed cyan
plt.plot(x, x + 2, '-.k') # dashdot black
plt.plot(x, x + 3, ":r'); # dotted red
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Figure . Controlling colors and styles with the shorthand syntax

These single-character color codes reflect the standard abbreviations in the RGB

(Red/Green/Blue) and CMYK (Cyan/Magenta/Yellow/blacK) color systems, com- monly
used for digital color graphics.

There are many other keyword arguments that can be used to fine-tune the appear- ance
of the plot; for more details, I'd suggest viewing the docstring of the plt.plot()function
using IPython’s help tools (see “Help and Documentation in IPython” ).

Adjusting the Plot: Axes Limits

Matplotlib does a decent job of choosing default axes limits for your plot, but some-

times it’s nice to have finer control. The most basic way to adjust axis limits is to use the
plt.xlim()and plt.ylim()methods (Figure 4-12):

In[9]: plt.plot(x, np.sin(x))

Page 245 of 580




plt.xlim(-1, 11)
plt.ylim(-1.5, 1.5);

15

10

05

a 2 4 [ 8 10

Figure 4-12. Example of setting axis limits

If for some reason you’d like either axis to be displayed in reverse, you can simply
reverse the order of the arguments (Figure ):

In[10]: plt.plot(x, np.sin(x))
plt.xlim(10, 0)
plt.ylim(1.2,-1.2);

0o

Figure . Example of reversing the y-axis

A useful related method is plt.axis() (note here the potential confusion between
axes with an e, and axis with an i). The plt.axis() method allows you to set the x
and vy limits with a single call, by passing a list that specifies [xmin, xmax, ymin,
ymax]

In[11]: plt.plot(x, np.sin(x))
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plt.axis([-1, 11, -1.5, 1.5]);

a 2 4 [ 8 10

Figure .Setting the axis limits with plt.axis

The plt.axis()method goes even beyond this, allowing you to do things like auto-
matically tighten the bounds around the current plot (Figure 4-15):

In[12]: plt.plot(x, np.sin(x))
plt.axis('tight");

10
os/
0o
05
-1.0
0 2 4 6 ] 10

Figure . Example of a “tight” layout

It allows even higher-level specifications, such as ensuring an equal aspect ratio sothat
on your screen, one unit in xis equal to one unit in y(Figure) :
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In[13]: plt.plot(x, np.sin(x))
plt.axis('equal’);

Figure . Example of an “equal” layout, with units matched to the output resolution

For more information on axis limits and the other capabilities of the plt.axis()
method, refer to the plt.axis()docstring.

Labeling Plots

As the last piece of this section, we’ll briefly look at the labeling of plots: titles,
axislabels, and simple legends.

Titles and axis labels are the simplest such labels—there are methods that can be usedto
quickly set them .

In[14]: plt.plot(x, np.sin(x))
plt.title("A Sine Curve")

plt.xlabel("x")
plt.ylabel("sin(x)");
. A Sine Curve
s
£
05
10, 5 4 6 8 o

Figure . Examples of axis labels and title
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You can adjust the position, size, and style of these labels using optional arguments tothe
function. For more information, see the Matplotlib documentation and the doc- strings of
each of these functions.

When multiple lines are being shown within a single axes, it can be useful to create a plot
legend that labels each line type. Again, Matplotlib has a built-in way of quickly creating
such a legend. It is done via the (you guessed it) plt.legend() method. Though there are
several valid ways of using this, | find it easiest to specify the label of each line using the
labelkeyword of the plot function (Figure ):

In[15]: plt.plot(x, np.sin(x), '-g', label="sin(x)')

plt.plot(x, np.cos(x), :b', label="'cos(x)")
plt.axis('equal')

plt.legend();

3 —— sin(x)

cos(x)
2

-2

o 2 4 i) B 10

Figure . Plot legend example

As you can see, the plt.legend()function keeps track of the line style and color, and
matches these with the correct label. More information on specifying and formatting plot
legends can be found in the plt.legend() docstring;
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Matplotlib Gotchas

While most plt functions translate directly to ax methods (such as plt.plot() -
ax.plot (), plt.legend() - ax.legend(), etc.), this is not the case for all com-
mands. In particular, functions to set limits, labels, and titles are slightly modified.
For transitioning between MATLAB-style functions and object-oriented methods,
make the following changes:

e plt.xlabel ) - ax.set_xlabel()
e plt.ylabel () - ax.set ylabel()
e plt.xlim() > ax.set xlim()

e plt.ylim() > ax.set ylim()

e plt. title() > ax.set_title()

In the object-oriented interface to plotting, rather than calling these functions indi-
vidually, it is often more convenient to use the ax. set () method to set all these prop-
erties at once (Figure 4-19):

In[16]: ax = plt.axes()

ax. plot (x, np.sin(x))
ax. set (x1im=(0, 10), ylim=(-2, 2),

xlabel="x", ylabel='sin(x)',
title='A Simple Plot');

A Simple Plot
20

sin{x)
o

Simple Scatter Plots

Another commonly used plot type is the simple scatter plot, a close cousin of the line
plot. Instead of points being joined by line segments, here the points are represented
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individually with a dot, circle, or other shape. We'll start by setting up the notebook for
plotting and importing the functions we will use:

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-
whitegrid')import as

Scatter Plots with plt.plot

In the previous section, we looked at plt.plot/ax.plotto produce line plots. It turnsout
that this same function can produce scatter plots as well (Figure ):

In[2]: x = np.linspace(0, 10, 30)
y = np.sin(x)

plt.plot(x, y, ‘o', color="black’);

0oy .

Figure . Scatter plot example

The third argument in the function call is a character that represents the type of sym- bol
used for the plotting. Just as you can specify options such as '-'and '--'to con-trol the line
style, the marker style has its own set of short string codes. The full list ofavailable
symbols can be seen in the documentation of plt.plot, or in Matplotlib’s online
documentation. Most of the possibilities are fairly intuitive, and we’ll show a number of
the more common ones here (Figure ):

In[3]: rng = np.random.RandomState(0)

for markerin ['0', "', "', ', '+, V', ', <L S s ]

Page 251 of 580



plt.plot(rng.rand(5), rng.rand(5), marker,
label="marker="{0}".format(mark

er))

plt.legend(numpoints
=1) plt.xlim(0, 1.8);

10
¢ ) .b ®  marker='o'
- . marker=""
o8 at marker=""
marker="«x"
0 % A ) - + marker="+"
L2 marker="v'
' marker=""
marker='<"
marker=">"
marker='s"
marker='d'
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Figure. Demonstration of point numbers

For even more possibilities, these character codes can be used together with
line andcolor codes to plot points along with a line connecting them (Figure ):

In[4]: plt.plot(x, y, "-ok'); # line (-), circle marker (o), black (k)

10

0o

a 2 4 [ 8 10

Figure . Combining line and point markers

Additional keyword arguments to plt.plotspecify a wide range of properties of
thelines and markers (Figure ):

In[5]: plt.plot(x, y, "-p', color="gray’,
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markersize=15,
linewidth=4,
markerfacecolor='white',
markeredgecolor='gray’,
markeredgewidth=2)

plt.ylim(-1.2, 1.2);
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Figure . Customizing line and point numbers

This type of flexibility in the plt.plot function allows for a wide variety of possible visualization
options. For a full description of the options available, refer to the plt.plot
documentation.

Scatter Plots with plt.scatter

A second, more powerful method of creating scatter plots is the plt.scatter func- tion,
which can be used very similarly to the plt.plotfunction (Figure ):

In[6]: plt.scatter(x, y, marker='o0");
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Figure . A simple scatter plot
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The primary difference of plt.scatterfrom plt.plotis that it can be used to createscatter
plots where the properties of each individual point (size, face color, edge color,etc.) can
be individually controlled or mapped to data.

Let’s show this by creating a random scatter plot with points of many colors and sizes.In
order to better see the overlapping results, we’ll also use the alpha keyword to adjust the
transparency level
In[7]: rng =
np.random.RandomState(0)
X = rng.randn(100)

y = rng.randn(100)
colors =
rng.rand(100)

sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
cmap="viridis')

plt.colorbar(); # show color scale
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Figure . Changing size, color, and transparency in scatter points

Notice that the color argument is automatically mapped to a color scale (shown here by
the colorbar() command), and the size argument is given in pixels. In this way, the color
and size of points can be used to convey information in the visualization, in order to
illustrate multidimensional data.

For example, we might use the Iris data from Scikit-Learn, where each sample is one of
three types of flowers that has had the size of its petals and sepals carefully meas- ured.

In[8]: from import
load_irisiris = load_iris()
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features = iris.data.T

plt.scatter(features[0], features[1], alpha=0.2,
s=100*features[3], c=iris.target,
cmap="viridis')

plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1])
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Figure . Using point properties to encode features of the Iris data

We can see that this scatter plot has given us the ability to simultaneously explore four
different dimensions of the data: the (x, y) location of each point corresponds to the
sepal length and width, the size of the point is related to the petal width, and the color is
related to the particular species of flower. Multicolor and multifeature scatterplots like
this can be useful for both exploration and presentation of data.

plot Versus scatter: A Note on Efficiency

Aside from the different features available in plt.plot and plt.scatter, why mightyou
choose to use one over the other? While it doesn’t matter as much for small amounts of
data, as datasets get larger than a few thousand points, plt.plot can be noticeably more
efficient than plt.scatter. The reason is that plt.scatter has the capability to render a
different size and/or color for each point, so the renderer must do the extra work of
constructing each point individually. In plt.plot, on the other hand, the points are always
essentially clones of each other, so the work of determin- ing the appearance of the
points is done only once for the entire set of data. For large datasets, the difference
between these two can lead to vastly different performance, and for this reason, plt.plot
should be preferred over plt.scatter for large datasets.
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Visualizing Errors

For any scientific measurement, accurate accounting for errors is nearly as important,if
not more important, than accurate reporting of the number itself. For example, imagine
that | am using some astrophysical observations to estimate the Hubble Con-stant, the
local measurement of the expansion rate of the universe. | know that the current
literature suggests a value of around 71 (km/s)/Mpc, and | measure a value of74
(km/s)/Mpc with my method. Are the values consistent? The only correct answer, given
this information, is this: there is no way to know.

Suppose | augment this information with reported uncertainties: the current litera- ture
suggests a value of around 71 + 2.5 (km/s)/Mpc, and my method has measured a value of
74 +5 (km/s)/Mpc. Now are the values consistent? That is a question that can be
guantitatively answered.

In visualization of data and results, showing these errors effectively can make a plot
convey much more complete information.

Basic Errorbars

A basic errorbar can be created with a single Matplotlib function call (Figure 4-27):

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-
whitegrid')import as

In[2]: x = np.linspace(0, 10, 50)
dy=0.8

y = np.sin(x) + dy *

np.random.randn(50)plt.errorbar(x, v,

yerr=dy, fm}z'.lﬂ);

i
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Figure . An errorbar example

In addition to these basic options, the errorbar function has many options to fine- tune
the outputs. Using these additional options you can easily customize the aesthet-ics of
your errorbar plot. | often find it helpful, especially in crowded plots, to make the
errorbars lighter than the points themselves

In[3]: plt.errorbar(x, y, yerr=dy, fmt="0', color="black’,

ecolor='lightgray’', elinewidth=3, capsize=0);
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Figure. Customizing errorbars

In addition to these options, you can also specify horizontal errorbars (xerr), one- sided
errorbars, and many other variants. For more information on the options avail- able, refer

to the docstring of plt.errorbar.

Continuous Errors

In some situations it is desirable to show errorbars on continuous quantities. Though
Matplotlib does not have a built-in convenience routine for this type of application, it’s
relatively easy to combine primitives like plt.plot and plt.fill_between for a useful result.

Here we'll perform a simple Gaussian process regression (GPR), using the Scikit-Learn API (see
“Introducing Scikit-Learn” on page 343 for details). This is a method of fit- ting a very
flexible nonparametric function to data with a continuous measure of the uncertainty.
We won’t delve into the details of Gaussian process regression at this point, but will focus
instead on how you might visualize such a continuous error measurement:

In[4]: from import GaussianProcess
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# define the model and draw some data

model = lambda x: x * np.sin(x)
xdata = np.array([1, 3, 5, 6, 8])
ydata = model(xdata)

# Compute the Gaussian process fit

gp = GaussianProcess(corr="cubic', thetaO=1e-2, thetal=1e-4,
thetaU=1E-1,random_start=100)

gp.fit(xdata[:, np.newaxis], ydata)

xfit = np.linspace(0, 10, 1000)

yfit, MSE = gp.predict(xfit[:, np.newaxis],
eval_MSE=True) dyfit =2 * np.sqrt(MSE) # 2*sigma ~
95% confidence region

We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. Wecould
pass these to the plt.errorbar function as above, but we don’t really want to plot 1,000
points with 1,000 errorbars. Instead, we can use the plt.fill_between function with a light
color to visualize this continuous error:

In[5]: # Visualize the result

plt.plot(xdata, ydata, 'or')
plt.plot(xfit, yfit, -, color="'gray"')

plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,
color="gray', alpha=0.2)
plt.xlim(0, 10);
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Figure. Representing continuous uncertainty with filled regions

Note what we’ve done here with the fill_betweenfunction: we pass an x value, thenthe
lower y-bound, then the upper y-bound, and the result is that the area between these
regions is filled.

The resulting figure gives a very intuitive view into what the Gaussian process regres-sion
algorithm is doing: in regions near a measured data point, the model is strongly
constrained and this is reflected in the small model errors. In regions far from a measured
data point, the model is not strongly constrained, and the model errors increase.

For more information on the options available in plt.fill_between() (and the
closely related plt.fill() function), see the function docstring or the Matplotlib
documentation.

Finally, if this seems a bit too low level for your taste, refer to “Visualization with
Sea-born” , where we discuss the Seaborn package, which has a more stream-
lined API for visualizing this type of continuous errorbar.

Density and Contour Plots

Sometimes it is useful to display three-dimensional data in two dimensions using
contours or color-coded regions. There are three Matplotlib functions that can be helpful
for this task: plt.contour for contour plots, plt.contourf for filled contourplots, and
plt.imshow for showing images. This section looks at several examples of using these. We'll
start by setting up the notebook for plotting and importing the functions we will use:

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-
white') import as

Day-02: Visualizing a Three-Dimensional Function

We'll start by demonstrating a contour plot using a function z € fx) y, using the
fol- lowing particular choice for f (we’ve seen this before in “Computation on
Arrays: Broadcasting” on page 63, when we used it as a motivating example for
arraybroadcasting):

In[2]: def f(x, y):
return np.sin(x) ** 10 + np.cos(10 +y * x) * np.cos(x)

A contour plot can be created with the plt.contour function. It takes three argu- ments: a
grid of x values, a grid of y values, and a grid of z values. The x and y valuesrepresent
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positions on the plot, and the z values will be represented by the contour levels. Perhaps
the most straightforward way to prepare such data is to use the np.meshgrid function,
which builds two-dimensional grids from one-dimensional arrays:

In[3]: x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x,
y)Z=1(X,Y)

Now let’s look at this with a standard line-only contour plot (Figure 4-30):
In[4]: plt.contour(X, Y, Z, colors="black’);

A contour plot can be created with the plt.contour function. It takes three argu- ments: a
grid of x values, a grid of y values, and a grid of z values. The x and y valuesrepresent
positions on the plot, and the z values will be represented by the contour levels. Perhaps
the most straightforward way to prepare such data is to use the np.meshgrid function,
which builds two-dimensional grids from one-dimensional arrays:

In[3]: x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x,
y)Z=1(X,Y)
Now let’s look at this with a standard line-only contour plot (Figure 4-30):

In[4]: plt.contour(X, Y, Z, colors='black’);

Figure . Visualizing three-dimensional data with contours

Notice that by default when a single color is used, negative values are represented by
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dashed lines, and positive values by solid lines. Alternatively, you can color-code thelines
by specifying a colormap with the cmap argument. Here, we'll also specify thatwe want
more lines to be drawn—20 equally spaced intervals within the data range (Figure ):

In[5]: plt.contour(X, Y, Z, 20, cmap='RdGy");

Figure . Visualizing three-dimensional data with colored contours

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for
centered data. Matplotlib has a wide range of colormaps available, which you can easily
browse in IPython by doing a tab completion on the plt.cmmodule:

plt.cm.<TAB>
Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We

can change this by switching to a filled contour plot using the plt.contourf() function
(notice the f at the end), which uses largely the same syntax as plt.con tour().

Additionally, we’ll add a plt.colorbar() command, which automatically creates an
additional axis with labeled color information for the plot (Figure ):

In[6]: plt.contourf(X, Y, Z, 20,
cmap="'RdGy')plt.colorbar();
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Figure. Visualizing three-dimensional data with filled contours

The colorbar makes it clear that the black regions are “peaks,” while the red regions are
“valleys.”

One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps are
discrete rather than continuous, which is not always what is desired. You could remedy
this by setting the number of contours to a very high number, but this results in a rather
inefficient plot: Matplotlib must render a new polygon for each step in the level. A better
way to handle this is to use the plt.imshow() function, which inter- prets a two-
dimensional grid of data as an image.

Figure . shows the result of the following code:
In[7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower’,

cmap='RdGy'
) plt.colorbar()
plt.axis(aspect='image')

7

There are a few potential gotchas with imshow(), however:

e plt.imshow()doesn’t accept an x and y grid, so you must manually specify the
extent [xmin, xmax, ymin, ymax]of the image on the plot.

e plt.imshow() by default follows the standard image array definition where
the origin is in the upper left, not in the lower left as in most contour
plots. Thismust be changed when showing gridded data.

e plt.imshow() will automatically adjust the axis aspect ratio to match the input
data; you can change this by setting, for example, plt.axis(aspect='image')to
make x and y units match.
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Figure 4-33. Representing three-dimensional data as an image

Finally, it can sometimes be useful to combine contour plots and image plots. For
example, to create the effect shown in Figure , we'll use a partially transparent
background image (with transparency set via the alpha parameter) and over-plot
contours with labels on the contours themselves (using the plt.clabel()function):

In[8]: contours = plt.contour(X, Y, Z, 3, colors="black’)
plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, 0, 5], origin="lower",
cmap="'RdGy', alpha=0.5)

plt.colorbar();

Figure 4-34. Labeled contours on top of an image

The combination of these three functions—plt.contour, plt.contourf, andplt.imshow—
gives nearly limitless possibilities for displaying this sort of three- dimensional data
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within a two-dimensional plot. For more information on theoptions available in these
functions, refer to their docstrings. If you are interested in three-dimensional
visualizations of this type of data, see “Three-Dimensional Plotting in Matplotlib” .
Histograms, Binnings, and Density

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a
preview of Matplotlib’s histogram function (see “Comparisons, Masks, and Boolean
Logic” ), which creates a basic histogram in one line, once the normal boilerplate imports
are done (Figure ):

In[1]: %matplotlib inline
import as
import as

plt.style.use('seaborn-white')

data =
np.random.randn(1000)In[2]:
plt.hist(data);
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Figure . A simple histogram

The hist()function has many options to tune both the calculation and the
display;here’s an example of a more customized histogram .

In[3]: plt.hist(data, bins=30, normed=True, alpha=0.5,
histtype="stepfilled’, color="steelblue’,
edgecolor='none');
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Figure . A customized histogram

The plt.hist docstring has more information on other customization options avail- able. |
find this combination of histtype='stepfilled' along with some transpar- ency alpha to be
very useful when comparing histograms of several distributions:

In[4]: x1 = np.random.normal(0, 0.8, 1000)
X2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype="stepfilled’, alpha=0.3, normed=True,
bins=40)plt.hist(x1, **kwargs)

plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs);
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Figure Over-plotting multiple histograms

If you would like to simply compute the histogram (that is, count the
number ofpoints in a given bin) and not display it, the np.histogram()function is
available:
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In[5]: counts, bin_edges = np.histogram(data, bins=5)
print(counts)

[12 190 468 301

29]

Day-03: Two-Dimensional Histograms and Binnings

Just as we create histograms in one dimension by dividing the number line into bins, we
can also create histograms in two dimensions by dividing points among two- dimensional
bins. We'll take a brief look at several ways to do this here. We'll start bydefining some
data—an x and y array drawn from a multivariate Gaussian distribution:

In[6]: mean = [0, 0]
cov=[[1, 1], 1, 2]1]

X, y = np.random.multivariate_normal(mean, cov, 10000).T

plt.hist2d: Two-dimensional histogram

One straightforward way to plot a two-dimensional histogram is to use Matplotlib’s
plt.hist2dfunction (Figure ):

In[12]: plt.hist2d(x, y, bins=30,
cmap='Blues')cb = plt.colorbar()
ch.set_label('counts in bin')

=}
2 o B
counts in bin

Figure . A two-dimensional histogram with plt.hist2d

Just as with plt.hist, plt.hist2dhas a number of extra options to fine-tune the plot
and the binning, which are nicely outlined in the function docstring. Further, just
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as plt.hist has a counterpart in np.histogram, plt.hist2d has a counterpart in
np.histogram2d, which can be used as follows:

In[8]: counts, xedges, yedges = np.histogram2d(x, y, bins=30)

For the generalization of this histogram binning in dimensions higher than two, see the
np.histogramddfunction.

plt.hexbin: Hexagonal binnings

The two-dimensional histogram creates a tessellation of squares across the axes. Another
natural shape for such a tessellation is the regular hexagon. For this purpose,Matplotlib
provides the plt.hexbin routine, which represents a two-dimensional dataset binned
within a grid of hexagons.

In[9]: plt.hexbin(x, y, gridsize=30, cmap="Blues’)
cb = plt.colorbar(label='count in bin")

o
| .
8 3
ount in bin

Figure 4-39. A two-dimensional histogram with plt.hexbin

plt.hexbin has a number of interesting options, including the ability to specify weights for
each point, and to change the output in each bin to any NumPy aggregate (mean of
weights, standard deviation of weights, etc.).

Kernel density estimation

Another common method of evaluating densities in multiple dimensions is kernel density
estimation (KDE). We'll simply mention that KDE can bethought of as a way to “smear
out” the points in space and add up the result to obtain a smooth function. One
extremely quick and simple KDE implementation exists in the scipy.stats package. Here is
a quick example of using the KDE on this data:

In[10]: from import gaussian_kde

# fit an array of size [Ndim, Nsamples]
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data = np.vstack([x, y])
kde =
gaussian_kde(data)

# evaluate on a regular grid

xgrid = np.linspace(-3.5, 3.5, 40)

ygrid = np.linspace(-6, 6, 40)

Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)

Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))
# Plot the result as an image

plt.imshow(Z.reshape(Xgrid.shape),

origin='lower’,
aspect='auto’,extent=[-3.5,
3.5, -6, 6],

cmap='Blue
s') cb =
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plt.colorbar()
cb.set_label("density")

Figure . A kernel density representation of a distribution

KDE has a smoothing length that effectively slides the knob between detail and
smoothness (one example of the ubiquitous bias—variance trade-off). The literatureon
choosing an appropriate smoothing length is vast: gaussian_kde uses a rule of thumb to
attempt to find a nearly optimal smoothing length for the input data.

Other KDE implementations are available within the SciPy ecosystem, each with its own
various strengths and weaknesses; see, for example, sklearn.neighbors.KernelDensity and
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statsmodels.nonparametric.kernel_density.KDEMultivariate. Forvisualizations based on
KDE, using Matplotlib tends to be overly verbose. The Sea- born library, discussed in

“Visualization with Seaborn” on page 311, provides a muchmore terse API for creating
KDE-based visualizations.

Customizing Plot Legends

Plot legends give meaning to a visualization, assigning labels to the various plot ele-
ments. We previously saw how to create a simple legend; here we’ll take a look at cus-
tomizing the placement and aesthetics of the legend in Matplotlib.

The simplest legend can be created with the plt.legend() command, which auto-
matically creates a legend for any labeled plot elements (Figure 4-41):

In[1]: import as
plt.style.use('classic’)
In[2]: %matplotlib inline
import as

In[3]: x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()

ax.plot(x, np.sin(x), '-b', label='Sine’)

ax.plot(x, np.cos(x), '--r', label='Cosine’)
ax.axis('equal’)

leg = ax.legend();

— Sine
- - Cosine ||

-2+

3|

Figure. A default plot legend

But there are many ways we might want to customize such a legend. For example, wecan
specify the location and turn off the frame .
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In[4]: ax.legend(loc="upper left’,
frameon=False)fig

Figure . A customized plot legend

We can use the ncol command to specify the number of columns in the
legend

In[5]: ax.legend(frameon=False, loc='lower center’,
ncol=2)fig

Figure . A two-column plot legend

We can use a rounded box (fancybox) or add a shadow, change the transparency
(alpha value) of the frame, or change the padding around the text.
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In[6]: ax.legend(fancybox=True, framealpha=1, shadow=True,
borderpad=1)fig

Figure . A fancybox plot legend

For more information on available legend options, see the plt.legenddocstring.
Choosing Elements for the Legend
As we've already seen, the legend includes all labeled elements by default. If this is not
what is desired, we can fine-tune which elements and labels appear in the legend by
using the objects returned by plot commands. The plt.plot() command is able to create

multiple lines at once, and returns a list of created line instances. Passing any ofthese to
plt.legend() will tell it which to identify, along with the labels we’d like to specify.

In[7]: y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt.plot(x, y)

# lines is a list of plt.Line2D instances

plt.legend(lines[:2], ['first', 'second']);

10
\ / — first
A — second
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Figure . Customization of legend elements

| generally find in practice that it is clearer to use the first method, applying labels tothe
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plot elements you’d like to show on the legend.
In[8]: plt.plot(x, y[:, 0], label="first')
plt.plot(x, y[:, 1], label="'second')

plt.plot(x, y[:, 2:])
plt.legend(framealpha=1,

(A
/ .
ool ,/ \ \\

M/
HLOA

frameon=True);
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Figure 4-46. Alternative method of customizing legend elements

Notice that by default, the legend ignores all elements without a labelattribute set.
Legend for Size of Points

Sometimes the legend defaults are not sufficient for the given visualization. For exam-ple,
perhaps you’re using the size of points to mark certain features of the data, and want to
create a legend reflecting this. Here is an example where we’ll use the size ofpoints to
indicate populations of California cities. We’d like a legend that specifies the

scale of the sizes of the points, and we’ll accomplish this by plotting some labeled datawith
no entries.

In[9]: import pandas as pd

cities = pd.read_csv('data/california_cities.csv')

# Extract the data we're interested in
lat, lon = cities['latd'], cities['longd']

population, area = cities['population_total'], cities['area_total_km2']

# Scatter the points, using size and color but no label

plt.scatter(lon, lat, label=None,
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c=np.log10(population),
cmap='viridis',s=area, linewidth=0,
alpha=0.5)

plt.axis(aspect="equal’)
plt.xlabel('longitude') plt.ylabel('latitude’)
plt.colorbar(label='logS_{10}S(population
)')plt.clim(3, 7)

# Here we create a legend:
# we'll plot empty lists with the desired size and label
for areain [100, 300, 500]:

plt.scatter([], [], c="k', alpha=0.3, s=area,
label=str(area) + ' kmS$~2S')

plt.legend(scatterpoints=1,
frameon=False, labelspacing=1,
title='City Area')

plt.title('California Cities: Area and Population');

California Cities: Area and Population 70

City Area
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Figure . Location, geographic size, and population of California cities

The legend will always reference some object that is on the plot, so if we’d like to dis-play
a particular shape we need to plot it. In this case, the objects we want (gray cir- cles) are
not on the plot, so we fake them by plotting empty lists. Notice too that the legend only

lists plot elements that have a label specified.

By plotting empty lists, we create labeled plot objects that are picked up by the legend,and
now our legend tells us some useful information. This strategy can be useful for creating
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more sophisticated visualizations.

Finally, note that for geographic data like this, it would be clearer if we could show state
boundaries or other map-specific elements. For this, an excellent choice of tool is
Matplotlib’s Basemap add-on toolkit.

Multiple Legends

Sometimes when designing a plot you’d like to add multiple legends to the same axes.
Unfortunately, Matplotlib does not make this easy: via the standard legend interface, it is
only possible to create a single legend for the entire plot. If you try to create a second
legend using plt.legend() or ax.legend(), it will simply override the firstone. We can work
around this by creating a new legend artist from scratch, and then using the lower-level
ax.add_artist() method to manually add the second artist to the plot (Figure ):

In[10]: fig, ax = plt.subplots()

lines =]

styles=["-', -, '-.", "!']
x = np.linspace(0, 10, 1000)

for iin range(4):
lines += ax.plot(x, np.sin(x -i * np.pi / 2),
styles[i], color="black’)

ax.axis('equal’)

# specify the lines and labels of the first legend

ax.legend(lines[:2], ['line A', 'line B"],
loc='upper right',
frameon=False)

# Create the second legend and add the artist manually.
from import Legend

leg = Legend(ax, lines[2:], ['line C', 'line D'],
loc="lower right', frameon=False)

ax.add_artist(leg);
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Figure . A split plot legend

This is a peek into the low-level artist objects that compose any Matplotlib plot. If you
examine the source code of ax.legend() (recall that you can do this within the IPy- thon
notebook using ax.legend??) you'll see that the function simply consists of some logic to
create a suitable Legend artist, which is then saved in the legend_ attribute and added to
the figure when the plot is drawn.

Customizing Colorbars

Plot legends identify discrete labels of discrete points. For continuous labels based onthe
color of points, lines, or regions, a labeled colorbar can be a great tool. In Mat- plotlib, a
colorbar is a separate axes that can provide a key for the meaning of colors in a plot.
Because the book is printed in black and white, this section has an accompa-nying online
appendix where you can view the figures in full color. We'll start by setting up the note-
book for plotting and importing the functions we will use:

In[1]: import as
plt.style.use('classic')

In[2]: %matplotlib inline
import as

As we have seen several times throughout this section, the simplest colorbar can be
created with the plt.colorbarfunction.

In[3]: x = np.linspace(0, 10, 1000)

| = np.sin(x) * np.cos(x[:, np.newaxis])

plt.imshow(l)
plt.colorbar();
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Figure . A simple colorbar legend

WEe'll now discuss a few ideas for customizing these colorbars and using them effec-
tively in various situations.

Customizing Colorbars

We can specify the colormap using the cmapargument to the plotting function
that iscreating the visualization.

In[4]: plt.imshow(l, cmap='gray");
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Figure . A grayscale colormap

All the available colormaps are in the plt.cm namespace; using IPython’s tab-completion
feature will give you a full list of built-in possibilities:

plt.cm.<TAB>

But being able to choose a colormap is just the first step: more important is how to
decide among the possibilities! The choice turns out to be much more subtle than you
might initially expect.
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Choosing the colormap

A full treatment of color choice within visualization is beyond the scope of this book,but
for entertaining reading on this subject and others, see the article “Ten Simple Rules for
Better Figures”. Matplotlib’s online documentation also has an interesting discussion of
colormap choice.

Broadly, you should be aware of three different categories of colormaps:

Sequential colormaps

These consist of one continuous sequence of colors (e.g., binaryor viridis).
Divergent colormaps

These usually contain two distinct colors, which show positive and negative

devi-ations from a mean (e.g., RdBuor PuOr).

Qualitative colormaps

These mix colors with no particular sequence (e.g., rainbowor jet).

The jet colormap, which was the default in Matplotlib prior to version 2.0, is an example
of a qualitative colormap. Its status as the default was quite unfortunate, because
qualitative maps are often a poor choice for representing quantitative data. Among the
problems is the fact that qualitative maps usually do not display any uni- form
progression in brightness as the scale increases.

We can see this by converting the jetcolorbar into black and white (Figure ):
In[5]:

from import LinearSegmentedColormap

def grayscale_cmap(cmap):
"""Return a grayscale version of the given colormap"""

cmap =
plt.cm.get_cmap(cmap) colors
=cmap(np.arange(cmap.N))

# convert RGBA to perceived grayscale
luminance# cf.
http://alienryderflex.com/hsp.html|
RGB_weight =[0.299,0.587,0.114]
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luminance = np.sqrt(np.dot(colors[:, :3] ** 2,
RGB_weight))colors[:, :3] = luminance[:, np.newaxis]

return LinearSegmentedColormap.from_list(cmap.name + " _gray", colors,
cmap.N)

def view_colormap(cmap):

min

"""Plot a colormap with its grayscale equivalent

cmap =
plt.cm.get_cmap(cmap) colors
= cmap(np.arange(cmap.N))

cmap = grayscale_cmap(cmap)
grayscale =
cmap(np.arange(cmap.N))

fig, ax = plt.subplots(2, figsize=(6, 2),

subplot_kw=dict(xticks=[],
yticks=[]))ax[0].imshow([colors], extent=[0, 10, 0, 1])

ax[1].imshow([grayscale], extent=[0, 10, 0, 1])

In[6]: view_colormap('jet')

Figure . The jet colormap and its uneven luminance scale

Notice the bright stripes in the grayscale image. Even in full color, this uneven bright-ness
means that the eye will be drawn to certain portions of the color range, which will
potentially emphasize unimportant parts of the dataset. It’s better to use a color- map
such as viridis (the default as of Matplotlib 2.0), which is specifically construc-ted to have
an even brightness variation across the range. Thus, it not only plays well with our color
perception, but also will translate well to grayscale printing.
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In[7]: view_colormap('viridis')

Figure . The viridis colormap and its even luminance scale

If you favor rainbow schemes, another good option for continuous data is the
cubehelixcolormap.

In[8]: view_colormap('cubehelix’)

M

Figure. The cubehelix colormap and its luminance

For other situations, such as showing positive and negative deviations from
somemean, dual-color colorbars such as RdBu(short for Red-Blue) can be useful.
However,

as you can see in Figure , it’s important to note that the positive-negative
information will be lost upon translation to grayscale!

In[9]: view_colormap('RdBu')

Figure . The RdBu (Red-Blue) colormap and its luminance

We'll see examples of using some of these color maps as we continue.

There are a large number of colormaps available in Matplotlib; to see a list of them, you
can use IPython to explore the plt.cm submodule. For a more principled approach to
colors in Python, you can refer to the tools and documentation withinthe Seaborn
library (see “Visualization with Seaborn” ).
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Color limits and extensions

Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply
an instance of plt.Axes, so all of the axes and tick formatting tricks we’ve learned are
applicable. The colorbar has some interesting flexibility; for example, we can narrow the
color limits and indicate the out-of-bounds values with a triangular arrow at the top and
bottom by setting the extend property. This might come in handy, for example, if you're
displaying an image that is subject to noise (Figure):

In[10]: # make noise in 1% of the image pixels
speckles = (np.random.random(l.shape) < 0.01)

I[speckles] = np.random.normal(0, 3,

np.count_nonzero(speckles))plt.figure(figsize=(10, 3.5))

plt.subplot(1, 2, 1)
plt.imshow(l,
cmap='RdBu")
plt.colorbar()

plt.subplot(1, 2, 2)
plt.imshow(l,
cmap='RdBu")
plt.colorbar(extend='bot
h')plt.clim(-1, 1);
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Figure . Specifying colormap extensions

Notice that in the left panel, the default color limits respond to the noisy pixels, and the
range of the noise completely washes out the pattern we are interested in. In the right
panel, we manually set the color limits, and add extensions to indicate values that are
above or below those limits. The result is a much more useful visualization ofour data.

Discrete colorbars

Colormaps are by default continuous, but sometimes you’d like to represent discrete
values. The easiest way to do this is to use the plt.cm.get_cmap()function, and passthe
name of a suitable colormap along with the number of desired bins (Figure 4-56):

In[11]: plt.imshow(l, cmap=plt.cm.get_cmap('Blues’,
6))plt.colorbar()

plt.clim(-1, 1);

Figure . A discretized colormap

The discrete version of a colormap can be used just like any other colormap.
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Handwritten Digits

For an example of where this might be useful, let’s look at an interesting visualizationof
some handwritten digits data. This data is included in Scikit-Learn, and consists ofnearly
2,000 8x8 thumbnails showing various handwritten digits.

For now, let’s start by downloading the digits data and visualizing several of the
exam-ple images with plt.imshow()(Figure 4-57):

In[12]: # load images of the digits O through 5 and visualize several of them

from sklearn.datasets import
load_digitsdigits =
load_digits(n_class=6)

fig, ax = plt.subplots(8, 8, figsize=(6, 6))

for i, axi in enumerate(ax.flat):
axi.imshow(digits.images[i],
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cmap="binary')axi.set(xticks=[], yticks=[])

Figure . Sample of handwritten digit data

Because each digit is defined by the hue of its 64 pixels, we can consider each digit tobe a
point lying in 64-dimensional space: each dimension represents the brightness ofone pixel.
But visualizing relationships in such high-dimensional spaces can beextremely difficult. One
way to approach this is to use a dimensionality reduction technique such as manifold
learning to reduce the dimensionality of the data while maintaining the relationships of
interest. Dimensionality reduction is an example of unsupervised machine learning.
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Deferring the discussion of these details, let’s take a look at a two-dimensional
mani-fold learning projection of this digits data.

In[13]: # project the digits into 2 dimensions using IsoMap

from import
Isomapiso =
Isomap(n_components=2)

projection = iso.fit_transform(digits.data)

WEe’ll use our discrete colormap to view the results, setting the ticksand climto
improve the aesthetics of the resulting colorbar.

In[14]: # plot the results
plt.scatter(projection(:, 0], projection[:, 1], lw=0.1,

c=digits.target, cmap=plt.cm.get_cmap('cubehelix’,
6))plt.colorbar(ticks=range(6), label='digit value')

plt.clim(-0.5, 5.5)
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Figure. Manifold embedding of handwritten digit pixels

The projection also gives us some interesting insights on the relationships within the
dataset: for example, the ranges of 5 and 3 nearly overlap in this projection, indicating
that some handwritten fives and threes are difficult to distinguish, and therefore
more likely to be confused by an automated classification algorithm. Other values, like O
and 1, are more distantly separated, and therefore much less likely to be con- fused. This
observation agrees with our intuition, because 5 and 3 look much more similar than do 0
and 1.

Multiple Subplots

Sometimes it is helpful to compare different views of data side by side. To this end,
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Matplotlib has the concept of subplots: groups of smaller axes that can exist together
within a single figure. These subplots might be insets, grids of plots, or other more
complicated layouts. In this section, we’ll explore four routines for creating subplots in
Matplotlib. We'll start by setting up the notebook for plotting and importing the
functions we will use:

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-
white') import as

plt.axes: Subplots by Hand

The most basic method of creating an axes is to use the plt.axes function. As we’ve seen
previously, by default this creates a standard axes object that fills the entire fig- ure.
plt.axes also takes an optional argument that is a list of four numbers in the figure
coordinate system. These numbers represent [bottom, left, width, heightlin the
figure coordinate system, which ranges from 0 at the bottom left of thefigure to 1 at the
top right of the figure.

For example, we might create an inset axes at the top-right corner of another axes by
setting the x and y position to 0.65 (that is, starting at 65% of the width and 65% of the
height of the figure) and the x and y extents to 0.2 (that is, the size of the axes is 20% of
the width and 20% of the height of the figure). Figure 4-59 shows the result ofthis code:

In[2]: ax1 = plt.axes() # standard axes

ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])
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Figure . Example of an inset axes

The equivalent of this command within the object-oriented interface is
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fig.add_axes(). Let’s use this to create two vertically stacked axes (Figure 4-60):
In[3]: fig = plt.figure()
ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4],
xticklabels=[], ylim=(-1.2, 1.2))
ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4],
ylim=(-1.2, 1.2))

x = np.linspace(0, 10)
axl.plot(np.sin(x))

ax2.plot(np.cos(x));

o 10 20 I 40 50

Figure . Vertically stacked axes example

We now have two axes (the top with no tick labels) that are just touching: the bottomof
the upper panel (at position 0.5) matches the top of the lower panel (at position 0.1

+0.4).
plt.subplot: Simple Grids of Subplots
Aligned columns or rows of subplots are a common enough need that Matplotlib has
several convenience routines that make them easy to create. The lowest level of theseis
plt.subplot(), which creates a single subplot within a grid. As you can see, this command
takes three integer arguments—the number of rows, the number of col- umns, and the
index of the plot to be created in this scheme, which runs from the upper left to the
bottom right .

In[4]: for iin range(1, 7):

plt.subplot(2, 3, i)
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plt.text(0.5, 0.5, str((2, 3, 1)),
fontsize=18,

10 10 10

ot (2,3,1) [ (2,3,2) " (2,3,3)
04 0.4 0.4

0z GE GE
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0.0 0.0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
1.0 1.0 1.0

a8 GE! GE!
ot (2,3,4) Pf| (2,3,5) ¢ (2,3,8)
a4 0.4 0.4

oz 0.2 0.2

0.0 0.0 0.0
00 02 04 06 OB 10 OO0 O2 04 06 OB 10 OO0 02 04 06 OB 10

ha='center’)
Figure. A plt.subplot() example

The command plt.subplots_adjust can be used to adjust the spacing betweenthese
plots. The following cod uses theequivalent object-oriented command, fig.add_subplot():

In[5]: fig = plt.figure()
fig.subplots_adjust(hspace=0.4,
wspace=0.4)for iin range(1, 7):

ax = fig.add_subplot(2, 3, i)
ax.text(0.5, 0.5, str((2, 3, 1)),

fontsize=18, ha='center’)

10 10 10

oe oe oe

o (2,3,1) | °| (23,2 | °| (23,3)
04 04 04

oz oz oz

oo oo oo
000204060810 000204 0608 10 0002 0406 0810
10 10 10

oe oe oe
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00 00 00
0002 0406 08 10 000204 0608 1.0 0002 0406 08 1.0

Figure plt.subplot() with adjusted margins

We've used the hspaceand wspacearguments of plt.subplots_adjust, which spec-ify the
spacing along the height and width of the figure, in units of the subplot size (inthis case,
the space is 40% of the subplot width and height).

Page 286 of 580



plt.subplots: The Whole Grid in One Go

The approach just described can become quite tedious when you’re creating a large grid
of subplots, especially if you’d like to hide the x- and y-axis labels on the inner plots. For
this purpose, plt.subplots()is the easier tool to use (note the sat the endof subplots).
Rather than creating a single subplot, this function creates a full grid ofsubplots in a
single line, returning them in a NumPy array. The arguments are the number of rows and
number of columns, along with optional keywords sharex and sharey, which allow you to
specify the relationships between different axes.

Here we’ll create a 2x3 grid of subplots, where all axes in the same row share their y-axis
scale, and all axes in the same column share their x-axis scale (Figure ):

In[6]: fig, ax = plt.subplots(2, 3, sharex="col’, sharey="row')
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Figure .Shared x and y axis in plt.subplots()

Note that by specifying sharexand sharey, we’ve automatically removed inner labelson the
grid to make the plot cleaner. The resulting grid of axes instances is returned within a
NumPy array, allowing for convenient specification of the desired axes usingstandard
array indexing notation.

In[7]: # axes are in a two-dimensional array, indexed by [row, col]
for iin range(2):
for jin range(3):
ax[i, jl.text(0.5, 0.5, str((i, j)),

fontsize=18, ha='center’)
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Figure . Identifying plots in a subplot grid

In comparison to plt.subplot(), plt.subplots()is more consistent with Python’s
conventional 0-based indexing.

plt.GridSpec: More Complicated Arrangements
To go beyond a regular grid to subplots that span multiple rows and columns,

plt.GridSpec()is the best tool. The plt.GridSpec()object does not create a plot by

itself; it is simply a convenient interface that is recognized by the plt.subplot() command.
For example, a gridspec for a grid of two rows and three columns with some specified
width and height space looks like this:

In[8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)
From this we can specify subplot locations and extents using the familiar Python
slic-ing syntax (Figure 4-65):
In[9]: plt.subplot(grid[0, 0])
plt.subplot(grid[0, 1:])
plt.subplot(grid[1, :2])
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plt.subplot(grid[1, 2]);
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Figure . Irreqular subplots with plt.GridSpec

This type of flexible grid alignment has a wide range of uses. | most often use it
whencreating multi-axes histogram plots like the one shown here (Figure 4-66):

In[10]: # Create some normally distributed data
mean = [0, 0]
cov=[[1, 1], [1, 2]]

X, y = np.random.multivariate_normal(mean, cov, 3000).T

# Set up the axes with gridspec
fig = plt.figure(figsize=(6, 6))

grid = plt.GridSpec(4, 4, hspace=0.2,
wspace=0.2)main_ax = fig.add_subplot(grid[:-
1, 1)

y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[],
sharey=main_ax)x_hist = fig.add_subplot(grid[-1, 1:],
yticklabels=[], sharex=main_ax)

# scatter points on the main axes

main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2)

# histogram on the attached axes

x_hist.hist(x, 40, histtype='stepfilled’,
orientation="vertical', color="'gray')

x_hist.invert_yaxis()
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y_hist.hist(y, 40, histtype='stepfilled’,
orientation="'horizontal', color="'gray')

y_hist.invert_xaxis()

Figure 4-66. Visualizing multidimensional distributions with plt.GridSpec

This type of distribution plotted alongside its margins is common enough that it has its
own plotting API in the Seaborn package; see “Visualization with Seaborn” for more
details.

Day-04: Text and Annotation

Creating a good visualization involves guiding the reader so that the figure tells a story. In
some cases, this story can be told in an entirely visual manner, without the need for
added text, but in others, small textual cues and labels are necessary. Perhapsthe most
basic types of annotations you will use are axes labels and titles, but the options go
beyond this. Let’s take a look at some data and how we might visualize andannotate it to
help convey interesting information. We'll start by setting up the note- book for plotting
and importing the functions we will use:

In[1]: %matplotlib inline

import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('seaborn-
whitegrid')import numpy as np

import pandas as pd
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Example: Effect of Holidays on US Births

Let’s return to some data we worked with earlier in “Example: Birthrate Data” on
pagel74, where we generated a plot of average births over the course of the
calendar year; as already mentioned, this data can be downloaded at
https://raw.githubusercon tent.com/jakevdp/data-CDCbirths/master/births.csv.

We’'ll start with the same cleaning procedure we used there, and plot the results
(Figure 4-67):

In[2]:
births = pd.read_csv('births.csv')

quartiles = np.percentile(births['births'], [25, 50, 75]) mu,
sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0])

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)")

births['day'] = births['day'].astype(int)
births.index = pd.to_datetime(10000 *
births.year +

100 * births.month +
births.day,
format='%Y%m%d')

births_by date = births.pivot_table('births’,

[births.index.month,
births.index.day])births_by_date.index = [pd.datetime(2012, month,

day)
for (month, day) in births_by date.index]
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In[3]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);

4800
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Figure . Average daily births by date

When we’re communicating data like this, it is often useful to annotate certain fea- tures
of the plot to draw the reader’s attention. This can be done manually with the
plt.text/ax.text command, which will place text at a particular x/y value:

In[4]: fig, ax = plt.subplots(figsize=(12, 4))
births_by date.plot(ax=ax)

# Add labels to the plot
style = dict(size=10, color='gray')

ax.text('2012-1-1', 3950, "New Year's Day", **style)

ax.text('2012-7-4', 4250, "Independence Day", ha='center’,
**style)ax.text('2012-9-4', 4850, "Labor Day", ha='center’,
**style) ax.text('2012-10-31', 4600, "Halloween", ha='right’,
**style) ax.text('2012-11-25', 4450, "Thanksgiving",
ha='center’, **style) ax.text('2012-12-25', 3850, "Christmas ",
ha="right', **style)

# Label the axes

ax.set(title="USA births by day of year (1969-1988)',
ylabel="'average daily births')
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# Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymont
hday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter())

USA births by day of year (1969-1988)

average daily births

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h’)

);

Figure . Annotated average daily births by date

The ax.textmethod takes an x position, a y position, a string, and then optional
key-words specifying the color, size, style, alignment, and other properties of the
text. Here we used ha='right' and ha='center’, where ha is short for horizonal
align- ment. See the docstring of plt.text() and of mpl.text.Text() for more
informationon available options.

Transforms and Text Position

In the previous example, we anchored our text annotations to data locations. Some-
times it’s preferable to anchor the text to a position on the axes or figure, independentof
the data. In Matplotlib, we do this by modifying the transform.

Any graphics display framework needs some scheme for translating between coordi- nate
systems. For example, a data point at x, y = 1, 1 ndedslto §omthow be repre- sented at a
certain location on the figure, which in turn needs to be represented in pixels on the
screen. Mathematically, such coordinate transformations are relatively straightforward,
and Matplotlib has a well-developed set of tools that it uses inter- nally to perform them
(the tools can be explored in the matplotlib.transforms sub-module).

The average user rarely needs to worry about the details of these transforms,
but it is helpful knowledge to have when considering the placement of text on a
figure. There are three predefined transforms that can be useful in this situation:
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ax.transData

Transform associated with data coordinates
ax.transAxes

Transform associated with the axes (in units of axes dimensions)
fig.transFigure

Transform associated with the figure (in units of figure dimensions)

Here let’s look at an example of drawing text at various locations using these
trans- forms (Figure ):

In[5]: fig, ax = plt.subplots(facecolor='lightgray')
ax.axis([0, 10, 0, 10])

# transform=ax.transData is the default, but we'll specify it anyway
ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData)
ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)

ax.text(0.2,0.2,". Figure: (0.2, 0.2)", transform=fig.transFigure);

10

. Data: (1, 5)

. Figure: (0.2, 0.2} . Pxes: (0.5,0.1)

0
0 2 4 L] 8 10

Figure . Comparing Matplotlib’s coordinate systems

Note that by default, the text is aligned above and to the left of the specified coordi-

nates; here the “.” at the beginning of each string will approximately mark the given
coordinate location.

The transDatacoordinates give the usual data coordinates associated with the x- andy-
axis labels. The transAxes coordinates give the location from the bottom-left cor- ner of
the axes (here the white box) as a fraction of the axes size. The transFigure coordinates
are similar, but specify the position from the bottom left of the figure (here the gray box)
as a fraction of the figure size.
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Notice now that if we change the axes limits, it is only the transDatacoordinates thatwill
be affected, while the others remain stationary .

In[6]: ax.set_xlim(0, 2)

ax.set_ylim(-6, 6)
fig

. Data: (1, 5)

—4
. Figure: (0.2, 0.2) . Pxes: (0.5,0.1)

-
0.0 05 10 15 20

Figure . Comparing Matplotlib’s coordinate systems

You can see this behavior more clearly by changing the axes limits interactively; if
you are executing this code in a notebook, you can make that happen by
changing %mat plotlib inline to %matplotlib notebook and using each plot’s
menu to interact with the plot.

Arrows and Annotation

Along with tick marks and text, another useful annotation mark is the simple arrow.

Drawing arrows in Matplotlib is often much harder than you might hope. While
there is a plt.arrow() function available, | wouldn’t suggest using it; the arrows it creates are
SVG objects that will be subject to the varying aspect ratio of your plots, and the result is
rarely what the user intended. Instead, I'd suggest using the plt.annotate()function. This
function creates some text and an arrow, and the arrows can bevery flexibly specified.

Here we’ll use annotatewith several of its options:

In[7]: %matplotlib inline
fig, ax = plt.subplots()

x = np.linspace(0, 20,
1000)ax.plot(x, np.cos(x))

ax.axis('equal’)
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ax.annotate('local maximum', xy=(6.28, 1), xytext=(10,
4), arrowprops=dict(facecolor="black’,

shrink=0.05))

ax.annotate('local minimum’, xy=(5 * np.pi, -1), xytext=(2, -

6),arrowprops=dict(arrowstyle=

n
>I

connectionstyle="angle3,angleA=0,angleB=-90"));

-

a

local minimum

5

local maximum

Figure .Annotation examples

The arrow style is controlled through the arrowprops dictionary, which has numer- ous
options available. These options are fairly well documented in Matplotlib’s online
documentation, so rather than repeating them here I'll quickly show some of the pos-
sibilities. Let’s demonstrate several of the possible options using the birthrate plot from

before.

In[8]:

fig, ax = plt.subplots(figsize=(12, 4))
births_by date.plot(ax=ax)

# Add labels to the plot

ax.annotate("New Year's Day", xy=('2012-1-1', 4100),
xycoords="data’,xytext=(50, -30), textcoords='offset
points', arrowprops=dict(arrowstyle="->",

connectionstyle="arc3,rad=-0.2"))
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ax.annotate("Independence Day", xy=('2012-7-4', 4250),
xycoords="data’,bbox=dict(boxstyle="round", fc="none",
ec="gray"),

xytext=(10, -40), textcoords='offset points’,
ha='center',arrowprops=dict(arrowstyle="->"))

ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords="data’,
ha='center' xytext=(0, -20), textcoords='offset points')

ax.annotate(", xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850),

xycoords="data’, textcoords='data’,
arrowprops={'arrowstyle":'| -
|, widthA=0.2,widthB=0.2", })

ax.annotate('Halloween', xy=('2012-10-31", 4600),
xycoords="data’,xytext=(-80, -40), textcoords="'offset
points', arrowprops=dict(arrowstyle="fancy",

fc="0.6", ec="none",
connectionstyle="angle3,angleA=0,angleB=
-90")

ax.annotate('Thanksgiving', xy=('2012-11-25', 4500),
xycoords="data’,xytext=(-120, -60), textcoords="'offset
points', bbox=dict(boxstyle="round4,pad=.5",
fc="0.9"), arrowprops=dict(arrowstyle="->",

connectionstyle="angle,angleA=0,angleB=80,rad=20"))

ax.annotate('Christmas', xy=('2012-12-25", 3850),
xycoords="data’,xytext=(-30, 0), textcoords="offset
points',

size=13, ha='"right', va="center",
bbox=dict(boxstyle="round",
alpha=0.1),

arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1));
# Label the axes

ax.set(title='"USA births by day of year (1969-1988)',
ylabel="'average daily births')
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# Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymont
hday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')

);
ax.set_ylim(3600, 5400);
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Figure. Annotated average birth rates by day

You'll notice that the specifications of the arrows and text boxes are very detailed: this
gives you the power to create nearly any arrow style you wish. Unfortunately, it also
means that these sorts of features often must be manually tweaked, a process that canbe
very time-consuming when one is producing publication-quality graphics! Finally,I’ll note
that the preceding mix of styles is by no means best practice for presenting data, but
rather included as a demonstration of some of the available options.

More discussion and examples of available arrow and annotation styles can be
found in the Matplotlib gallery, in particular
http://matplotlib.org/examples/pylab_examples/annotation_demo2.html.

Customizing  Ticks

Matplotlib’s default tick locators and formatters are designed to be generally sufficientin
many common situations, but are in no way optimal for every plot. This section will give
several examples of adjusting the tick locations and formatting for the par- ticular plot
type you’re interested in.

Before we go into examples, it will be best for us to understand further the object
hierarchy of Matplotlib plots. Matplotlib aims to have a Python object representing
everything that appears on the plot: for example, recall that the figure is the bound- ing
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box within which plot elements appear. Each Matplotlib object can also act as a container
of sub-objects; for example, each figure can contain one or more axes objects, each of
which in turn contain other objects representing plot contents.

The tick marks are no exception. Each axeshas attributes xaxisand yaxis, which inturn
have attributes that contain all the properties of the lines, ticks, and labels that make up
the axes.

Major and Minor Ticks

Within each axis, there is the concept of a major tick mark and a minor tick mark. Asthe
names would imply, major ticks are usually bigger or more pronounced, while minor ticks
are usually smaller. By default, Matplotlib rarely makes use of minor ticks, but one place
you can see them is within logarithmic plots (Figure):

In[1]: %matplotlib inline

import as
plt.style.use('seaborn-
whitegrid')import as

In[2]: ax = plt.axes(xscale="log', yscale='log')

107 10° 10° 10+ 107 107 10!

Figure . Example of logarithmic scales and labels

We see here that each major tick shows a large tick mark and a label, while each
minor tick shows a smaller tick mark with no label.

We can customize these tick properties—that is, locations and labels—by
setting the formatter and locator objects of each axis. Let’s examine these for the x
axis of the plot just shown:

In[3]:
print(ax.xaxis.get_major_locator(

)
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print(ax.xaxis.get_minor_locator

()
<matplotlib.ticker.LoglLocator object at 0x107530cc0>
<matplotlib.ticker.LogLocator object at 0x107530198>

In[4]:
print(ax.xaxis.get_major_formatter

0)

print(ax.xaxis.get_minor_formatte

r())
<matplotlib.ticker.LogFormatterMathtext object at 0x107512780>
<matplotlib.ticker.NullFormatter object at 0x10752dc18>

We see that both major and minor tick labels have their locations specified by a
LoglLocator (which makes sense for a logarithmic plot). Minor ticks, though, have
their labels formatted by a NullFormatter; this says that no labels will be shown.

We'll now show a few examples of setting these locators and formatters for various plots.
Hiding Ticks or Labels

Perhaps the most common tick/label formatting operation is the act of hiding ticks or
labels. We can do this using plt.NullLocator() and plt.NullFormatter(), asshown here.

In[5]: ax = plt.axes()
ax.plot(np.random.rand(50))

ax.yaxis.set_major_locator(plt.NullLocator())
ax.xaxis.set_major_formatter(plt.NullFormattr())

Figure . Plot with hidden tick labels (x-axis) and hidden ticks (y-axis)
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Notice that we’ve removed the labels (but kept the ticks/gridlines) from the x axis, and
removed the ticks (and thus the labels as well) from the y axis. Having no ticks atall can
be useful in many situations—for example, when you want to show a grid of images. For
instance, consider Figure below, which includes images of different faces, an example
often used in supervised machine learning problems.

In[6]: fig, ax = plt.subplots(5, 5, figsize=(5, 5))
fig.subplots_adjust(hspace=0, wspace=0)

# Get some face data from scikit-learn

from sklearn.datasets import fetch_olivetti_faces faces =
fetch_olivetti_faces().images

for iin range(5):
for jin range(5):

ax[i, jl.xaxis.set_major_locator(plt.NullLocator())
ax[i, j]l.yaxis.set_major_locator(plt.NullLocator())
ax[i, jl.imshow(faces[10 * i + j], cmap="bone")

e e
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Figure. Hiding ticks within image plots

Notice that each image has its own axes, and we’ve set the locators to null because the
tick values (pixel number in this case) do not convey relevant information for this
particular visualization.

Reducing or Increasing the Number of Ticks

One common problem with the default settings is that smaller subplots can end up with
crowded labels. We can see this in the plot grid shown in Figure .
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In[7]: fig, ax = plt.subplots(4, 4, sharex=True, sharey=True)

CoOpoo-SooooDSonooo toooDoS
e = e S = Y

00020406081000020406081.000020406081.000020406081.0

Figure 4-76. A default plot with crowded ticks

Particularly for the x ticks, the numbers nearly overlap, making them quite difficult to
decipher. We can fix this with the plt.MaxNLocator(), which allows us to specify the
maximum number of ticks that will be displayed. Given this maximum number, Mat-
plotlib will use internal logic to choose the particular tick locations (Figure )

In[8]: # For every axis, set the x and y major locator
for axi in ax.flat:
axi.xaxis.set_major_locator(plt.MaxNLocator
(3))

axi.yaxis.set_major_locator(plt.MaxNLocator

(3))
fig
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Figure . Customizing the number of ticks

This makes things much cleaner. If you want even more control over the
locations of regularly spaced ticks, you might also use plt.MultipleLocator, which
we’ll discussin the following section.
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Fancy Tick Formats

Matplotlib’s default tick formatting can leave a lot to be desired; it works well as a broad
default, but sometimes you’d like to do something more. Consider the plot shown in
Figure below, a sine and a cosine:

In[9]: # Plot a sine and cosine curve
fig, ax = plt.subplots()

x = np.linspace(0, 3 * np.pi, 1000)
ax.plot(x, np.sin(x), lw=3, label='Sine")
ax.plot(x, np.cos(x), lw=3, label='Cosine')

# Set up grid, legend, and
limitsax.grid(True)
ax.legend(frameon=False)
ax.axis('equal')

ax.set_xlim(0, 3 * np.pi);

—SinE
w— Cosine

Figure. A default plot with integer ticks

There are a couple changes we might like to make. First, it’s more natural for this datato
space the ticks and grid lines in multiples of 7. We can do this by setting a Multi
pleLocator, which locates ticks at a multiple of the number you provide. For good
measure, we’ll add both major and minor ticks in multiples of r7/4:
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In[10]: ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi /

2))

ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi /

—SinE
w— Cosine

4))fig

Figure. Ticks at multiples of pi/2

But now these tick labels look a little bit silly: we can see that they are multiples of ,but
the decimal representation does not immediately convey this. To fix this, we can change
the tick formatter. There’s no built-in formatter for what we want to do, so we’ll instead
use plt.FuncFormatter, which accepts a user-defined function giving fine-grained control

over the tick outputs:
In[11]: def format_func(value, tick_number):
# find number of multiples of pi/2
N = int(np.round(2 * value / np.pi))
if N==0:
return "0"
elif N==1:
return r"S\pi/2S"
elif N==2:
return r"S\pi$"
elif N%2>0:
return r"${0}\pi/2S" .format(N)
else:
return r"S{0}\piS".format(N // 2)
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ax.xaxis.set_major_formatter(plt.FuncFormatter(format
_func)) fig

3
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Figure. Ticks with custom labels

This is much better! Notice that we’ve made use of Matplotlib’s LaTeX support, speci-fied
by enclosing the string within dollar signs. This is very convenient for display of
mathematical symbols and formulae; in this case, "S\pi$" is rendered as the Greek
character .

The plt.FuncFormatter()offers extremely fine-grained control over the appearanceof your
plot ticks, and comes in very handy when you’re preparing plots for presenta-tion or
publication.

Summary of Formatters and Locators

We've mentioned a couple of the available formatters and locators. We'll conclude this
section by briefly listing all the built-in locator and formatter options. For more
information on any of these, refer to the docstrings or to the Matplotlib online docu-
mentation. Each of the following is available in the pltnamespace:

Locator class Description

NullLocator No ticks

FixedLocator Tick locations are fixed

IndexLocator Locator for index plots (e.g., where x = range(len(y)))

Locator class Description
LinearLocator Evenly spaced ticks from minto max

LoglLocator Logarithmically ticks from min to max
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MultipleLocator  Ticks and range are a multiple of base
MaxNLocator Finds up to a max number of ticks at nice
locationsAutoLocator (Default) MaxNLocator with

simple defaults AutoMinorLocator Locator for minor ticks

Formatter class Description

NullFormatter No labels on the ticks
IndexFormatter Set the strings from a list of labels
FixedFormatter Set the strings manually for the
labelsFuncFormatter User-defined function sets the
labels FormatStrFormatter Use a format string for
each value ScalarFormatter (Default)
Formatter for scalar values LogFormatter

Default formatter for log axes

WEe’'ll see additional examples of these throughout the remainder of the book.
Customizing Matplotlib: Configurations and Stylesheets

Matplotlib’s default plot settings are often the subject of complaint among its users.

While much is slated to change in the 2.0 Matplotlib release, the ability to customize
default settings helps bring the package in line with your own aesthetic preferences.

Here we’ll walk through some of Matplotlib’s runtime configuration (rc) options, andtake
a look at the newer stylesheets feature, which contains some nice sets of default
configurations.

Plot Customization by Hand

Throughout this chapter, we’ve seen how it is possible to tweak individual plot set- tings
to end up with something that looks a little bit nicer than the default. It’s possi- ble to do
these customizations for each individual plot. For example, here is a fairly drab default
histogram:

In[1]: import matplotlib.pyplot as plt
plt.style.use('classic')

import numpy as np

Page 306 of 580



%matplotlib inline

In[2]: x =
np.random.randn(1000

250

200

150

100

)plt.hist(x);

Figure . A histogram in Matplotlib’s default style

We can adjust this by hand to make it a much more visually pleasing plot,

shown in Figure:

In[3]: # use a gray background

ax =
plt.axes(axisbg="HEGEGEG')
ax.set_axisbelow(True)

# draw solid white grid lines

plt.grid(color='w', linestyle='solid")

# hide axis spines

for spinein
ax.spines.values():
spine.set_visible(False)

# hide top and right ticks
ax.xaxis.tick_bottom()
ax.yaxis.tick_left()
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# lighten ticks and labels
ax.tick_params(colors='gray’,
direction='out')for tick in
ax.get_xticklabels():

tick.set_color('gray')

for tick in ax.get_yticklabels():
tick.set_color('gray')

# control face and edge color of histogram

ax.hist(x, edgecolor="#E6EGEG', color="#EE6666');
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Figure . A histogram with manual customizations

This looks better, and you may recognize the look as inspired by the look of the R
language’s ggplot visualization package. But this took a whole lot of effort! We defi- nitely do
not want to have to do all that tweaking each time we create a plot. Fortu- nately, there
is a way to adjust these defaults once in a way that will work for all plots.

Changing the Defaults: rcParams

Each time Matplotlib loads, it defines a runtime configuration (rc) containing the default
styles for every plot element you create. You can adjust this configuration at any time
using the plt.rcconvenience routine. Let’s see what it looks like to modifythe rc
parameters so that our default plot will look similar to what we did before.

We'll start by saving a copy of the current rcParams dictionary, so we can easily reset these
changes in the current session:

In[4]: IPython_default = plt.rcParams.copy()
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Now we can use the plt.rcfunction to change some of these settings:

In[5]: from matplotlib import
cyclercolors = cycler('color’,

['HEE6666', '#3388BB', '#9988DD’,
'"HEECC55', '#88BB44', '#FFBBBB'])

plt.rc('axes', facecolor="#EGEGEG',
edgecolor="none',axisbelow=True,
grid=True, prop_cycle=colors)

plt.rc('grid’, color="w', linestyle="solid')
plt.rc('xtick’, direction="out', color="gray"')
plt.rc('ytick’, direction="'out', color="gray')
plt.rc('patch’, edgecolor="HEGEGEG')
plt.rc('lines’, linewidth=2)

In[6]: plt.hist(x);

With these settings defined, we can now create a plot and see our settings in action.
250
200
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50
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Figure 4-83. A customized histogram using rc settings

Let’s see what simple line plots look like with these rcparameters:

In[7]: foriin range(4):
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plt.plot(np.random.rand(10))

Figure. A line plot with customized styles

Stylesheets

The version 1.4 release of Matplotlib in August 2014 added a very convenient style
module, which includes a number of new default stylesheets, as well as the ability to
create and package your own styles. These stylesheets are formatted similarly tothe
.matplotlibrc files mentioned earlier, but must be named with a .mplstyle extension.
Even if you don’t create your own style, the stylesheets included by default are extremely
useful. The available styles are listed in plt.style.available—here I'll list only the first five for
brevity:
In[8]: plt.style.available[:5]
Out[8]: [fivethirtyeight',
'seaborn-pastel’,
'seaborn-
whitegrid','ggplot’,
'grayscale']

The basic way to switch to a stylesheet is to call:

plt.style.use('stylename’')

But keep in mind that this will change the style for the rest of the session! Alterna- tively,
you can use the style context manager, which sets a style temporarily:
with
plt.style.context('stylename'):
make_a_plot()

Let’s create a function that will make two basic types of plot:
In[9]: def hist_and_lines():
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np.random.seed(0)

fig, ax = plt.subplots(1, 2, figsize=(11, 4))
ax[0].hist(np.random.randn(1000))

foriinrange(3):
ax[1].plot(np.random.rand(1
0))

ax[1].legend(['a’, 'b’, 'c'], loc="lower left')

WEe'll use this to explore how these plots look using the various built-in styles.

Default style

The default style is what we’ve been seeing so far throughout the book; we’ll
start withthat. First, let’s reset our runtime configuration to the notebook
default:

In[10]: # reset rcParams
plt.rcParams.update(IPython_default);

Now let’s see how it looks:

In[11]: hist_and_lines()
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Figure. Matplotlib’s default style

FiveThirtyEight style

The FiveThirtyEight style mimics the graphics found on the popular FiveThirtyEight
website. As you can see in Figure, it is typified by bold colors, thick lines, and transparent
axes.
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In[12]: with plt.style.context('fivethirtyeight'):
hist_and_lines()
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Figure. The FiveThirtyEight style

ggplot

The ggplotpackage in the R language is a very popular visualization tool.
Matplot-lib’s ggplotstyle mimics the default styles from that package:

In[13]: with plt.style.context('ggplot'):
hist_and_lines()
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Figure. The ggplot style

Bayesian Methods for Hackers style

There is a very nice short online book called Probabilistic Programming and
BayesianMethods for Hackers; it features figures created with Matplotlib, and
uses a nice set ofrcparameters to create a consistent and visually appealing style
throughout the book.This style is reproduced in the bmhstylesheet:
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In[14]: with
plt.style.context('bmh’):
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hist_and_lines()
Figure. The bmh style

Dark background

For figures used within presentations, it is often useful to have a dark rather than lightbackground.
The dark_backgroundstyle provides this:
In[15]: with
plt.style.context('dark_background'
):hist_and_lines()

Figure . The dark_background style

Grayscale

Sometimes you might find yourself preparing figures for a print publication that doesnot
accept color figures. For this, the grayscale style, shown in Figure, can bevery useful:
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In[16]: with plt.style.context('grayscale'):
hist_and_lines()
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Figure 4-90. The grayscale style

Seaborn style

Matplotlib also has stylesheets inspired by the Seaborn library (discussed more fully in
“Visualization with Seaborn” ). As we will see, these styles are loadedautomatically when
Seaborn is imported into a notebook. I've found these settings to be very nice, and tend
to use them as defaults in my own data exploration:

In[17]: import seaborn

hist_and_lines()
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Figure. Seaborn’s plotting style

With all of these built-in options for various plot styles, Matplotlib becomes much more
useful for both interactive visualization and creation of figures for publication.
Throughout this book, | will generally use one or more of these style conventions when
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creating plots.
Day-05: Three-Dimensional Plotting in Matplotlib

Matplotlib was initially designed with only two-dimensional plotting in mind. Around the
time of the 1.0 release, some three-dimensional plotting utilities were built on top of
Matplotlib’s two-dimensional display, and the result is a convenient (ifsomewhat limited)
set of tools for three-dimensional data visualization. We enable three-dimensional plots
by importing the mplot3d toolkit, included with the main Matplotlib installation:

In[1]: from import mplot3d

Once this submodule is imported, we can create a three-dimensional axes by passing the
keyword projection="'3d'to any of the normal axes creation routines:
In[2]: %matplotlib inline
import as
import as
In[3]: fig = plt.figure()

ax = plt.axes(projection='3d')

08 ., oo

Figure. An empty three-dimensional axes

With this 3D axes enabled, we can now plot a variety of three-dimensional plot types.
Three-dimensional plotting is one of the functionalities that benefits immensely from
viewing figures interactively rather than statically in the notebook; recall that to use
interactive figures, you can use %matplotlib notebook rather than %matplotlib inline
when running this code.

Three-Dimensional Points and Lines

The most basic three-dimensional plot is a line or scatter plot created from sets of (x, y, z)
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triples. In analogy with the more common two-dimensional plots discussed ear- lier, we
can create these using the ax.plot3D and ax.scatter3D functions. The call signature for
these is nearly identical to that of their two-dimensional counterparts,so you can refer
to “Simple Line Plots” and for more information on controlling the output. Here we'll plot
a trigono- metric spiral, along with some points drawn randomly near the line:

In[4]: ax = plt.axes(projection='3d")

# Data for a three-dimensional
linezline = np.linspace(0, 15, 1000)
xline = np.sin(zline)

yline = np.cos(zline)
ax.plot3D(xline, yline, zline, 'gray’)
# Data for three-dimensional scattered points

zdata = 15 * np.random.random(100)

xdata = np.sin(zdata) + 0.1 *
np.random.randn(100)ydata = np.cos(zdata) +
0.1 * np.random.randn(100)

ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');

Figure. Points and lines in three dimensions

Notice that by default, the scatter points have their transparency adjusted to give a sense
of depth on the page. While the three-dimensional effect is sometimes difficult to see
within a static image, an interactive view can lead to some nice intuition about the layout

of the points.

Three-Dimensional Contour Plots

Analogous to the contour plots we explored in “Density and Contour Plots” , mplot3d
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contains tools to create three-dimensional relief plots using the same inputs. Like two-
dimensional ax.contour plots, ax.contour3D requires all the inputdata to be in the form of
two-dimensional regular grids, with the Z data evaluated at each point. Here we’ll show a
three-dimensional contour diagram of a three- dimensional sinusoidal function:

In[5]: def f(x, y):

return np.sin(np.sqrt(x ** 2 +y ** 2))

x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x,
y)Z=1(X,Y)

In[6]: fig = plt.figure()

ax = plt.axes(projection='3d")
ax.contour3D(X, Y, Z, 50,
cmap="'binary')ax.set_xlabel('x")

ax.set_ylabel('y')
ax.set_zlabel('z");
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Figure. A three-dimensional contour plot

Sometimes the default viewing angle is not optimal, in which case we can use the
view_init method to set the elevation and azimuthal angles. In this example (the result of
which is shown in Figure ), we’ll use an elevation of 60 degrees (that is,60 degrees above
the x-y plane) and an azimuth of 35 degrees (that is, rotated 35 degrees counter-
clockwise about the z-axis):

In[7]: ax.view_init(60, 35)
fig

Figure. Adjusting the view angle for a three-dimensional plot

Again, note that we can accomplish this type of rotation interactively by clicking
and dragging when using one of Matplotlib’s interactive backends.

Wireframes and Surface Plots

Two other types of three-dimensional plots that work on gridded data are wireframes
and surface plots. These take a grid of values and project it onto the specified three-
dimensional surface, and can make the resulting three-dimensional forms quite easy to
visualize. Here’s an example using a wireframe (Figure ):

In[8]: fig = plt.figure()
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ax = plt.axes(projection='3d")
ax.plot_wireframe(X, Y, Z,
color="black')ax.set_title('wireframe');

wireframe
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-05

-1.0

Figure. A wireframe plot

A surface plot is like a wireframe plot, but each face of the wireframe is a filled poly-gon.
Adding a colormap to the filled polygons can aid perception of the topology of the
surface being visualized .
In[9]: ax = plt.axes(projection='3d")
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap="viridis',
edgecolor="none')ax.set_title('surface');

surface
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Figure. A three-dimensional surface plot

Note that though the grid of values for a surface plot needs to be two-dimensional, it
need not be rectilinear. Here is an example of creating a partial polar grid, which when
used with the surface3D plot can give us a slice into the function we’re visualizing .

In[10]: r = np.linspace(0, 6, 20)

theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40)
r, theta = np.meshgrid(r, theta)
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X =r * np.sin(theta)
Y =r * np.cos(theta)
Z=1(X,Y)

ax = plt.axes(projection='3d")
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

cmap='viridis', edgecolor="none');

Figure. A polar surface plot

Surface Triangulations

For some applications, the evenly sampled grids required by the preceding routines are
overly restrictive and inconvenient. In these situations, the triangulation-based plots can
be very useful. What if rather than an even draw from a Cartesian or a polargrid, we
instead have a set of random draws?

In[11]: theta = 2 * np.pi *
np.random.random(1000) r = 6 *
np.random.random(1000)

x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z=f(x,y)

We could create a scatter plot of the points to get an idea of the surface we're
samplingfrom:

In[12]: ax = plt.axes(projection="'3d")

ax.scatter(x, y, z, c=z, cmap="viridis', linewidth=0.5);
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Figure. A three-dimensional sampled surface

This leaves a lot to be desired. The function that will help us in this case is ax.plot_trisurf,
which creates a surface by first finding a set of triangles formed between adjacent points
(the result is shown in Figure ; remember that x, y, andzhere are one-dimensional arrays):

In[13]: ax = plt.axes(projection='3d')
ax.plot_trisurf(x, v, z,

cmap='"viridis', edgecolor='none');
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Figure. A triangulated surface plot

The result is certainly not as clean as when it is plotted with a grid, but the flexibility of
such a triangulation allows for some really interesting three-dimensional plots. For
example, it is actually possible to plot a three-dimensional Mobius strip using this, aswe’ll
see next.

Example: Visualizing a Mdbius strip

A Mobius strip is similar to a strip of paper glued into a loop with a half-twist. Topo-
logically, it’s quite interesting because despite appearances it has only a single side! Here
we will visualize such an object using Matplotlib’s three-dimensional tools. Thekey to
creating the Mobius strip is to think about its parameterization: it’s a two-
dimensional strip, so we need two intrinsic dimensions. Let’s call them &, which ranges
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from 0 to 27t around the loop, and w which ranges from —1 to 1 across the width of the
strip:

In[14]: theta = np.linspace(0, 2 * np.pi, 30)
w = np.linspace(-0.25, 0.25, 8)

w, theta = np.meshgrid(w, theta)

Now from this parameterization, we must determine the (x, y, z) positions of the
embedded strip.

Thinking about it, we might realize that there are two rotations happening: one is the
position of the loop about its center (what we’ve called ), while the other is the twist-ing
of the strip about its axis (we’ll call this ¢). For a Mdbius strip, we must have the strip
make half a twist during a full loop, or A¢ = AG/2.

In[15]: phi = 0.5 * theta

Now we use our recollection of trigonometry to derive the three-dimensional embed-
ding. We'll define r, the distance of each point from the center, and use this to find the
embedded x, y, z co(ordinz;tes:

In[16]: # radius in x-y plane
r=1+w * np.cos(phi)

x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))

Finally, to plot the object, we must make sure the triangulation is correct. The best way
to do this is to define the triangulation within the underlying parameterization, and then
let Matplotlib project this triangulation into the three-dimensional space of the Mdbius
strip. This can be accomplished as follows:

In[17]: # triangulate in the underlying
parameterization

from import Triangulation

tri = Triangulation(np.ravel(w), np.ravel(theta))

ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles,

cmap="viridis', linewidths=0.2);

ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1);
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Figure. Visualizing a Mébius strip

Combining all of these techniques, it is possible to create and display a wide variety of
three-dimensional objects and patterns in Matplotlib.
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Week 5: Data visualization with Seaborn

Day-01: Visualization with Seaborn

Matplotlib has proven to be an incredibly useful and popular visualization tool, but even
avid users will admit it often leaves much to be desired. There are several valid
complaints about Matplotlib that often come up:

¢ Prior to version 2.0, Matplotlib’s defaults are not exactly the best choices. It
was based off of MATLAB circa 1999, and this often shows.

e Matplotlib’s APl is relatively low level. Doing sophisticated statistical
visualiza- tion is possible, but often requires a /ot of boilerplate code.

¢ Matplotlib predated Pandas by more than a decade, and thus is not
designed for use with Pandas DataFrames. In order to visualize data from a
Pandas DataFrame,you must extract each Series and often concatenate
them together into the right format. It would be nicer to have a plotting
library that can intelligently use the DataFramelabels in a plot.

An answer to these problems is Seaborn. Seaborn provides an APl on top of Matplot-lib
that offers sane choices for plot style and color defaults, defines simple high-level
functions for common statistical plot types, and integrates with the functionality pro-
vided by Pandas DataFrames.

Seaborn Versus Matplotlib

Here is an example of a simple random-walk plot in Matplotlib, using its classic plot
formatting and colors. We start with the typical imports:

In[1]: import as
plt.style.use('classic')

%matplotlib inline

import as
import

as

Now we create some random walk data:
In[2]: # Create some data

rng =
np.random.RandomState(0)
x = np.linspace(0, 10, 500)
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y = np.cumsum(rng.randn(500, 6), 0)
And do a simple plot (Figure ):
In[3]: # Plot the data with Matplotlib defaults

plt.plot(x, y)
plt.legend('ABCDEF', ncol=2, loc="upper left');

Figure. Data in Matplotlib’s default style

Although the result contains all the information we’d like it to convey, it does so in a way
that is not all that aesthetically pleasing, and even looks a bit old-fashioned in thecontext
of 21st-century data visualization.

Now let’s take a look at how it works with Seaborn. As we will see, Seaborn has manyof its
own high-level plotting routines, but it can also overwrite Matplotlib’s default
parameters and in turn get even simple Matplotlib scripts to produce vastly superior
output. We can set the style by calling Seaborn’s set() method. By convention, Sea- born is
imported as sns:

In[4]: import as
sns.set()
Now let’s rerun the same two lines as before (Figure):
In[5]: # same plotting code as above!

plt.plot(x, y)
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plt.legend('ABCDEF', ncol=2, loc='upper left');

0 2 4 6 8 10

Figure. Data in Seaborn’s default style

Exploring Seaborn Plots

The main idea of Seaborn is that it provides high-level commands to create a
variety of plot types useful for statistical data exploration, and even some
statistical model fitting.

Let’s take a look at a few of the datasets and plot types available in Seaborn. Note thatall
of the following could be done using raw Matplotlib commands (this is, in fact, what
Seaborn does under the hood), but the Seaborn APl is much more convenient.

Histograms, KDE, and densities

Often in statistical data visualization, all you want is to plot histograms and joint dis-
tributions of variables. We have seen that this is relatively straightforward in Matplot-lib
(Figure ):

In[6]: data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]],
size=2000)data = pd.DataFrame(data, columns=['x", 'y'])

for colin 'xy":

plt.hist(data[col], normed=True, alpha=0.5)
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Figure. Histograms for visualizing distributions

Rather than a histogram, we can get a smooth estimate of the distribution
using akernel density estimation, which Seaborn does with sns.kdeplot(Figure ):

In[7]: for col in 'xy":

sns.kdeplot(data[col], shade=True)

= = a = o = a - a 1o

Figure. Kernel density estimates for visualizing distributions

Histograms and KDE can be combined using distplot(Figure ):
In[8]: sns.distplot(data['x'])
sns.distplot(data['y'])
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030

Figure. Kernel density and histograms plotted together

If we pass the full two-dimensional dataset to kdeplot, we will get a two-
dimensionalvisualization of the data (Figure ):

In[9]: sns.kdeplot(data);

|

=2

-5 0 5 10

Figure. A two-dimensional kernel density plot

We can see the joint distribution and the marginal distributions together using
sns.jointplot. For this plot, we’ll set the style to a white background (Figure ):

In[10]: with sns.axes_style('white'):
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sns.jointplot("x", "y", data, kind="kde');

AN

pearsonr = 0.63; p = 2.9e-225

-2

-4

] o 5 10
X

Figure. A joint distribution plot with a two-dimensional kernel density estimate
There are other parameters that can be passed to jointplot—for example, we canuse a
hexagonally based histogram instead (Figure ):
In[11]: with sns.axes_style('white'):

sns.jointplot("x", "y", data, kind="hex')

4 pearsonr = 0.63; p = 2.9e-225

@

-6 -4 -2 0 2 4 6 B8
x

Figure. A joint distribution plot with a hexagonal bin representation

Page 329 of 580



Pair plots

When you generalize joint plots to datasets of larger dimensions, you end up
with pair plots. This is very useful for exploring correlations between
multidimensional data, when you’d like to plot all pairs of values against each
other.

We’ll demo this with the well-known Iris dataset, which lists measurements of petals and
sepals of three iris species:

In[12]: iris = sns.load_dataset("iris"
iris.head()

Out|12]sepal_length ?Iepal_widt Retal_lengt ﬁetal_widt specie
: S

0 5.1 3.5 1.4 0.2 setos
a
1 49 3.0 1.4 0.2 setos
a
2 4.7 3.2 1.3 0.2 setos
a
3 46 3.1 1.5 0.2 setos
4 5.0 3.6 14 0.2 seZos

Visualizing the multidimensional relationships among the samples is as easy as call-ing
sns.pairplot:
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In[13]: sns.pairplot(iris, hue="species’, size=2.5);
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Figure. A pair plot showing the relationships between four variables

Faceted histograms

Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid
makes this extremely simple. We'll take a look at some data that shows the amount that
restaurant staff receive in tips based on various indicator data (Figure ):

In[14]: tips = sns.load_dataset('tips')

tips.head()
Out|14|total_bill tip sex smok da time size
: er y
0 1.0 Femal No Su Dinne 2
16.9 1 e nr
9
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1 1.6 Male No Su Dinne 3
10.3 6 nr

4

2 3.5 Male No Su Dinne 3

1 21.0 0 nr

3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

In[15]: tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill']

grid = sns.FacetGrid(tips, row="sex", col="time",
margin_titles=True)grid.map(plt.hist, "tip_pct",
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bins=np.linspace(0, 40, 15));
Figure. An example of a faceted histogram

Factor plots

Factor plots can be useful for this kind of visualization as well. This allows you to view the
distribution of a parameter within bins defined by any other parameter (Figure ):

In[16]: with sns.axes_style(style="ticks"):

g = sns.factorplot("day", "total_bill", "sex", data=tips, kind="box")
g.set_axis_labels("Day", "Total Bill");
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Figure. An example of a factor plot, comparing distributions given various discrete
factors
Joint distributions

Similar to the pair plot we saw earlier, we can use sns.jointplot to show the joint
distribution between different datasets, along with the associated marginal distribu-
tions (Figure ):

In[17]: with sns.axes_style('white'):

sns.jointplot("total_bill", "tip", data=tips, kind="hex')

10
pearsonr = 0.68; p = 6.7e-34

tip

10 20 30 40 50
total_bill

Figure. A joint distribution plot

The joint plot can even do some automatic kernel density estimation and regression
(Figure ):
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In[18]: sns.jointplot("total_bill", "tip", data=tips, kind="reg');

A

pearsonr = 0.68; p = 6.7e-34

fip

-10 0 10 20 30 40 50 60
total_bill

Figure. A joint distribution plot with a regression fit

Bar plots

Time series can be plotted with sns.factorplot. In the following example
(visualizedin Figure )

In[19]: planets =
sns.load_dataset('planets')
planets.head()

Out|19]: method gkjmb orbital_perio mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 200
1 Radial Velocity 1 874.774 2.21 56.95 gOO
2 Radial Velocity 1 763.000 2.60 19.84 201
3 Radial Velocity 1 326.030 19.40 110.62 ;OO
4 Radial Velocity 1 516.220 10.50 119.47 éOO

In[20]: with sns.axes_style('white'):

g = sns.factorplot("year", data=planets, aspect=2,
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kind="count",
color='steelblue')g.set_xticklabels(step=5)

200
150

5 100
8

1989 1997 2002 2007 2012
year

Figure 4-124. A histogram as a special case of a factor plot

We can learn more by looking at the method of discovery of each of these planets, as
illustrated in following Figure:

In[21]: with sns.axes_style('white'):

g = sns.factorplot("year", data=planets, aspect=4.0,
kind='count',hue="method’,
order=range(2001, 2015))

g.set_ylabels('Number of Planets Discovered')

o
2001 202 03 204 005 006 207 08 208 00 011 012 m3 w14

Figure . Number of planets discovered by year and type

Example: Exploring Marathon Finishing Times

Here we’ll look at using Seaborn to help visualize and understand finishing results from a
marathon. I've scraped the data from sources on the Web, aggregated it and removed
any identifying information, and put it on GitHub where it can be downloa- ded (if you
are interested in using Python for web scraping, | would recommend WebScraping with
Python by Ryan Mitchell). We will start by downloading the data fromthe Web, and
loading it into Pandas:
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In[22]:

# Ilcurl -O
https://raw.githubusercontent.com/jakevdp/marathon-
data/# master/marathon-data.csv

In[23]: data = pd.read_csv('marathon-
data.csv')data.head()

Out[23]: age gender split final
0 33 M 01:05:38
02:08:51

1 32 M 01:06:26 02:09:28
2 31 M 01:06:49 02:10:42
3 38 M 01:06:16 02:13:45
4 31 M 01:06:32 02:13:59

By default, Pandas loaded the time columns as Python strings (type object); we cansee
this by looking at the dtypesattribute of the DataFrame:

In[24]: data.dtypes
Out[24]: age
int6

gender object
split object

final
objec
tdtype: object

Let’s fix this by providing a converter for the times:
In[25]: def convert_time(s):
h, m, s = map(int, s.split(":"))

return pd.datetools.timedelta(hours=h, minutes=m, seconds=s)

data = pd.read_csv('marathon-data.csv',
converters={'split":convert_time, 'final':convert_time})
data.head()



Out|25] ag gender split tinal
: e

0 3 MO01:05:3802:08:51

1 z M 01:06:26 02:09:28

2 ; M 01:06:49 02:10:42

3 i M 01:06:16 02:13:45
8

4 % M 01:06:32 02:13:59
In[26]: data.dtypes
Out[26]: age int64
gender object

split  timedelta64[ns]
final  timedeltab4[ns]
dtype: object

That looks much better. For the purpose of our Seaborn plotting utilities, let’s
nextadd columns that give the times in seconds:

In[27]: data['split_sec'] = data['split'].astype(int) / 1E9
data['final_sec'] = data['final'].astype(int) / 1E9
data.head()

Out|27]age gender split tinal split_sec final_sec

0 M 01:05:38 02:08:51  3938.0 7731.0

3

3

1 M 01:06:26 02:09:28 3986.0 7768.0
3

2

2 M 01:06:49 02:10:42  4009.0 7842.0
3

1

3 M 01:06:16 02:13:45 3976.0 8025.0
3

8

4 3 M 01:06:32 02:13:59 3992.0 8039.0



To get an idea of what the data looks like, we can plot a jointplotover the
data(Figure ):

In[28]: with sns.axes_style('white'):

g = sns.jointplot("split_sec", "final_sec", data, kind="hex')
g.ax_joint.plot(np.linspace(4000, 16000),

np.linspace(8000, 32000), ":k")

35000 pearsonr =096, p=0

30000

25000

final_sec

20000
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4000 6000 8000 10000 12000 14000 16000 18000
split_sec

Figure 4-126. The relationship between the split for the first half-marathon and the
fin-ishing time for the full marathon

The dotted line shows where someone’s time would lie if they ran the marathon at a
perfectly steady pace. The fact that the distribution lies above this indicates (as you might
expect) that most people slow down over the course of the marathon. If you have run
competitively, you’ll know that those who do the opposite—run faster dur- ing the
second half of the race—are said to have “negative-split” the race.

Let’s create another column in the data, the split fraction, which measures the degree to
which each runner negative-splits or positive-splits the race:

In[29]: data['split_frac'] =1 - 2 * data['split_sec'] / data['final_sec']
data.head()
Out|29]age gender split final split_sec final_sec split_frac

0 M 01:05:38 02:08:51  3938.0 7731.0 -
3 0.01875



3 6

1 M 01:06:26 02:09:28 3986.0 7768.0 -
3 0.02626
2 2
2 M 01:06:49 02:10:42  4009.0 7842.0 -
3 0.02244
1 3
3 M 01:06:16 02:13:45 3976.0 8025.0 0.0090
3 97
8
4 3 M 01:06:32 02:13:59 3992.0 8039.0 0.%(%68
1

Where this split difference is less than zero, the person negative-split the race
by thatfraction. Let’s do a distribution plot of this split fraction (Figure ):

In[30]: sns.distplot(data['split_frac'], kde=False);
plt.axvline(0, color="k", linestyle="--");
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Figure . The distribution of split fractions; 0.0 indicates a runner who completedthe
first and second halves in identical times

In[31]: sum(data.split_frac <
0)Out[31]: 251

Out of nearly 40,000 participants, there were only 250 people who negative-split their
marathon.



Let’s see whether there is any correlation between this split fraction and other vari-
ables. We'll do this using a pairgrid, which draws plots of all these correlations (Figure ):

In[32]:

g = sns.PairGrid(data, vars=['age’, 'split_sec', 'final_sec', 'split_frac'],
hue='gender’, palette='RdBu_r')

g.map(plt.scatter,
alpha=0.8)g.add_legend();
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Figure . The relationship between quantities within the marathon dataset

It looks like the split fraction does not correlate particularly with age, but does corre- late
with the final time: faster runners tend to have closer to even splits on their mara-thon
time. (We see here that Seaborn is no panacea for Matplotlib’s ills when it comesto plot
styles: in particular, the x-axis labels overlap. Because the output is a simple Matplotlib
plot, however, the methods in “Customizing Ticks” can be used to adjust such things if



desired.)

The difference between men and women here is interesting. Let’s look at the histo- gram
of split fractions for these two groups (Figure ):

In[33]: sns.kdeplot(data.split_frac[data.gender=="M'], label="men’,
shade=True) sns.kdeplot(data.split_frac[data.gender=="W'],
label="'women', shade=True)plt.xlabel('split_frac');
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— men

women
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split_frac

Figure . The distribution of split fractions by gender

The interesting thing here is that there are many more men than women who are
running close to an even split! This almost looks like some kind of bimodal distribu- tion
among the men and women. Let’s see if we can suss out what’s going on by look-ing at the
distributions as a function of age.

A nice way to compare distributions is to use a violin plot (Figure :
In[34]:

sns.violinplot("gender", "split_frac", data=data,

palette=["lightblue", "lightpink"]);
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Figure . A violin plot showing the split fraction by gender

This is yet another way to compare the distributions between men and women.

Let’s look a little deeper, and compare these violin plots as a function of age. We’ll start
by creating a new column in the array that specifies the decade of age that each person is

in (Figure ):

In[35]: data['age_dec'] = data.age.map(lambda age: 10 * (age //
10))data.head()

Out[35]:

0

1
2
3
4

In[36]:

33
30

32
31
38
31

age gender split

M 01:05:38 02:08:51

M 01:06:26 02:09:28
M 01:06:49 02:10:42
M 01:06:16 02:13:45
M 01:06:32 02:13:59

men = (data.gender =='M’)
women = (data.gender ==
le)

3938.0

3986.0
4009.0
3976.0
3992.0

7731.0 -0.018756

7768.0 -0.026262
7842.0 -0.022443
8025.0 0.009097
8039.0 0.006842

final split_sec final_sec split frac age dec

30
30
30
30




with sns.axes_style(style=None):

sns.violinplot("age_dec", "split_frac", hue="gender",
data=data,split=True, inner="quartile",
palette=["lightblue", "lightpink"]);
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Figure . A violin plot showing the split fraction by gender and age

Looking at this, we can see where the distributions of men and women differ: the split
distributions of men in their 20s to 50s show a pronounced over-density toward
lower splits when compared to women of the same age (or of any age, for that matter).

Also surprisingly, the 80-year-old women seem to outperform everyone in terms of their
split time. This is probably due to the fact that we’re estimating the distribution from
small numbers, as there are only a handful of runners in that range:

In[38]: (data.age >

80).sum()Out[38]: 7

Back to the men with negative splits: who are these runners? Does this split
fraction correlate with finishing quickly? We can plot this very easily. We'll use
regplot, which will automatically fit a linear regression to the data (Figure ):

In[37]: g = sns.Implot('final_sec', 'split_frac', col='gender’, data=data,



markers=".",
scatter_kws=dict(color="c'))g.map(plt.axhline, y=0.1,
color="k", Is=":");
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Figure . Split fraction versus finishing time by gender

Apparently the people with fast splits are the elite runners who are finishing within
~15,000 seconds, or about 4 hours. People slower than that are much less likely to have a
fast second split.

Day 02- Data Visualization on World Map- Geographic Data with Basemap

One common type of visualization in data science is that of geographic data. Matplot-lib’s
main tool for this type of visualization is the Basemap toolkit, which is one of several
Matplotlib toolkits that live under the mpl_toolkits namespace. Admittedly,Basemap
feels a bit clunky to use, and often even simple visualizations take much longer to render
than you might hope. More modern solutions, such as leaflet or the Google Maps API,
may be a better choice for more intensive map visualizations. Still,Basemap is a useful
tool for Python users to have in their virtual toolbelts. In this sec-tion, we’ll show several
examples of the type of map visualization that is possible withthis toolkit.

Installation of Basemap is straightforward; if you’re using conda you can type this
andthe package will be downloaded:

S conda install basemap
We add just a single new import to our standard boilerplate:

In[1]: %matplotlib inline

import numpy as np



import as
from import Basemap

Once you have the Basemap toolkit installed and imported, geographic plots are justa
few lines away (the graphics in Figure also require the PILpackage in Python2, or the
pillowpackage in Python 3):

In[2]: plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho', resolution=None, lat_0=50,
lon_0=-100)m.bluemarble(scale=0.5);

Figure. A “bluemarble” projection of the Earth

The meaning of the arguments to Basemap will be discussed momentarily.

The useful thing is that the globe shown here is not a mere image; it is a fully func-
tioning Matplotlib axes that understands spherical coordinates and allows us to easily
over-plot data on the map! For example, we can use a different map projection, zoomin
to North America, and plot the location of Seattle. We'll use an etopo image (whichshows
topographical features both on land and under the ocean) as the map back- ground
(Figure ):

In[3]: fig = plt.figure(figsize=(8, 8))



m = Basemap(projection='lcc’,
resolution=None,width=8E6,
height=8E6,
lat_0=45, lon_0=-

100,)m.etopo(scale=0.5,

alpha=0.5)

# Map (long, lat) to (x, y) for plotting
X,y =m(-122.3, 47.6)

plt.plot(x, y, 'ok', markersize=5)
plt.text(x, y, ' Seattle', fontsize=12);

Figure. Plotting data and labels on the map

This gives you a brief glimpse into the sort of geographic visualizations that are possi-ble
with just a few lines of Python. We'll now discuss the features of Basemap in moredepth,
and provide several examples of visualizing map data. Using these brief exam-ples as
building blocks, you should be able to create nearly any map visualization thatyou desire.
Map Projections

The first thing to decide when you are using maps is which projection to use. You're



probably familiar with the fact that it is impossible to project a spherical map, such asthat
of the Earth, onto a flat surface without somehow distorting it or breaking its continuity.
These projections have been developed over the course of human history, and there are
a lot of choices! Depending on the intended use of the map projection, there are certain
map features (e.g., direction, area, distance, shape, or other consider-ations) that are
useful to maintain.

The Basemap package implements several dozen such projections, all
referenced by ashort format code. Here we'll briefly demonstrate some of the
more common ones.

We'll start by defining a convenience routine to draw our world map along with
the longitude and latitude lines:

In[4]: from import chain
def draw_map(m, scale=0.2):
# draw a shaded-relief image
m.shadedrelief(scale=scale)
# lats and longs are returned as a dictionary
lats = m.drawparallels(np.linspace(-90, 90, 13))
lons = m.drawmeridians(np.linspace(-180, 180, 13))

# keys contain the plt.Line2D instances

lat_lines = chain(*(tup[1][0] for tup in lats.items()))
lon_lines = chain(*(tup[1][0] for tup in lons.items()))
all_lines = chain(lat_lines, lon_lines)

# cycle through these lines and set the desired style
for linein all_lines:
line.set(linestyle='-', alpha=0.3, color='w')

Cylindrical projections
The simplest of map projections are cylindrical projections, in which lines of constant
latitude and longitude are mapped to horizontal and vertical lines, respectively. This type
of mapping represents equatorial regions quite well, but results in extreme dis- tortions
near the poles. The spacing of latitude lines varies between different cylindri-cal

projections, leading to different conservation properties, and different distortion near the
poles. In Figure 4-104, we show an example of the equidistant cylindrical pro-jection, which



chooses a latitude scaling that preserves distances along meridians. Other cylindrical
projections are the Mercator (projection="merc') and the cylin- drical equal-area
(projection="cea') projections.

In[5]: fig = plt.figure(figsize=(8, 6), edgecolor='w')m
= Basemap(projection="cyl’,
resolution=None,

llcrnrlat=-90, urcrnrlat=90,
llernrlon=-180, urcrnrlon=180,
Jdraw_map(m)

Figure. Cylindrical equal-area projection

The additional arguments to Basemap for this view specify the latitude (lat) and lon-
gitude (lon) of the lower-left corner (llcrnr) and upper-right corner (urcrnr) for thedesired
map, in units of degrees.

Pseudo-cylindrical projections

Pseudo-cylindrical projections relax the requirement that meridians (lines of constant
longitude) remain vertical; this can give better properties near the poles of the projec-
tion. The Mollweide projection (projection='moll') is one common example ofthis, in
which all meridians are elliptical arcs (Figure ). It is constructed so as topreserve area
across the map: though there are distortions near the poles, the area of small patches
reflects the true area. Other pseudo-cylindrical projections are the sinusoidal
(projection="sinu') and Robinson (projection="robin') projections.

In[6]: fig = plt.figure(figsize=(8, 6), edgecolor='w')m
= Basemap(projection='moll’,
resolution=None,

lat_0=0, lon_0=0)



draw_map(m)

Figure. The Molleweide projection

The extra arguments to Basemap here refer to the central latitude (lat_0) and longi- tude
(lon_0) for the desired map.

Perspective projections

Perspective projections are constructed using a particular choice of perspective point,
similar to if you photographed the Earth from a particular point in space (a point which,
for some projections, technically lies within the Earth!). One common exam- ple is the
orthographic projection (projection="'ortho'), which shows one side of the globe as seen
from a viewer at a very long distance. Thus, it can show only half theglobe at a time. Other
perspective-based projections include the gnomonic projection (projection='gnom’') and
stereographic projection (projection='stere'). These areoften the most useful for showing
small portions of the map.

Here is an example of the orthographic projection:
In[7]: fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho’,
resolution=None,lat_0=50,
lon_0=0)draw_map(m);

Figure. The orthographic projection



Conic projections

A conic projection projects the map onto a single cone, which is then unrolled. This can
lead to very good local properties, but regions far from the focus point of thecone
may become very distorted. One example of this is the Lambert conformal conic
projection (projection='lcc'), which we saw earlier in the map of North America.lt
projects the map onto a cone arranged in such a way that two standard parallels
(specified in Basemap by lat_1 and lat_2) have well-represented distances, with scale
decreasing between them and increasing outside of them. Other useful conic projec-
tions are the equidistant conic (projection='eqdc') and the Albers equal-area (pro
jection="aea') projection (Figure 4-107). Conic projections, like perspective projections,
tend to be good choices for representing small to medium patches of the globe.

In[8]: fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc',
resolution=None, lon_0=0,
lat_0=50, lat_1=45,
lat_2=55,width=1.6E7,
height=1.2E7)

draw_map(m)

Figure. The Albers equal-area projection

Other projections

If you’re going to do much with map-based visualizations, | encourage you to read upon
other available projections, along with their properties, advantages, and disadvan- tages.
Most likely, they are available in the Basemap package. If you dig deep enoughinto this
topic, you'll find an incredible subculture of geo-viz geeks who will be readyto argue
fervently in support of their favorite projection for any given application!



Drawing a Map Background

Earlier we saw the bluemarble()and shadedrelief()methods for projecting globalimages
on the map, as well as the drawparallels() and drawmeridians() methods for drawing lines
of constant latitude and longitude. The Basemap package contains arange of useful
functions for drawing borders of physical features like continents, oceans, lakes, and
rivers, as well as political boundaries such as countries and US states and counties. The
following are some of the available drawing functions that you may wish to explore using
IPython’s help features:

¢ Physical boundaries and bodies of water
drawcoastlines()
Draw continental coast lines
drawlsmask()

Draw a mask between the land and sea, for use with projecting
images onone or the other drawmapboundary()
Draw the map boundary, including the fill color for oceans

drawrivers()
Draw rivers on the map
fillcontinents()
Fill the continents with a given color; optionally fill lakes with another color
e Political boundaries
drawcountries()
Draw country boundaries
drawstates()
Draw US state boundaries
drawcounties()
Draw US county boundaries
e Map features
drawgreatcircle()

Draw a great circle between two points



drawparallels()

Draw lines of constant latitude
drawmeridians()

Draw lines of constant longitude
drawmapscale()

Draw a linear scale on the map

¢ Whole-globe images

bluemarble()

Project NASA’s blue marble image onto the map
shadedrelief()

Project a shaded relief image onto the map
etopo()

Draw an etopo relief image onto the map
warpimage()

Project a user-provided image onto the mapFor the boundary-based features, you must set the
desired resolution when creating a Basemap image. The resolution argument of the Basemap class
sets the level of detail in boundaries, either 'c'(crude), 'l'(low), 'i'(intermediate), 'h'(high), 'f'(full),or
None if no boundaries will be used. This choice is important: setting high- resolution boundaries on
a global map, for example, can be very slow.

Here’s an example of drawing land/sea boundaries, and the effect of the resolution
parameter. We'll create both a low- and high-resolution map of Scotland’s beautiful Isle
of Skye. It's located at 57.3°N, 6.2°W, and a map of 90,000x120,000 kilometers shows it
well (Figure ):

In[9]: fig, ax = plt.subplots(1, 2, figsize=(12, 8))

for i, res in enumerate(['l', 'h']):



m = Basemap(projection="'gnom’, lat_0=57.3, lon_0=-6.2,
width=90000, height=120000, resolution=res,

resolution="I"' resolution="h'

¥ i ¥

=

ax=ax[i])m fillcontinents(color="#FFDDCC",
lake_color="#DDEEFF")
m.drawmapboundary(fill_color="#DDEEFF")
m.drawcoastlines()
ax[i].set_title("resolution="'{0}

format(res));

Figure. Map boundaries at low and high resolution

Notice that the low-resolution coastlines are not suitable for this level of zoom, while
high-resolution works just fine. The low level would work just fine for a global view,
however, and would be much faster than loading the high-resolution border data for the
entire globe! It might require some experimentation to find the correct resolution
parameter for a given view; the best route is to start with a fast, low-resolution plot and
increase the resolution as needed.

Plotting Dataon Maps

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a vari-ety
of data onto a map background. For simple plotting and text, any plt function works on
the map; you can use the Basemap instance to project latitude and longitudecoordinates
to (x, y)coordinates for plotting with plt, as we saw earlier in the Seat-tle example.

In addition to this, there are many map-specific functions available as methods of the
Basemap instance. These work very similarly to their standard Matplotlib counter- parts,
but have an additional Boolean argument latlon, which if set to True allows you to pass
raw latitudes and longitudes to the method, rather than projected (x, y) coordinates.



Some of these map-specific methods are:
contour()/contourf()

Draw contour lines or filled contours
imshow()

Draw an image
pcolor()/pcolormesh()

Draw a pseudocolor plot for irregular/regular meshes
plot()

Draw lines and/or markers
scatter()

Draw points with markers
quiver()

Draw vectors
barbs()

Draw wind barbs
drawgreatcircle()

Draw a great circle

WEe’'ll see examples of a few of these as we continue. For more information on
these functions, including several example plots, see the online Basemap
documentation.

Example: California Cities

Recall that in “Customizing Plot Legends” on page 249, we demonstrated the use of size

and color in a scatter plot to convey information about the location, size, and population
of California cities. Here, we'll create this plot again, but using Basemap toput the data in

context.

We start with loading the data, as we did before:
In[10]: import as

cities = pd.read_csv('data/california_cities.csv')



# Extract the data we're interested in

lat = cities['latd'].values
lon = cities['longd'].values

population =
cities['population_total'].valuesarea =
cities['area_total_km2'].values

Next, we set up the map projection, scatter the data, and then create a colorbar and
legend:

In[11]: # 1. Draw the map background
fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc’,
resolution="'h",lat_0=37.5,
lon_0=-119, width=1E6,
height=1.2E6)

m.shadedrelief()
m.drawcoastlines(color="gra

v')

m.drawcountries(color='gra

v')

m.drawstates(color="'gray')

# 2. scatter city data, with color reflecting
population# and size reflecting area

m.scatter(lon, lat, latlon=True,

c=np.log10(population),
s=area,cmap="'Reds’,
alpha=0.5)

# 3. create colorbar and legend
plt.colorbar(label=r'S\log_{10}({\rm
population})S")plt.clim(3, 7)

# make legend with dummy points
for ain [100, 300, 500]:

plt.scatter([], [], c="k', alpha=0.5, s=a,
label=str(a) + ' kmS$~2S")



plt.legend(scatterpoints=1,
frameon=False, labelspacing=1,

log w(population)

loc="lower left');

Figure. Scatter plot over a map background

This shows us roughly where larger populations of people have settled in California: they
are clustered near the coast in the Los Angeles and San Francisco areas, stretched along
the highways in the flat central valley, and avoiding almost completelythe mountainous
regions along the borders of the state.

Example: Surface Temperature Data

As an example of visualizing some more continuous geographic data, let’s consider the
“polar vortex” that hit the eastern half of the United States in January 2014. A great
source for any sort of climatic data is NASA’s Goddard Institute for Space Stud-ies. Here
we’ll use the GIS 250 temperature data, which we can download using shellcommands
(these commands may have to be modified on Windows machines). The data used here
was downloaded on 6/12/2016, and the file size is approximately 9 MB:

In[12]: # Icurl -O

http://data.giss.nasa.gov/pub/gistemp/gistemp250.nc.qz#
Igunzip gistemp250.nc.gz

The data comes in NetCDF format, which can be read in Python by the netCDF4
library. You can install this library as shown here:



S conda install netcdf4
We read the data as follows:

In[13]: from import
Dataset data =
Dataset('gistemp250.nc')

The file contains many global temperature readings on a variety of dates; we
need to select the index of the date we’re interested in—in this case, January 15,
2014:

In[14]: from import date2index
from import datetime
timeindex = date2index(datetime(2014, 1, 15),

data.variables['time'])

Now we can load the latitude and longitude data, as well as the temperature
anomaly for this index:

In[15]: lat = data.variables['lat'][:] lon
= data.variables['lon'][:] lon,
lat = np.meshgrid(lon, lat)

temp_anomaly = data.variables['tempanomaly'][timeindex]

Finally, we’'ll use the pcolormesh() method to draw a color mesh of the data. We'lllook
at North America, and use a shaded relief map in the background. Note that for this data
we specifically chose a divergent colormap, which has a neutral color at zeroand two
contrasting colors at negative and positive values (Figure ). We'll also lightly draw the
coastlines over the colors for reference:

In[16]: fig = plt.figure(figsize=(10, 8))

m = Basemap(projection='lcc’,
resolution="'c',width=8E6,
height=8E6,

lat_0=45, lon_0=-100,)
m.shadedrelief(scale=0.5)
m.pcolormesh(lon, lat,
temp_anomaly,

latlon=True,
cmap='RdBu_r')plt.clim(-8, 8)
m.drawcoastlines(color="lightgray')



plt.title('January 2014 Temperature Anomaly')
plt.colorbar(label="temperature anomaly (°C)');

The data paints a picture of the localized, extreme temperature anomalies that hap-
pened during that month. The eastern half of the United States was much colder than
normal, while the western half and Alaska were much warmer. Regions with no recorded
temperature show the map background.

January 2014 Temperature Anomaly

AR %

temperature anomaly (°C)

Figure. The temperature anomaly in January 2014

Day-03: Visualization using google maps and ArcGis(Iris Data)
Day-04: Discussion on projects and exploring other datasets
Day-05: Mid Assessments



Week 6: Advance Data Analytics

Day-01: Hyperparameters and Model Validation

In the previous section, we saw the basic recipe for applying a supervised machine learning
model:

1. Choose a class of model.

2. Choose model hyperparameters.

3. Fit the model to the training data

4. Use the model to predict labels for new data
The first two pieces of this—the choice of model and choice of hyperparameters—areperhaps
the most important part of using these tools and techniques effectively. In order to make an
informed choice, we need a way to validate that our model and our hyperparameters are a

good fit to the data. While this may sound simple, there are some pitfalls that you must avoid
to do this effectively.

Thinking About Model Validation

In principle, model validation is very simple: after choosing a model and its hyper-
parameters, we can estimate how effective it is by applying it to some of the training data and
comparing the prediction to the known value.

The following sections first show a naive approach to model validation and why it fails, before
exploring the use of holdout sets and cross-validation for more robust model evaluation.
Model validation the wrong way

Let’s demonstrate the naive approach to validation using the Iris data, which we saw in the
previous section. We will start by loading the data:

In[1]: from import load_iris
iris = load iris()

X = iris. data
y = iris. target

Next we choose a model and hyperparameters. Here we'll use a k-neighbors classifierwith
n_neighbors=1. This is a very simple and intuitive model that says “the label of an unknown
point is the same as the label of its closest training point”:

In[2]: from import KNeighborsClassifier
model = KNeighborsClassifier (n neighbors=1)

Then we train the model, and use it to predict labels for data we already know:



In[3]: model. fit (X, y)
y model = model. predict (X)

Finally, we compute the fraction of correctly labeled points:

In[4]: from import accuracy_score
accuracy score(y, y model)

Out[4]: 1.0

We see an accuracy score of 1.0, which indicates that 100% of points were correctly
labeled by our model! But is this truly measuring the expected accuracy? Have we
really come upon a model that we expect to be correct 100% of the time?

As you may have gathered, the answer is no. In fact, this approach contains a funda- mental
flaw: it trains and evaluates the model on the same data. Furthermore, the nearest neighbor
model is an instance-based estimator that simply stores the training data, and predicts labels
by comparing new data to these stored points; except in con-trived cases, it will get 100%
accuracy every time!

Model validation the right way: Holdout sets

So what can be done? We can get a better sense of a model’s performance using what’s known as a
holdout set; that is, we hold back some subset of the data from the trainingof the model, and
then use this holdout set to check the model performance. We can do this splitting using the
train_test_split utility in Scikit-Learn:

In[5]: from import train_test_split
# split the data with 50% in each set
X1, X2, yl, y2 = train test split(X, y, random state=0

train size=0.5)

# fit the model on one set of data

model. fit (X1, y1)

# evaluate the model on the second set of data
y2 model = model. predict (X2)

accuracy score(y2, y2 model)

Out[5]: 0.90666666666666662

We see here a more reasonable result: the nearest-neighbor classifier is about 90% accurate
on this holdout set. The holdout set is similar to unknown data, because the model has not
“seen” it before.

Model validation via cross-validation

One disadvantage of using a holdout set for model validation is that we have lost a portion of



our data to the model training. In the previous case, half the dataset does not contribute to the
training of the model! This is not optimal, and can cause prob- lems—especially if the initial
set of training data is small.

One way to address this is to use cross-validation—that is, to do a sequence of fits
where each subset of the data is used both as a training set and as a validation set.
Visually, it might look something like Figure 5-22.

validation
set

trial 1

validation
set

trial 2

Figure 5-22. Visualization of two-fold cross-validation

Here we do two validation trials, alternately using each half of the data as a holdout set. Using
the split data from before, we could implement it like this:

In[6]: y2 model = model.fit (X1, yl).predict(X2)
vyl model = model. fit (X2, y2).predict(X1)

accuracy score(yl, yl model), accuracy score(y2, y2 model)

Out[6]: (0.95999999999999996, 0.90666666666666662)

What comes out are two accuracy scores, which we could combine (by, say, taking themean) to
get a better measure of the global model performance. This particular form of cross-validation

is a two-fold cross-validation—one in which we have split the datainto two sets and used each
in turn as a validation set.

We could expand on this idea to use even more trials, and more folds in the data—forexample,
Figure 5-23 is a visual depiction of five-fold cross-validation.
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Figure 5-23. Visualization of five-fold cross-validation

Here we split the data into five groups, and use each of them in turn to evaluate the model fit
on the other 4/5 of the data. This would be rather tedious to do by hand,and so we can use
Scikit-Learn’s cross_val_score convenience routine to do it succinctly:

In[7]: from import cross_val score
cross val score(model, X, y, cv=h)

Out[7]: array ([ 0.96666667, 0.96666667, 0.93333333, 0.93333333, 1. D

Repeating the validation across different subsets of the data gives us an even better idea of the
performance of the algorithm.

Scikit-Learn implements a number of cross-validation schemes that are useful in par-ticular
situations; these are implemented via iterators in the cross_validation mod-ule. For
example, we might wish to go to the extreme case in which our number of folds is equal to the
number of data points; that is, we train on all points but one in each trial. This type of cross-
validation is known as leave-one-out cross-validation, and can be used as follows:

Inf8]: from import LeaveOneOut

scores = cross_val score(model, X, y, cv=LeaveOneOut (len(X)))
scores

Oout[8]: array ([ 1., 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

1'1 ’ r ’ ’ 4 ’ ’ 4 4 ’ ’

1., 1., 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1., 1., 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1., 1., 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

4 4 4 4 14 4 4 14 4 4 4
1., 1., 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1



Because we have 150 samples, the leave-one-out cross-validation yields scores for 150trials,
and the score indicates either successful (1.0) or unsuccessful (0.0) prediction. Taking the
mean of these gives an estimate of the error rate:

In[9]: scores. mean ()

Out[9]: 0.95999999999999996

Other cross-validation schemes can be used similarly. For a description of what is available in
Scikit-Learn, use IPython to explore the sklearn. cross_validation sub- module, or take a look
at Scikit-Learn’s online cross-validation documentation.

Selecting the Best Model
Now that we’ve seen the basics of validation and cross-validation, we will go into a little more
depth regarding model selection and selection of hyperparameters. These issues are some of

the most important aspects of the practice of machine learning,and I find that this
information is often glossed over in introductory machine learn- ing tutorials.

Of core importance is the following question: if our estimator is underperforming, how
should we move forward? There are several possible answers:

e Use a more complicated/more flexible model
e Use a less complicated/less flexible model
¢ Gather more training samples

* Gather more data to add features to each sample

The answer to this question is often counterintuitive. In particular, sometimes using amore
complicated model will give worse results, and adding more training samples may not
improve your results! The ability to determine what steps will improve your model is what
separates the successful machine learning practitioners from the unsuccessful.

The bias-variance trade-off
Fundamentally, the question of “the best model” is about finding a sweet spot in the trade-off

between bias and variance. Consider Figure 5-24, which presents tworegression fits to the
same dataset.



High-bias model: Underfits the data High-variance model: Overfits the data

Figure 5-24. A high-bias and high-variance regression model

[t is clear that neither of these models is a particularly good fit to the data, but they
fail in different ways.

The model on the left attempts to find a straight-line fit through the data. Because thedata are
intrinsically more complicated than a straight line, the straight-line model will never be able
to describe this dataset well. Such a model is said to underfit the data; that is, it does not have
enough model flexibility to suitably account for all the features in the data. Another way of
saying this is that the model has high bias.

The model on the right attempts to fit a high-order polynomial through the data.Here
the model fit has enough flexibility to nearly perfectly account for the fine fea- tures in the
data, but even though it very accurately describes the training data, its precise form seems to
be more reflective of the particular noise properties of the data rather than the intrinsic
properties of whatever process generated that data. Such a model is said to overfit the data;
that is, it has so much model flexibility that the model ends up accounting for random errors
as well as the underlying data distribu- tion. Another way of saying this is that the model has
high variance.

To look at this in another light, consider what happens if we use these two models to predict
the y-value for some new data. In diagrams in Figure 5-25, the red/lighter points indicate data
that is omitted from the training set.



High-bias model: Underfits the data High-variance model: Overfits the data
fraining score: R? = 0.70 training score: R? =0.98

12 validation score: R* =074 1z validation score: R* =-1.8e+0!

Figure 5-25. Training and validation scores in high-bias and high-variance models

The score here is the R? score, or coefficient of determination, which measures how well a
model performs relative to a simple mean of the target values. R? = 1 indicates a perfect
match, R? = 0 indicates the model does no better than simply taking the mean of the data, and
negative values mean even worse models. From the scores asso-ciated with these two models,
we can make an observation that holds more generally:

* For high-bias models, the performance of the model on the validation set is simi-
lar to the performance on the training set.

* For high-variance models, the performance of the model on the validation set is
far worse than the performance on the training set.

If we imagine that we have some ability to tune the model complexity, we would
expect the training score and validation score to behave as illustrated in Figure 5-26.

The diagram shown in Figure 5-26 is often called a validation curve, and we see the following
essential features:

* The training score is everywhere higher than the validation score. This is gener-
ally the case: the model will be a better fit to data it has seen than to data it has
not seen.

* For very low model complexity (a high-bias model), the training data is underfit,
which means that the model is a poor predictor both for the training data and for
any previously unseen data.

e For very high model complexity (a high-variance model), the training data is
overfit, which means that the model predicts the training data very well, but fails
for any previously unseen data.

e For some intermediate value, the validation curve has a maximum. This level of
complexity indicates a suitable trade-off between bias and variance.
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Figure 5-26. A schematic of the relationship between model complexity, training score,and
validation score

The means of tuning the model complexity varies from model to model; when we discuss
individual models in depth in later sections, we will see how each model allows for such
tuning.

Validation curves in Scikit-Learn

Let’s look at an example of using cross-validation to compute the validation curve fora class of
models. Here we will use a polynomial regression model: this is a generalized linear model in
which the degree of the polynomial is a tunable parameter. For example, a degree-1
polynomial fits a straight line to the data; for model parameters aand b:

y=ax+b

A degree-3 polynomial fits a cubic curve to the data; for model parameters q, b, ¢, d:

y=ax3+bx’+cx+d

We can generalize this to any number of polynomial features. In Scikit-Learn, we can
implement this with a simple linear regression combined with the polynomial pre- processor.
We will use a pipeline to string these operations together (we will discuss polynomial features
and pipelines more fully in “Feature Engineering” on page 375):



In[10]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline
def PolynomialRegression (degree=2, **kwargs) :

return make pipeline (PolynomialFeatures (degree),

LinearRegression (**kwargs))

Now let’s create some data to which we will fit our model:

In[11]: import numpy as np

def make data(N, err=1.0, rseed=1):
# randomly sample the data
rng = np. random. RandomState (rseed)
X = rng.rand(N, 1) *x 2
y=10-1. / (X.ravel ) + 0.1)
if err > 0:
y += err * rng. randn(N)

return X, vy

X, vy = make data(40)

We can now visualize our data, along with polynomial fits of several degrees
(Figure 5-27):

In[12]: %matplotlib inline
import matplotlib.pyplot as plt

import seaborn; seaborn. set () # plot formatting

X test = np. linspace(-0.1, 1.1, 500)[:, None]
plt. scatter (X. ravel (), y, color='black')

axis = plt.axis()

for degree in [1, 3, 5]:

y_test = PolynomialRegression(degree). fit(X, y).predict (X test)
plt.plot (X test.ravel ), v test, label='degree={0}". format (degree))

plt.x1im(-0. 1, 1.0)



plt.ylim(-2, 12)
plt. legend (l1oc="best') ;

The knob controlling model complexity in this case is the degree of the polynomial, which can
be any non-negative integer. A useful question to answer is this: what degree of polynomial
provides a suitable trade-off between bias (underfitting) and variance (overfitting)?

0o 0z 04 06 08 10

Figure 5-27. Three different polynomial models fit to a dataset

We can make progress in this by visualizing the validation curve for this particular data and
model; we can do this straightforwardly using the validation_curve conve-nience routine
provided by Scikit-Learn. Given a model, data, parameter name, and arange to explore, this
function will automatically compute both the training score andvalidation score across the
range (Figure 5-28):

Inl[13]:

from import validation curve
degree = np. arange (0, 21)

train score, val score = validation curve(PolynomialRegression(), X, v,

"polynomialfeatures_degree'
degree, cv=7)

plt.plot(degree, np.median(train score, 1), color='blue', label='training score')
plt.plot(degree, np.median(val score, 1), color='red', label='validation score')
plt. legend (loc="best")

plt.ylim(0, 1)
plt. xlabel ('degree")
plt. ylabel ('score');

This shows precisely the qualitative behavior we expect: the training score is every- where
higher than the validation score; the training score is monotonically improvingwith increased
model complexity; and the validation score reaches a maximumbefore dropping off as the



model becomes overfit.
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Figure 5-28. The validation curves for the data in Figure 5-27 (cf. Figure 5-26)

From the validation curve, we can read off that the optimal trade-off between biasand
variance is found for a third-order polynomial; we can compute and display this fit over the
original data as follows (Figure 5-29):

In[14]: plt. scatter (X. ravel (), )
lim = plt. axis()

y test = PolynomialRegression(3).fit(X, y).predict (X test)
plt.plot (X test.ravel ), y test);

plt.axis(1im) ;
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Figure 5-29. The cross-validated optimal model for the data in Figure 5-27



Notice that finding this optimal model did not actually require us to compute the training
score, but examining the relationship between the training score and valida- tion score can
give us useful insight into the performance of the model.

Learning Curves
One important aspect of model complexity is that the optimal model will generally depend on

the size of your training data. For example, let’s generate a new dataset with a factor of five
more points (Figure 5-30):

In[15]: X2, y2 = make data(200)
plt. scatter (X2. ravel (), y2);
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Figure 5-30. Data to demonstrate learning curves

We will duplicate the preceding code to plot the validation curve for this larger
data-set; for reference let’s over-plot the previous results as well (Figure 5-31):

In[16]:
degree = np. arange (21)
train score2, val score2 = validation curve (PolynomialRegression(), X2, y2,
"polynomialfeatures_degree'
degree, cv=7)
plt.plot(degree, np.median(train score2, 1), color='blue',
label="training score')

plt. plot (degree, np.median(val score2, 1), color='red', label='validation score')
plt. plot (degree, np.median(train score, 1), color='blue', alpha=0.3,

linestyle='dashed")

plt. plot(degree, np.median(val score, 1), color='red', alpha=0.3,
linestyle='dashed")




plt. legend(loc="lower center')
plt.ylim(0, 1)

plt. xlabel ('degree")
plt.ylabel ('score');
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Figure 5-31. Learning curves for the polynomial model fit to data in Figure 5-30

The solid lines show the new results, while the fainter dashed lines show the results ofthe
previous smaller dataset. It is clear from the validation curve that the larger data- set can
support a much more complicated model: the peak here is probably around a degree of 6, but
even a degree-20 model is not seriously overfitting the data—the vali-dation and training
scores remain very close.

Thus we see that the behavior of the validation curve has not one, but two, important inputs:
the model complexity and the number of training points. It is often useful to explore the
behavior of the model as a function of the number of training points, which we can do by
using increasingly larger subsets of the data to fit our model. A plot of the training/validation
score with respect to the size of the training set is known as a learning curve.

The general behavior we would expect from a learning curve is this:
* A model of a given complexity will overfit a small dataset: this means the training
score will be relatively high, while the validation score will be relatively low.

* A model of a given complexity will underfit a large dataset: this means that the
training score will decrease, but the validation score will increase.

* Amodel will never, except by chance, give a better score to the validation set than
the training set: this means the curves should keep getting closer together but
never cross.




With these features in mind, we would expect a learning curve to look qualitativelylike that
shown in Figure 5-32.

Learning Curve Schematic

model score —
«—— High Variance —

Good Fit — |

fraining set size —

Figure 5-32. Schematic showing the typical interpretation of learning curves

The notable feature of the learning curve is the convergence to a particular score as the
number of training samples grows. In particular, once you have enough pointsthata
particular model has converged, adding more training data will not help you! The only way to
increase model performance in this case is to use another (oftenmore complex) model.

Learning curves in Scikit-Learn

Scikit-Learn offers a convenient utility for computing such learning curves from yourmodels;
here we will compute a learning curve for our original dataset with a second-order
polynomial model and a ninth-order polynomial (Figure 5-33):

In[17]:
from sklearn.learning_curve import learning_curve
fig, ax = plt.subplots(l, 2, figsize=(16, 6))
fig. subplots adjust (left=0. 0625, right=0.95, wspace=0. 1)
for i, degree in enumerate([2, 9]):
N, train lc, val lc = learning curve (PolynomialRegression (degree),
X, vy, cv=l,

train_sizes=np. linspace (0.3, 1, 25))

ax[i].plot (N, np.mean(train lc, 1), color='blue', label='training score")
ax[i].plot (N, np.mean(val lc, 1), color='red', label='validation score")
ax[i].hlines(np. mean ([train lc[-1], val lc[-1]1]1), N[0], N[-1], color='gray',

linestyle="dashed")




ax[i].
ax[i].
ax[i].
ax[i].

ax[i].

set_ylim(0, 1)

set x1im(N[0], N[-1])

set xlabel ('training size')
set_ylabel ('score')

set title('degree = {0}'. format (degree), size=14)

ax[i]. legend (loc="best")
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Figure 5-33. Learning curves for a low-complexity model (left) and a high-complexity
model (right)

This is a valuable diagnostic, because it gives us a visual depiction of how our model responds
to increasing training data. In particular, when your learning curve has already converged
(i.e., when the training and validation curves are already close to each other), adding more
training data will not significantly improve the fit! This situa-tion is seen in the left panel, with
the learning curve for the degree-2 model.

The only way to increase the converged score is to use a different (usually more com-plicated)
model. We see this in the right panel: by moving to a much more compli- cated model, we
increase the score of convergence (indicated by the dashed line), butat the expense of higher
model variance (indicated by the difference between the training and validation scores). If we
were to add even more data points, the learning curve for the more complicated model would
eventually converge.

Plotting a learning curve for your particular choice of model and dataset can help
youto make this type of decision about how to move forward in improving your
analysis.

Validation in Practice: Grid Search

The preceding discussion is meant to give you some intuition into the trade-off between bias
and variance, and its dependence on model complexity and training set size. In practice,
models generally have more than one knob to turn, and thus plots of validation and learning
curves change from lines to multidimensional surfaces. In these cases, such visualizations are
difficult and we would rather simply find the par- ticular model that maximizes the validation
score.



Scikit-Learn provides automated tools to do this in the grid_search module. Here isan
example of using grid search to find the optimal polynomial model. We will explore a three-
dimensional grid of model features—namely, the polynomial degree, the flag telling us
whether to fit the intercept, and the flag telling us whether to nor- malize the problem. We can
set this up using Scikit-Learn’s GridSearchCV meta- estimator:

In[18]: from import GridSearchCV
param grid = {'polynomialfeatures degree': np.arange(21),
"linearregression_fit_intercept': [True, False],
"linearregression _normalize': [True, False]}

grid = GridSearchCV (PolynomialRegression(), param grid, cv=7)

Notice that like a normal estimator, this has not yet been applied to any data. Calling the it ()
method will fit the model at each grid point, keeping track of the scores along the way:

In[19]: grid. fit(X, y);

Now that this is fit, we can ask for the best parameters as follows:

In[20]: grid.best params

Out[20]: {'linearregression_fit intercept': False
"linearregression_normalize': True
"polynomialfeatures_degree': 4}

Finally, if we wish, we can use the best model and show the fit to our data using codefrom
before (Figure 5-34):

In[21]: model = grid.best estimator_

plt. scatter (X. ravel (), y)
lim = plt. axis()

y _test = model. fit(X, y).predict(X test)
plt.plot (X_test.ravel (), y_test, hold=True);
plt. axis(lim);

The grid search provides many more options, including the ability to specify a cus- tom
scoring function, to parallelize the computations, to do randomized searches,and more.
For information, see the examples in “In-Depth: Kernel Density Estima- tion” on page 491 and
“Application: A Face Detection Pipeline” on page 506, or referto Scikit-Learn’s grid search
documentation.
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Figure 5-34. The best-fit model determined via an automatic grid-search

Day-02: Feature Engineering

The previous sections outline the fundamental ideas of machine learning, but all of the
examples assume that you have numerical data in a tidy, [n_samples, n_fea tures] format.
In the real world, data rarely comes in such a form. With this in mind,one of the more
important steps in using machine learning in practice is feature engi- neering—that is, taking
whatever information you have about your problem and turning it into numbers that you can
use to build your feature matrix.

In this section, we will cover a few common examples of feature engineering tasks: features
for representing categorical data, features for representing text, and features for representing
images. Additionally, we will discuss derived features for increasingmodel complexity and
imputation of missing data. Often this process is known as vec-torization, as it involves
converting arbitrary data into well-behaved vectors.

Categorical Features
One common type of non-numerical data is categorical data. For example, imagine you are
exploring some data on housing prices, and along with numerical featureslike “price” and

“rooms,” you also have “neighborhood” information. For example, your data might look
something like this:

In[1]: data = [

{'price': 850000, 'rooms': 4, 'neighborhood': 'Queen Anne'},
{'price': 700000, 'rooms': 3, 'neighborhood': 'Fremont'},
{'price': 650000, 'rooms': 3, 'neighborhood': 'Wallingford'},
{'price': 600000, 'rooms': 2, 'neighborhood': 'Fremont'}

]

You might be tempted to encode this data with a straightforward numerical mapping:



In[2]: {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};
[t turns out that this is not generally a useful approach in Scikit-Learn: the package’s models
make the fundamental assumption that numerical features reflect algebraic quantities. Thus
such a mapping would imply, for example, that Queen Anne < Fre- mont < Wallingford, or even
that Wallingford - Queen Anne = Fremont, which (nichedemographic jokes aside) does not
make much sense.

In this case, one proven technique is to use one-hot encoding, which effectively createsextra
columns indicating the presence or absence of a category with a value of 1 or 0,respectively.
When your data comes as a list of dictionaries, Scikit-Learn’s DictVectorizer will do this for
you:

In[3]: from import DictVectorizer

vec = DictVectorizer (sparse=False, dtype=int)
vec. fit transform(data)

Out[3]: 0, 1, 0, 850000, 47,
array ([I[

[ 1, 0, 0, 700000, 31,
[ 0, 0, 1, 650000, 31,
[ 1, 0, 0, 600000, 211,

dtype=int64)

Notice that the neighborhood column has been expanded into three separate columns,
representing the three neighborhood labels, and that each row has a 1 in the column
associated with its neighborhood. With these categorical features thus encoded, you can
proceed as normal with fitting a Scikit-Learn model.

To see the meaning of each column, you can inspect the feature names:

In[4]: vec. get feature names ()

Out[4]: ['neighborhood=Fremont',

'neighborhood=Queen Anne',
'neighborhood=Wallingford",
"price’,

"rooms "]

There is one clear disadvantage of this approach: if your category has many possible values,
this can greatly increase the size of your dataset. However, because the enco- ded data
contains mostly zeros, a sparse output can be a very efficient solution:

In[5]: vec = DictVectorizer (sparse=True, dtype=int)
vec. fit_transform(data)

Out[5]: <4x5 sparse matrix of type '<class 'numpy.int64'>'

with 12 stored elements in Compressed Sparse Row format>

Many (though not yet all) of the Scikit-Learn estimators accept such sparse inputs
when fitting and evaluating models. sklearn. preprocessing. OneHotEncoder and



sklearn. feature extraction. FeatureHasher are two additional tools that Scikit-
Learn includes to support this type of encoding.

Text Features

Another common need in feature engineering is to convert text to a set of representa- tive
numerical values. For example, most automatic mining of social media data relieson some
form of encoding the text as numbers. One of the simplest methods of encoding data is by
word counts: you take each snippet of text, count the occurrencesof each word within it, and
put the results in a table.

For example, consider the following set of three phrases:
In[6]: sample = ['problem of evil',

"evil queen',
"horizon problem']

For a vectorization of this data based on word count, we could construct a column
representing the word “problem,” the word “evil,” the word “horizon,” and so on. While doing
this by hand would be possible, we can avoid the tedium by using Scikit-Learn’s
CountVectorizer:

In[7]: from import CountVectorizer

vec = CountVectorizer ()

X = vec. fit_transform(sample)
X

Out[7]: <3x5 sparse matrix of type '<class 'numpy.int64'>'
with 7 stored elements in Compressed Sparse Row format>

The result is a sparse matrix recording the number of times each word appears; it is easier to
inspect if we convert this to a DataFrame with labeled columns:

In[8]: import as

pd. DataFrame (X. toarray (), columns=vec. get feature names())

Out[8]evil horizo of proble quee
: n m n
0 10 11 0
1 10 00 1
2 01 01 0

There are some issues with this approach, however: the raw word counts lead to fea-tures
that put too much weight on words that appear very frequently, and this can besuboptimal
in some classification algorithms. One approach to fix this is known as term frequency-
inverse document frequency (TF-1DF), which weights the word countsby a measure of how
often they appear in the documents. The syntax for computingthese features is similar to the
previous example:



In[9]: from import TfidfVectorizer
vec = TfidfVectorizer ()

X = vec. fit transform(sample)

pd. DataFrame (X. toarray (), columns=vec. get feature names())

Out[9]evil horizo of proble queen

: n m
0 0.00000 0.68091 0.51785 0.00000
0.517856 0 9 6 0
1 0.00000 0.00000 0.00000 0.79596
0.605349 0 0 0 1
2 0.79596 0.00000 0.60534 0.00000
0.000000 1 0 9 0

For an example of using TF-IDF in a classification problem, see “In Depth: NaiveBayes
Classification” on page 382.

Image Features

Another common need is to suitably encode images for machine learning analysis. The
simplest approach is what we used for the digits data in “Introducing Scikit- Learn” on page
343: simply using the pixel values themselves. But depending on the application, such
approaches may not be optimal.

A comprehensive summary of feature extraction techniques for images is well beyondthe
scope of this section, but you can find excellent implementations of many of the standard
approaches in the Scikit-Image project. For one example of using Scikit- Learn and Scikit-
Image together, see “Application: A Face Detection Pipeline” on page506.

Derived Features

Another useful type of feature is one that is mathematically derived from some input features.
We saw an example of this in “Hyperparameters and Model Validation” on page 359 when we
constructed polynomial features from our input data. We saw that we could convert a linear
regression into a polynomial regression not by changing themodel, but by transforming the
input! This is sometimes known as basis function regression, and is explored further in “In
Depth: Linear Regression” on page 390.

For example, this data clearly cannot be well described by a straight line(Figure 5-35):
In[10]: %matplotlib inline
import as

import as

)

x = np.array([1, 2, 3, 4, 5])



y = np.array([4, 2, 1, 3, 7])
plt. scatter (x, y);
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Figure 5-35. Data that is not well described by a straight line

Still, we can fit a line to the data using LinearRegression and get the optimal result(Figure
5-36):

In[11]: from sklearn.linear_model import LinearRegression
X = x[:, np.newaxis]

model = LinearRegression().fit(X, y)
yfit = model. predict (X)
plt. scatter(x, y)

plt.plot(x, yfit);
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Figure 5-36. A poor straight-line fit

It’s clear that we need a more sophisticated model to describe the relationshipbetween x and
y. We can do this by transforming the data, adding extra columns of features to drive more
flexibility in the model. For example, we can add polynomial features to the data this way:

In[12]: from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures (degree=3, include bias=False)
X2 = poly. fit transform(X)

print (X2)
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The derived feature matrix has one column representing x, and a second column rep-
resenting x2, and a third column representing x3. Computing a linear regression onthis
expanded input gives a much closer fit to our data (Figure 5-37):

In[13]: model = LinearRegression().fit (X2, y)

yfit = model. predict (X2)
plt. scatter(x, y)

plt.plot (x, yfit);
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Figure 5-37. A linear fit to polynomial features derived from the data

This idea of improving a model not by changing the model, but by transforming the inputs, is
fundamental to many of the more powerful machine learning methods. We explore this idea
further in “In Depth: Linear Regression” on page 390 in the context of basis function
regression. More generally, this is one motivational path to the pow-erful set of techniques
known as kernel methods, which we will explore in “In-Depth:Support Vector Machines” on
age 405.

Imputation of Missing Data

Another common need in feature engineering is handling missing data. We discussedthe
handling of missing data in DatalFrames in “Handling Missing Data” on page 119,and saw that

often the NaN value is used to mark missing values. For example, we might have a dataset that
looks like this:

In[14]: from import nan

X = np.array ([[ nan, 0, 3 ],



y = np.array([14, 16, -1, 8, -5])

When applying a typical machine learning model to such data, we will need to first replace
such missing data with some appropriate fill value. This is known as imputa- tion of missing
values, and strategies range from simple (e.g,, replacing missing valueswith the mean of the

column) to sophisticated (e.g., using matrix completion or a robust model to handle such
data).

The sophisticated approaches tend to be very application-specific, and we won’t dive into
them here. For a baseline imputation approach, using the mean, median, or most frequent
value, Scikit-Learn provides the Imputer class:

In[15]: from import Imputer
imp = Imputer (strategy='mean')

X2 = imp. fit transform(X)

X2
out[15]: array([[ 0 3.
4.5, ' 1,
[ 3., 7. 9.
4 ],
[ 3., 5 2.
4 ],
[ 4., 5 6.
’ ]’
[ 8., 8 1
]

We see that in the resulting data, the two missing values have been replaced with the mean of
the remaining values in the column. This imputed data can then be fed directly into, for
example, a LinearRegression estimator:

In[16]: model = LinearRegression(). fit(X2, y)
model. predict (X2)

Out[16]:

array ([ 13.14869292, 14.3784627 , -1.15539732, 10.96606197, -5.33782027])

Feature Pipelines

With any of the preceding examples, it can quickly become tedious to do the transfor-mations
by hand, especially if you wish to string together multiple steps. For example,we might want a
processing pipeline that looks something like this:

1. Impute missing values using the mean
2. Transform features to quadratic

3. Fitalinear regression



To streamline this type of processing pipeline, Scikit-Learn provides a pipeline object, which can
be used as follows:

In[17]: from import make pipeline

model = make pipeline (Imputer (strategy='mean'),

PolynomialFeatures (degree=2),
LinearRegression())

This pipeline looks and acts like a standard Scikit-Learn object, and will apply all thespecified
steps to any input data.

In[18]: model.fit(X, y) # X with missing values, from above

print (y)
print (model. predict (X))

[14 16 -1 8 -5]
[14. 16. -1. 8. -5.]

All the steps of the model are applied automatically. Notice that for the simplicity of this
demonstration, we've applied the model to the data it was trained on; this is why it was able
to perfectly predict the result (refer back to “Hyperparameters and Model Validation” on page
359 for further discussion of this).

For some examples of Scikit-Learn pipelines in action, see the following section on naive
Bayes classification as well as “In Depth: Linear Regression” on page 390 and “In-Depth:
Support Vector Machines” on page 405.

Day-03: Linear Regression

Just as naive Bayes (discussed earlier in “In Depth: Naive Bayes Classification” on page 382) is
a good starting point for classification tasks, linear regression models area good starting point
for regression tasks. Such models are popular because they can be fit very quickly, and are
very interpretable. You are probably familiar with the sim-plest form of a linear regression
model (i.e, fitting a straight line to data), but such models can be extended to model more
complicated data behavior.

In this section we will start with a quick intuitive walk-through of the mathematics behind
this well-known problem, before moving on to see how linear models can be generalized to
account for more complicated patterns in data. We begin with the stan-dard imports:

In[1]: %matplotlib inline

import as
import as ; sns. set ()
import as

Simple Linear Regression

We will start with the most familiar linear regression, a straight-line fit to data. A straight-line



fit is a model of the form y = ax + b where a is commonly known as the slope, and b is
commonly known as the intercept.

Consider the following data, which is scattered about a line with a slope of 2 and an intercept
of -5 (Figure 5-42):

In[2]: rng = np. random. RandomState (1)

x = 10 * rng. rand (50)
y = 2 % x — 5 + rng. randn (50)
1t. scatter(x, v);
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Figure 5-42. Data for linear regression

We can use Scikit-Learn’s LinearRegression estimator to fit this data and constructthe best-
fitline (Figure 5-43):

In[3]: from sklearn.linear_model import LinearRegression
model = LinearRegression(fit intercept=True)

model. fit (x[:, np.newaxis], y)

xfit = np. linspace (0, 10, 1000)



yfit = model. predict (xfit[:, np.newaxis])plt.scatter(x, y) plt.plot(xfit, yfit);

Figure 5-43. A linear regression model

The slope and intercept of the data are contained in the model’s fit parameters, whichin

Scikit-Learn are always marked by a trailing underscore. Here the relevant parame-ters are
coef and intercept :

In[4]: print("Model slope: ", model. coef [0])
print("Model intercept:", model.intercept )
Model slope: 2.02720881036

Model intercept: —4.99857708555

We see that the results are very close to the inputs, as we might hope.

The LinearRegression estimator is much more capable than this, however—in addi-tion to
simple straight-line fits, it can also handle multidimensional linear models of the form:

Y = 0g+ aiXy + 0yXy + oo

where there are multiple x values. Geometrically, this is akin to fitting a plane to
points in three dimensions, or fitting a hyper-plane to points in higher dimensions.

The multidimensional nature of such regressions makes them more difficult to visu- alize, but

we can see one of these fits in action by building some example data, using NumPy’s matrix
multiplication operator:

In[5]: rng = np. random. RandomState (1)
X = 10 * rng. rand (100, 3)

y = 0.5+ np.dot(X, [1.5, 2., 1.1)

Loy



model. fit (X, y)
print (model. intercept_)
print (model. coef )

0.5
[ 1.5 2. 1. ]

Here the y data is constructed from three random x values, and the linear regression recovers
the coefficients used to construct the data.

In this way, we can use the single LinearRegression estimator to fit lines, planes, or
hyperplanes to our data. It still appears that this approach would be limited to strictly linear
relationships between variables, but it turns out we can relax this as well.

Basis Function Regression

One trick you can use to adapt linear regression to nonlinear relationships between variables
is to transform the data according to basis functions. We have seen one ver-sion of this before,
in the PolynomialRegression pipeline used in “Hyperparameters and Model Validation” on
page 359 and “Feature Engineering” on page 375. The ideais to take our multidimensional
linear model:

Yy =0y + a|xq + arXy + G3X3 + e

and build the x1, x2, x3, and so on from our single-dimensional input x. That is, we let
x, = f, &) where f, ()is some function that transforms our data.

For example, if f, x =x", our ljnodel becomes a polynomial regression:
— 2 3
Y= A+ aqX+0oX" +agx + e

Notice that this is still a linear model—the linearity refers to the fact that the coeffi- cients a,,

never multiply or divide each other. What we have effectively done is taken our one-
dimensional x values and projected them into a higher dimension, so that a linear fit can fit
more complicated relationships between x and y.

Polynomial basis functions

This polynomial projection is useful enough that it is built into Scikit-Learn, using
the PolynomialFeatures transformer:

In[6]: from import PolynomialFeatures
x = np.array([2, 3, 4])

poly = PolynomialFeatures (3, include bias=False)
poly. fit transform(x[:, Nonel)



array ([[ ’ ’
[ 3 9. 27.]
[ 4. 1é. 641]]

’ 4 )

We see here that the transformer has converted our one-dimensional array into a three-
dimensional array by taking the exponent of each value. This new, higher- dimensional data
representation can then be plugged into a linear regression.

As we saw in “Feature Engineering” on page 375, the cleanest way to accomplish thisis to use a
pipeline. Let’s make a 7th-degree polynomial model in this way:

In[7]: from import make _pipeline
poly model = make pipeline(PolynomialFeatures(7),

LinearRegression())

With this transform in place, we can use the linear model to fit much more compli- cated
relationships between x and y. For example, here is a sine wave with noise (Figure 5-44):

In[8]: rng = np. random. RandomState (1)
x = 10 * rng. rand (50)

y = np.sin(x) + 0.1 * rng. randn(50)

poly model. fit(x[:, np.newaxis], y)

yfit = poly model.predict (xfit[:, np.newaxis])

plt. scatter(x, y)
plt.plot (xfit, yfit);

0o

Figure 5-44. A linear polynomial fit to nonlinear training data



Our linear model, through the use of 7th-order polynomial basis functions, can pro-
vide an excellent fit to this nonlinear data!

Gaussian basis functions

Of course, other basis functions are possible. For example, one useful pattern is to fit
a model that is not a sum of polynomial bases, but a sum of Gaussian bases. The
result might look something like Figure 5-45.

Figure 5-45. A Gaussian basis function fit to nonlinear data

The shaded regions in the plot shown in Figure 5-45 are the scaled basis functions, and when
added together they reproduce the smooth curve through the data. These Gaussian basis
functions are not built into Scikit-Learn, but we can write a custom transformer that will
create them, as shown here and illustrated in Figure 5-46(Scikit-Learn transformers are
implemented as Python classes; reading Scikit-Learn’ssource is a good way to see how they
can be created):

In[9]:

from sklearn.base import BaseEstimator, TransformerMixin

class GaussianFeatures (BaseEstimator, TransformerMixin):

uuuuuu

def __init_ (self, N, width factor=2.0):
self.N =N

self.width factor = width factor




def gauss basis(x, y, width, axis=None):
arg = (x —y) / width

return np. exp(-0.5 * np. sum(arg ** 2, axis))

def fit(self, X, y=None):
# create N centers spread along the data range
self. centers = np. linspace (X. min(), X.max(), self.N)
self.width = self.width factor * (self.centers [1] — self.centers [0])

return self

def transform(self, X):
return self. gauss basis(X[:, :, np.newaxis], self.centers ,

self.width , axis=1)

gauss model = make pipeline (GaussianFeatures (20),

LinearRegression())
gauss model. fit(x[:, np.newaxis], y)

yfit = gauss model. predict (xfit[:, np.newaxis])
plt. scatter (x, y)

plt.plot (xfit, yfit)
plt.x1im(0, 10);
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Figure 5-46. A Gaussian basis function fit computed with a custom transformer



We put this example here just to make clear that there is nothing magic about poly- nomial
basis functions: if you have some sort of intuition into the generating process of your data that
makes you think one basis or another might be appropriate, you can use them as well.

Regularization

The introduction of basis functions into our linear regression makes the model much more
flexible, but it also can very quickly lead to overfitting (refer back to “Hyper- parameters and
Model Validation” on page 359 for a discussion of this). For example,if we choose too many
Gaussian basis functions, we end up with results that don’t look so good (Figure 5-47):

In[10]: model = make pipeline(GaussianFeatures(30),
LinearRegression())
model. fit (x[:, np.newaxis], y)
plt. scatter(x, y)
plt.plot (xfit, model.predict(xfit[:, np.newaxis]))
plt.x1im(0, 10)

plt.ylim(-1.5, 1.5);
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Figure 5-47. An overly complex basis function model that overfits the data

With the data projected to the 30-dimensional basis, the model has far too much flex-ibility
and goes to extreme values between locations where it is constrained by data. We can see the
reason for this if we plot the coefficients of the Gaussian bases with respect to their locations
(Figure 5-48):

In[11]: def basis plot(model, title=None):

fig, ax = plt. subplots (2, sharex=True)
model. fit (x[:, np.newaxis], y)
ax[0]. scatter (x, y)



ax[0]. plot (xfit, model.predict(xfit[:, np.newaxis]))
ax[0]. set (xlabel="x", ylabel='y', ylim=(-1.5, 1.5))
if title:
ax[0].set title(title)
ax[1]. plot (model. steps[0][1]. centers_,
model. steps[1][1]. coef )
ax[1]. set (xlabel="basis location'

ylabel='coefficient",
xlim=(0, 10))

model = make pipeline (GaussianFeatures(30), LinearRegression())
basis plot (model)
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Figure 5-48. The coefficients of the Gaussian bases in the overly complex model

The lower panel in Figure 5-48 shows the amplitude of the basis function at each location.
This is typical overfitting behavior when basis functions overlap: the coeffi-cients of adjacent
basis functions blow up and cancel each other out. We know that such behavior is
problematic, and it would be nice if we could limit such spikes explicitly in the model by
penalizing large values of the model parameters. Such a penalty is known as regularization,
and comes in several forms.

Ridge regression (L2 regularization)

Perhaps the most common form of regularization is known as ridge regression or L2
regularization, sometimes also called Tikhonov regularization. This proceeds by penal- izing the
sum of squares (2-norms) of the model coefficients; in this case, the penaltyon the model fit
would be:



where « is a free parameter that controls the strength of the penalty. This type of
penalized model is built into Scikit-Learn with the Ridge estimator (Figure 5-49):

In[12]: from import Ridge

model = make pipeline (GaussianFeatures (30), Ridge (alpha=0.1))
basis plot(model, title='Ridge Regression')
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Figure 5-49. Ridge (L,) reqularization applied to the overly complex model (compare to
Figure 5-48)

The a parameter is essentially a knob controlling the complexity of the resulting model. In
the limit a 0, we recover the standard linear regression result; in thelimit a oo, all model
responses will be suppressed. 0né advantage of ridge regres- sion in particular is that it can
be computed very efficiently—at hardly more compu- tational cost than the original linear
regression model.

Lasso regularization (L)

Another very common type of regularization is known as lasso, and involves
penaliz-ing the sum of absolute values (1-norms) of regression coefficients:



Though this is conceptually very similar to ridge regression, the results can differ
sur-prisingly: for example, due to geometric reasons lasso regression tends to favor
sparsemodels where possible; that is, it preferentially sets model coefficients to
exactly zero.

We can see this behavior in duplicating the plot shown in Figure 5-49, but using L1-
normalized coefficients (Figure 5-50):

In[13]: from import Lasso

model = make pipeline(GaussianFeatures (30), Lasso(alpha=0.001))
basis plot(model, title='Lasso Regression')

Lasso Regression
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Figure 5-50. Lasso (L1) reqularization applied to the overly complex model (compare to
Figure 5-48)

With the lasso regression penalty, the majority of the coefficients are exactly zero, with the
functional behavior being modeled by a small subset of the available basis functions. As with
ridge regularization, the a parameter tunes the strength of the penalty, and should be
determined via, for example, cross-validation (refer back to “Hyperparameters and Model
Validation” on page 359 for a discussion of this).

Example: Predicting Bicycle Traffic

As an example, let’s take a look at whether we can predict the number of bicycle
tripsacross Seattle’s Fremont Bridge based on weather, season, and other factors.
We haveseen this data already in “Working with Time Series” on page 188.

In this section, we will join the bike data with another dataset, and try to determine the extent
to which weather and seasonal factors—temperature, precipitation, and daylight hours—affect
the volume of bicycle traffic through this corridor. Fortunately,the NOAA makes available their
daily weather station data (I used station ID USW00024233) and we can easily use Pandas to
join the two data sources. We will perform a simple linear regression to relate weather and
other information to bicycle counts, in order to estimate how a change in any one of these
parameters affects the number of riders on a given day.



In particular, this is an example of how the tools of Scikit-Learn can be used in a stat-istical
modeling framework, in which the parameters of the model are assumed to have interpretable
meaning. As discussed previously, this is not a standard approach within machine learning, but
such interpretation is possible for some models.

Let’s start by loading the two datasets, indexing by date:
In[14]:
import pandas as pd

counts = pd.read csv('fremont hourly.csv', index col='Date', parse dates=True)
weather = pd. read csv('599021.csv', index col='DATE', parse dates=True)

Next we will compute the total daily bicycle traffic, and put this in its own DataFrame:

In[15]: daily = counts. resample('d', how='sum')
daily['Total'] = daily. sum(axis=1)

daily = daily[['Total']] # remove other columns

We saw previously that the patterns of use generally vary from day to day; let’s account for
this in our data by adding binary columns that indicate the day of the week:

In[16]: days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
for i in range(7):
daily[days[i]] = (daily. index. dayofweek == i).astype (float)

Similarly, we might expect riders to behave differently on holidays; let’s add an indica-tor of this
as well:

In[17]: from pandas.tseries.holiday import USFederalHolidayCalendar
cal = USFederalHolidayCalendar ()

holidays = cal.holidays('2012"', '2016")

daily = daily. join(pd. Series(l, index=holidays, name='holiday'))
daily['holiday']. fillna(0, inplace=True)

We also might suspect that the hours of daylight would affect how many people ride;
let’s use the standard astronomical calculation to add this information (Figure 5-51):

In[18]: def hours of daylight (date, axis=23.44, latitude=47.61):
"""Compute the hours of daylight for the given date™"
days = (date — pd. datetime (2000, 12, 21)).days

m = (1. - np. tan(np. radians (latitude))
* np. tan (np. radians (axis) * np. cos(days * 2 * np.pi / 365.25)))
return 24. * np. degrees (np. arccos(l — np.clip(m, 0, 2))) / 180.

daily['daylight hrs'] = list(map(hours of daylight, daily.index))
daily[['daylight hrs']].plot();
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Figure 5-51. Visualization of hours of daylight in Seattle

We can also add the average temperature and total precipitation to the data. In addi- tion to
the inches of precipitation, let’s add a flag that indicates whether a day is dry (has zero
precipitation):

In[19]: # temperatures are in 1/10 deg C; convert to C
weather['TMIN'] /= 10
weather['TMAX'] /= 10

weather['Temp (C)'] = 0.5 % (weather['TMIN'] + weather['TMAX'])

# precip is in 1/10 mm; convert to inches
weather['PRCP'] /= 254

weather['dry day'] = (weather['PRCP'] == 0).astype (int)

daily = daily. join(weather[['PRCP', 'Temp (C)', 'dry day'll)

Finally, let's add a counter that increases from day 1, and measures how many years have
passed. This will let us measure any observed annual increase or decrease in daily crossings:

In[20]: daily['annual'] = (daily. index — daily. index[0]). days / 365

Now our data is in order, and we can take a look at it:

In[21]: daily.head()

Out[21]:
Tota Mon Tue Wed Thu Fri Sat Sun holida daylight hrs

Date 1 y AR\



2012-10- 352 0 0 1 0 0 0 0 0 11.277359

03 1

2012-10- 347 0 0 0 1 0 0 0 0 11.219142

04 5

2012-10- 314 0 0 0 0 1 0 0 0 11.161038

05 8

2012-10- 200 0 0 0 0 0 1 0 0 11.103056

06 6

2012-10-07 2142 0 0 0 0 0 0 1 0 11. 045208
PRCP Temp dry annual

Date (C) day

2012-10- 0 13.35 1 0.00000

03 0

2012-10- 0 13.60 1 0.00274

04 0

2012-10- 0 15.30 1 0.00547

05 9

2012-10- 0 15.85 1 0.00821

06 9

2012-10- 0 15.85 1 0.01095

07 9

With this in place, we can choose the columns to use, and fit a linear
regressionmodel to our data. We will set fit_intercept = False, because the daily
flags essen- tially operate as their own day-specific intercepts:

In[22]:

column_names = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun', 'holiday'

"daylight hrs', '"PRCP', 'dry day', 'Temp (C)', 'annual']

X = dailylcolumn names]
daily['Total']

<
I

model = LinearRegression(fit intercept=False)
model. fit (X, y)

daily['predicted'] = model. predict (X)



Finally, we can compare the total and predicted bicycle traffic visually (Figure 5-52):Tn[23] :
daily[['Total", 'predicted']].plot(alpha=0.5);

7000

— Total
predicted

6000

5000

4000

000

2000

1000

-1000
Jan Jul Jan Jul Jan Jul
013 014 015

Date

Figure 5-52. Our model’s prediction of bicycle traffic

It is evident that we have missed some key features, especially during the summer time.
Either our features are not complete (i.e., people decide whether to ride to workbased on
more than just these) or there are some nonlinear relationships that we have failed to take
into account (e.g., perhaps people ride less at both high and low temper-atures). Nevertheless,
our rough approximation is enough to give us some insights, and we can take a look at the
coefficients of the linear model to estimate how much each feature contributes to the daily
bicycle count:

In[24]: params = pd. Series(model. coef , index=X. columns)

params

Out[24] Mon 503.797330
Tue 612.088879
Wed 591.611292
Thu 481.250377
Fri 176.838999

Sat -
1104.32140

6

Sun -
1134.61032

2

holiday -
1187.21268

8
daylight hrs128.873251

PRCP -
665.185105
dry day 546.185613

Temp (C) 65.194390



annual 27.865349
dtype:
floato4d

These numbers are difficult to interpret without some measure of their uncertainty. We can
compute these uncertainties quickly using bootstrap resamplings of the data:

In[25]: from import resample
np. random. seed (1)

err = np. std([model. fit (*resample (X, y)).coef

for i in range(1000)], 0)

With these errors estimated, let’s again look at the results:
In[26]: print(pd. DataFrame ({'effect': params.round(0),

"error': err.round(0)}))

effec error

t

Mon 504 85
Tue 612 82
Wed 592 82
Thu 481 85
Fri 177 81
Sat -1104 79
Sun -1135 82
holiday -1187 164
daylight h 129 9
rs -

PRCP -665 62
dry day 546 33
Temp (C) 65 4
annual 28 18

We first see that there is a relatively stable trend in the weekly baseline: there are many more
riders on weekdays than on weekends and holidays. We see that for each additional hour of
daylight, 129 * 9 more people choose to ride; a temperature increase of one degree Celsius
encourages 65 *+ 4 people to grab their bicycle; a dry day means an average of 546 * 33 more
riders; and each inch of precipitation means 665 + 62 more people leave their bike at home.
Once all these effects are accounted for, we see a modest increase of 28 + 18 new daily riders
each year.

Our model is almost certainly missing some relevant information. For example, non- linear
effects (such as effects of precipitation and cold temperature) and nonlinear trends within each
variable (such as disinclination to ride at very cold and very hot temperatures) cannot be
accounted for in this model. Additionally, we have thrown away some of the finer-grained
information (such as the difference between a rainy morning and a rainy afternoon), and we
have ignored correlations between days(such as the possible effect of a rainy Tuesday on
Wednesday’s numbers, or the effectof an unexpected sunny day after a streak of rainy days).
These are all potentially interesting effects, and you now have the tools to begin exploring them
if you wish!



Day-04: Support Vector Machines

Support vector machines (SVMs) are a particularly powerful and flexible class of supervised
algorithms for both classification and regression. In this section, we will develop the intuition
behind support vector machines and their use in classification problems. We begin with the

standard imports:

In[1]: %matplotlib inline

import as
import as
from import stats

# use Seaborn plotting defaults

import as ; sns. set ()

Motivating Support Vector Machines

As part of our discussion of Bayesian classification (see “In Depth: Naive Bayes Clas-sification”
on page 382), we learned a simple model describing the distribution of each underlying class,
and used these generative models to probabilistically deter- mine labels for new points. That
was an example of generative classification; here wewill consider instead discriminative
classification: rather than modeling each class, wesimply find a line or curve (in two
dimensions) or manifold (in multiple dimensions) that divides the classes from each other.

As an example of this, consider the simple case of a classification task, in which the two
classes of points are well separated (Figure 5-53):

In[2]: from import make_blobs

X, v = make blobs(n samples=50,
centers=2, random state=0, cluster std=0.60)
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plt.scatter X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');



Figure 5-53. Simple data for classification

A linear discriminative classifier would attempt to draw a straight line separating the two sets
of data, and thereby create a model for classification. For two-dimensional data like that
shown here, this is a task we could do by hand. But immediately we seea problem: there is
more than one possible dividing line that can perfectly discrimi- nate between the two classes!

We can draw them as follows (Figure 5-54):
In[3]: xfit = np. linspace (-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

plt.plot ([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

form, b in [(1, 0.65), (0.5, 1.6), (0.2, 2.9)]:
plt.plot (xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

-1.0 -0.5 0o 05 10 15 20 25 a0 35

Figure 5-54. Three perfect linear discriminative classifiers for our data

These are three very different separators that, nevertheless, perfectly discriminate between
these samples. Depending on which you choose, a new data point (e.g., the one marked by the
“X” in Figure 5-54) will be assigned a different label! Evidently oursimple intuition of “drawing
a line between classes” is not enough, and we need to think a bit deeper.

Support Vector Machines: Maximizing the Margin

Support vector machines offer one way to improve on this. The intuition is this:rather
than simply drawing a zero-width line between the classes, we can drawaround each
line a margin of some width, up to the nearest point. Here is an example of how this might



look (Figure 5-55):
Inl4]:
xfit = np. linspace (-1, 3.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

form, b, din [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:

yfit = m x xfit + b
plt.plot(xfit, yfit, '-k")

plt. fill between(xfit, yfit — d, yfit + d, edgecolor='none', color='#AAAAAA",
alpha=0. 1)

plt.xlim(=1, 3.5);

-10 -05 oo a5 10 15 20 25 30 35

Figure 5-55. Visualization of “margins” within discriminative classifiers

In support vector machines, the line that maximizes this margin is the one we will choose as
the optimal model. Support vector machines are an example of such a max-imum margin
estimator.

Fitting a support vector machine
Let’s see the result of an actual fit to this data: we will use Scikit-Learn’s support vector classifier
to train an SVM model on this data. For the time being, we will use a linearkernel and set the C

parameter to a very large number (we’ll discuss the meaning of these in more depth
momentarily):

In[5]: from sklearn.svm import SVC # "Support vector classifier"




model = SVC(kernel='linear', C=1E10)
model. fit (X, y)

Out[5]: SVC(C=10000000000. 0, cache size=200, class weight=None, coef0=0.0,
decision function shape=None, degree=3, gamma='auto', kernel='linear',
max iter=—1, probability=False, random state=None, shrinking=True,
tol=0. 001, verbose=False)

To better visualize what’s happening here, let’s create a quick convenience function that will
plot SVM decision boundaries for us (Figure 5-56):

In[6]: def plot svc decision function(model, ax=None, plot support=True):
if ax is None:
ax = plt.gca()
xlim = ax. get x1im()
ylim = ax. get ylim()
# create grid to evaluate model
x = np. linspace (x1im[0], x1lim[1], 30)
y = np. linspace (y1im[0], ylim[1], 30)Y, X = np.meshgrid(y, x)
xy = np.vstack([X. ravel(), Y.ravel()]).T

P = model. decision function (xy).reshape (X. shape)

# plot decision boundary and margins

ax. contour (X, Y, P, colors='k

levels=[-1, 0, 1], alpha=0.5,

linestyles=['"—"', '=', '"——'])

# plot support vectors

if plot support:
ax. scatter (model. support vectors [:, 0],

model. support vectors [:, 1]

s=300, linewidth=1, facecolors='none');
ax. set_x1im(x1im)

ax. set_ylim(ylim)



In[7]: plt. scatter (X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot sve decision function(model) ;
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Figure 5-56. A support vector machine classifier fit to the data, with margins (dashed
lines) and support vectors (circles) shown

This is the dividing line that maximizes the margin between the two sets of points. Notice that
a few of the training points just touch the margin; they are indicated bythe black circles in
Figure 5-56. These points are the pivotal elements of this fit, and are known as the support
vectors, and give the algorithm its name. In Scikit-Learn, theidentity of these points is stored in
the support vectors attribute of the classifier:

In[8]: model. support vectors

Out[8]: array(I[[ 3.11530945]

0.44359863, ,

[ 2.33812285, 3.43116792]
’

[ 2.06156753, 1.96918596]
1)

A key to this classifier’s success is that for the fit, only the position of the support vec-tors
matters; any points further from the margin that are on the correct side do not modify the fit!
Technically, this is because these points do not contribute to the loss function used to fit the
model, so their position and number do not matter so long as they do not cross the margin.

We can see this, for example, if we plot the model learned from the first 60 points andfirst 120
points of this dataset (Figure 5-57):

In[9]: def plot svm(N=10, ax=None):
X, v = make blobs(n samples=200, centers=2,
random state=0, cluster std=0.60)

X = X[:N]



y = y[:N]

model = SVC(kernel='linear', C=1E10)
model. fit (X, y)

ax = ax or plt.geca()

ax. scatter (X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
ax. set xlim(-1, 4)
ax. set ylim(-1, 6)

plot sve decision function(model, ax)
fig, ax = plt.subplots(l, 2, figsize=(16, 6))
fig. subplots adjust (left=0. 0625, right=0.95, wspace=0. 1)
for axi, N in zip(ax, [60, 120]):

plot svm(N, axi)

axi.set title('N = {0}'. format (N))

N=60 N=120

=l -1
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Figure 5-57. The influence of new training points on the SYM model

In the left panel, we see the model and the support vectors for 60 training points. In the right
panel, we have doubled the number of training points, but the model hasnot changed: the
three support vectors from the left panel are still the support vectors from the right panel.
This insensitivity to the exact behavior of distant points is one ofthe strengths of the SVM
model.

If you are running this notebook live, you can use IPython’s interactive widgets toview this
feature of the SVM model interactively (Figure 5-58):



In[10]: from ipywidgets import interact, fixed
interact (plot svm, N=[10, 200], ax=fixed(None)) :

-1 a 1 2 3 4

Figure 5-58. The first frame of the interactive SVM visualization (see the online appen-dix
for the full version)

Beyond linear boundaries: Kernel SYM

Where SVM becomes extremely powerful is when it is combined with kernels. We have seen a
version of kernels before, in the basis function regressions of “In Depth: Linear Regression” on
page 390. There we projected our data into higher-dimensionalspace defined by polynomials
and Gaussian basis functions, and thereby were able tofit for nonlinear relationships with a
linear classifier.

In SVM models, we can use a version of the same idea. To motivate the need for ker-nels, let’s
look at some data that is not linearly separable (Figure 5-59):

In[11]: from sklearn.datasets.samples_generator import make_circles
X, v = make circles (100, factor=.1, noise=. 1)

clf = SVC(kernel="linear"). fit(X, y)

plt.scatter X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot svc decision function(clf, plot support=False);



Figure 5-59. A linear classifier performs poorly for nonlinear boundaries

It is clear that no linear discrimination will ever be able to separate this data. But we can draw
a lesson from the basis function regressions in “In Depth: Linear Regres- sion” on page 390,
and think about how we might project the data into a higher dimension such that a linear
separator would be sufficient. For example, one simple projection we could use would be to
compute a radial basis function centered on the middle clump:

In[12]: r = np.

exp (= (X ** 2). sum(1))

We can visualize this extra data dimension using a three-dimensional plot—if you arerunning
this notebook live, you will be able to use the sliders to rotate the plot(Figure 5-60):

In[13]: from mpl_toolkits import mplot3d

def plot 3D(elev=30, azim=30, X=X, y=y):

ax

ax.
ax.

ax.
ax.
ax.

= plt. subplot (projection="'3d")

scatter3D(X[:, 01, X[:, 1], r, c=y, s=50, cmap='autumn')
view init(elev=elev, azim=azim)

set_xlabel ('x")
set_ylabel ('y")
set zlabel ('r")

interact (plot 3D, elev=[-90, 90], azip=(-180, 180),

X=fixed (X), y=fixed(y));




Figure 5-60. A third dimension added to the data allows for linear separation

We can see that with this additional dimension, the data becomes trivially linearly separable,
by drawing a separating plane at, say, r=0.7.

Here we had to choose and carefully tune our projection; if we had not centered our radial
basis function in the right location, we would not have seen such clean, linearlyseparable
results. In general, the need to make such a choice is a problem: we would like to somehow
automatically find the best basis functions to use.

One strategy to this end is to compute a basis function centered at every point in the dataset,
and let the SVM algorithm sift through the results. This type of basis functiontransformation is
known as a kernel transformation, as it is based on a similarity rela-tionship (or kernel)
between each pair of points.

A potential problem with this strategy—projecting N points into N dimensions—is that it
might become very computationally intensive as N grows large. However, because of a neat
little procedure known as the kernel trick, a fit on kernel- transformed data can be done
implicitly—that is, without ever building the full N- dimensional representation of the kernel
projection! This kernel trick is built into the SVM, and is one of the reasons the method is so
powerful.

In Scikit-Learn, we can apply kernelized SVM simply by changing our linear kernel toan RBF
(radial basis function) kernel, using the kernel model hyperparameter (Figure 5-61):

In[14]: clf = SVC(kernel="rbf', C=1L6)
clf. fit(X, y)

Out[14]: SVC(C=1000000.0, cache size=200, class weight=None, coef0=0.0
decision function shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=—1, probability=False, random state=None, shrinking=True,
tol=0. 001, verbose=False)

In[15]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot svc decision function(clf)



plt. scatter (clf. support vectors [:, 0], clf.support vectors [:, 1],
s=300, lw=l, facecolors='none');

0o

Figure 5-61. Kernel SVM fit to the data

Using this kernelized support vector machine, we learn a suitable nonlinear decision
boundary. This kernel transformation strategy is used often in machine learning toturn
fast linear methods into fast nonlinear methods, especially for models in which the kernel
trick can be used.

Tuning the SVM: Softening margins

Our discussion so far has centered on very clean datasets, in which a perfect decision
boundary exists. But what if your data has some amount of overlap? For example, youmay
have data like this (Figure 5-62):

In[16]: X, v = make blobs(n samples=100, centers=2,
random_state=0, cluster std=Il.2)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');
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Figure 5-62. Data with some level of overlap



To handle this case, the SVM implementation has a bit of a fudge-factor that “softens”the margin;
that is, it allows some of the points to creep into the margin if that allows a better fit. The
hardness of the margin is controlled by a tuning parameter, mostoften known as C. For very
large C, the margin is hard, and points cannot lie in it. Forsmaller C, the margin is softer, and can
grow to encompass some points.

The plot shown in Figure 5-63 gives a visual picture of how a changing C parameter
affects the final fit, via the softening of the margin:

In[17]: X, v = make blobs(n samples=100, centers=2,
random state=0, cluster std=0.8)
fig, ax = plt.subplots(l, 2, figsize=(16, 6))
fig. subplots adjust (left=0. 0625, right=0.95, wspace=0.1)
for axi, C in zip(ax, [10.0, 0.1]):

model = SVC(kernel='linear', C=C).fit(X, y)
axi.scatter X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot svc decision function(model, axi)
axi.scatter (model. support vectors [:, 0],

model. support vectors [:, 1],
s=300, lw=1, facecolors='none');

axi.set title('C = {0:.1f}"'. format(C), size=14)
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Figure 5-63. The effect of the C parameter on the support vector fit

The optimal value of the C parameter will depend on your dataset, and should be
tuned via cross-validation or a similar procedure (refer back to
“Hyperparametersand Model Validation” on page 359 for further information).

Example: Face Recognition

As an example of support vector machines in action, let’s take a look at the facial rec-ognition
problem. We will use the Labeled Faces in the Wild dataset, which consists of several



thousand collated photos of various public figures. A fetcher for the datasetis built into Scikit-
Learn:

In[18]: from sklearn.datasets import fetch 1fw people
faces = fetch 1fw people(min faces per person=60)
print (faces. target_names)
print (faces. images. shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'"Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)

Let’s plot a few of these faces to see what we’re working with (Figure 5-64):
In[19]: fig, ax = plt.subplots(3, 5)

for i, axi in enumerate (ax. flat) :
axi. imshow (faces. images[i], cmap='bone")
axi.set (xticks=[], yticks=[]

xlabel=faces. target names|[faces. target[i]])

Colin Powell George W Bush George W Bush  George W Bush Hugo Chavez

George W Bush Junichiro Koizumi George W Bush Tony Blair Ariel Sharon

.-
—

George W Bush Donald Rumsfeld George W Bush George W Bush  George W Bush

{4

Figure 5-64. Examples from the Labeled Faces in the Wild dataset

Each image contains [62x47] or nearly 3,000 pixels. We could proceed by simply using each
pixel value as a feature, but often it is more effective to use some sort of preprocessor to
extract more meaningful features; here we will use a principal com- ponent analysis (see “In
Depth: Principal Component Analysis” on page 433) to extract 150 fundamental components
to feed into our support vector machine classi- fier. We can do this most straightforwardly by
packaging the preprocessor and the classifier into a single pipeline:

In[20]: from sklearn.svm import SVC
from sklearn.decomposition import RandomizedPCA

from sklearn.pipeline import make_pipeline



pca = RandomizedPCA (n components=150, whiten=True, random state=42)
sve = SVC(kernel='rbf', class weight='balanced")

model = make pipeline(pca, svc)

For the sake of testing our classifier output, we will split the data into a training and
testing set:

In[21]: from sklearn.cross validation import train_test_split
Xtrain, Xtest, ytrain, ytest = train test split(faces.data, faces. target
random state=42)

Finally, we can use a grid search cross-validation to explore combinations of parame-ters.
Here we will adjust C (which controls the margin hardness) and gamma (which controls the
size of the radial basis function kernel), and determine the best model:

In[22]: from sklearn.grid_search import GridSearchCV
param grid = {'svc C': [1, 5, 10, 507,

"sve__gamma': [0.0001, 0.0005, 0.001, 0.005]}
grid = GridSearchCV (model, param grid)
%time grid.fit(Xtrain, ytrain)
print (grid. best_params )

CPU times: user 47.8 s, sys: 4.08 s, total: 51.8 s
Wall time: 26 s

{'sve__gamma': 0.001, 'svec_C': 10}

The optimal values fall toward the middle of our grid; if they fell at the edges, we
would want to expand the grid to make sure we have found the true optimum.

Now with this cross-validated model, we can predict the labels for the test data,
whichthe model has not yet seen:

In[23]: model = grid.best estimator
yfit = model. predict (Xtest)

Let’s take a look at a few of the test images along with their predicted values(Figure
5-65):
In[24]: fig, ax = plt. subplots(4, 6)
for i, axi in enumerate (ax. flat):
axi. imshow (Xtest[i]. reshape (62, 47), cmap='bone")

axi.set (xticks=[], yticks=[])
axi.set ylabel (faces. target names[yfit[i]].split() [-1],



color="black' if yfit[i] == ytest[i] else 'red')
fig. suptitle ('Predicted Names; Incorrect Labels in Red', size=14);

Predicted Names; Incorrect Labels in Red
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Figure 5-65. Labels predicted by our model

Out of this small sample, our optimal estimator mislabeled only a single face (Bush’sface in the
bottom row was mislabeled as Blair). We can get a better sense of our esti-mator’s
performance using the classification report, which lists recovery statistics label by label:

In[25]: from sklearn.metrics import classification report
print(classification_report (ytest, yfit

target names=faces. target names))

precisio recall fl1- support
n score
Ariel Sharon 0.65 0.73 0.69 15
Colin Powell 0.81 0.87 0.84 68
Donald 0.75 0.87 0.81 31
Rumsfeld
George W Bush 0.93 0.83 0.88 126
Gerhard 0.86 0.78 0.82 23
Schroeder
Hugo Chavez 0.93 0.70 0.80 20
Junichiro 0.80 1.00 0.89 12
Koizumi
Tony Blair 0.83 0.93 0.88 42
avg / total 0.85 0.85 0.85 337

We might also display the confusion matrix between these classes (Figure 5-66):

In[26]: from sklearn.metrics import confusion matrix
mat = confusion matrix (ytest, yfit)




sns. heatmap (mat. T, square=True, annot=True, fmt='d', cbar=False
xticklabels=faces. target names
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yticklabels=faces. target names)plt. xlabel (' true
label") plt.ylabel ('predicted label');

Figure 5-66. Confusion matrix for the faces data

This helps us get a sense of which labels are likely to be confused by the estimator.

For a real-world facial recognition task, in which the photos do not come precropped into nice
grids, the only difference in the facial classification scheme is the feature selection: you would
need to use a more sophisticated algorithm to find the faces, andextract features that are
independent of the pixellation. For this kind of application, one good option is to make use of
OpenCV, which among other things, includes pre- trained implementations of state-of-the-art
feature extraction tools for images in gen- eral and faces in particular.

Day-05: Decision Trees and Random Forests

Previously we have looked in depth at a simple generative classifier (naive Bayes; see“In Depth:
Naive Bayes Classification” on page 382) and a powerful discriminativeclassifier (support
vector machines; see “In-Depth: Support Vector Machines” onpage 405). Here we'll take a
look at motivating another powerful algorithm—a non-parametric algorithm called random
forests. Random forests are an example of an ensemble method, a method that relies on
aggregating the results of an ensemble ofsimpler estimators. The somewhat surprising result
with such ensemble methods isthat the sum can be greater than the parts; that is, a majority
vote among a number ofestimators can end up being better than any of the individual
estimators doing thevoting! We will see examples of this in the following sections. We begin with
the stan-dard imports:

In[1]: %matplotlib inline



import as

import as
import as ; sns. set ()

Motivating Random Forests: Decision Trees

Random forests are an example of an ensemble learner built on decision trees. For
thisreason we’ll start by discussing decision trees themselves.

Decision trees are extremely intuitive ways to classify or label objects: you simply aska series
of questions designed to zero in on the classification. For example, if you wanted to build a
decision tree to classify an animal you come across while on a hike,you might construct the
one shown in Figure 5-67.

How big is
the animal?

>1m <1m
| ]

Does the animal Does the animal
have horns? have two legs?

yes no yes no

1 1

Are the horns Is the animal Does the animal Does the animal
longer than 10cm? wearing a collar? have wings? have a tail?

Figure 5-67. An example of a binary decision tree

The binary splitting makes this extremely efficient: in a well-constructed tree, each question
will cut the number of options by approximately half, very quickly narrow- ing the options
even among a large number of classes. The trick, of course, comes in deciding which questions
to ask at each step. In machine learning implementations ofdecision trees, the questions
generally take the form of axis-aligned splits in the data; that is, each node in the tree splits
the data into two groups using a cutoff valuewithin one of the features. Let’s now take a
look atan example.

Creating adecision tree
Consider the following two-dimensional data, which has one of four class labels (Figure 5-68):

In[2]: from import make_blobs



X, v = make blobs(n_samples=300, centers=4,random state=0, cluster std=1.0)
plt.scatter X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow');

-6 -4 -2 o 2 4 6

Figure 5-68. Data for the decision tree classifier

A simple decision tree built on this data will iteratively split the data along one or theother
axis according to some quantitative criterion, and at each level assign the label of the new
region according to a majority vote of points within it. Figure 5-69 presents a visualization of
the first four levels of a decision tree classifier for this data.
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Figure 5-69. Visualization of how the decision tree splits the data

Notice that after the first split, every point in the upper branch remains unchanged,so there
is no need to further subdivide this branch. Except for nodes that contain all of one color, at
each level every region is again split along one of the two features.

This process of fitting a decision tree to our data can be done in Scikit-Learn with the
DecisionTreeClassifier estimator:

In[3]: from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier (). fit(X, y)

Let’s write a quick utility function to help us visualize the output of the classifier:

In[4]: def visualize classifier(model, X, y, ax=None, cmap= rainbow'):
ax = ax or plt.gca()

# Plot the training points



ax. scatter X[:, 0], X[:, 1], c=y, s=30, cmap=cmap,

clim=(y.min(), y.max()), zorder=3)
ax. axis('tight")

ax. axis ('off")

xlim = ax. get x1im()

ylim = ax. get ylim()

# fit the estimator

model. fit (X, y)

xx, vy = np.meshgrid(np. linspace (*x1im, num=200),
np. linspace (*ylim, num=200))

7 = model. predict (np. ¢ _[xx. ravel (), yy.ravel ()]).reshape (xx. shape)

# Create a color plot with the results
n classes = len(np. unique (y))
contours = ax. contourf (xx, yy, Z, alpha=0.3,

levels=np. arange (n_classes + 1) — 0.5,
cmap=cmap, clim=(y.min(), y.max()),
zorder=1)

ax. set (xlim=x1lim, ylim=ylim)

Now we can examine what the decision tree classification looks like (Figure 5-70):

In[5]: visualize classifier (DecisionTreeClassifier(), X, y)

Figure 5-70. Visualization of a decision tree classification

If you're running this notebook live, you can use the helpers script included in the online



appendix to bring up an interactive visualization of the decision tree building process (Figure
5-71):
In[6]: # helpers_05_08 is found in the online appendix
# (https://github.com/jakevdp/PythonDataScienceHandbook)

import
helpers 05 08.plot tree interactive(X, y);
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Figure 5-71. First frame of the interactive decision tree widget; for the full version, see
the online appendix

Notice that as the depth increases, we tend to get very strangely shaped classificationregions;
for example, at a depth of five, there is a tall and skinny purple region between the yellow
and blue regions. It’s clear that this is less a result of the true, intrinsic data distribution, and
more a result of the particular sampling or noise prop- erties of the data. That is, this decision
tree, even at only five levels deep, is clearly overfitting our data.

Decision trees and overfitting

Such overfitting turns out to be a general property of decision trees; it is very easy to go too
deep in the tree, and thus to fit details of the particular data rather than the overall properties
of the distributions they are drawn from. Another way to see this overfitting is to look at models
trained on different subsets of the data—for example, in Figure 5-72 we train two different
trees, each on half of the original data.

Figure 5-72. An example of two randomized decision trees



It is clear that in some places, the two trees produce consistent results (e.g., in thefour
corners), while in other places, the two trees give very different classifications (e.g., in the
regions between any two clusters). The key observation is that the incon- sistencies tend to
happen where the classification is less certain, and thus by using information from both of
these trees, we might come up with a better result!

If you are running this notebook live, the following function will allow you to interac-
tively display the fits of trees trained on a random subset of the data (Figure 5-73):

In[7]: # helpers_05_08 is found in the online appendix
# (https://github.com/jakevdp/PythonDataScienceHandbook)

import
helpers 05 08.randomized tree interactive (X, y)
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Figure 5-73. First frame of the interactive randomized decision tree widget; for the full
version, see the online appendix

Just as using information from two trees improves our results, we might expect thatusing
information from many trees would improve our results even further.

Ensembles of Estimators: Random Forests

This notion—that multiple overfitting estimators can be combined to reduce theeffect of
this overfitting—is what underlies an ensemble method called bagging. Bag-ging makes use of
an ensemble (a grab bag, perhaps) of parallel estimators, each of which overfits the data, and
averages the results to find a better classification. An ensemble of randomized decision trees
is known as a random forest.

We can do this type of bagging classification manually using Scikit-Learn’s Bagging
Classifier meta-estimator as shown here (Figure 5-74):

In[8]: from import DecisionTreeClassifier

from import BaggingClassifier



tree = DecisionTreeClassifier ()
bag = BaggingClassifier (tree, n estimators=100, max samples=0. 8,

random state=1)

bag. fit (X, y)
visualize classifier(bag, X, y)

Figure 5-74. Decision boundaries for an ensemble of random decision trees

In this example, we have randomized the data by fitting each estimator with a ran- dom
subset of 80% of the training points. In practice, decision trees are more effec- tively
randomized when some stochasticity is injected in how the splits are chosen; this way, all the
data contributes to the fit each time, but the results of the fit still havethe desired
randomness. For example, when determining which feature to split on,the randomized tree
might select from among the top several features. You can read more technical details about
these randomization strategies in the Scikit-Learn docu- mentation and references within.

In Scikit-Learn, such an optimized ensemble of randomized decision trees is imple- mented in
the RandomForestClassifier estimator, which takes care of all the ran- domization
automatically. All you need to do is select a number of estimators, and it will very quickly (in
parallel, if desired) fit the ensemble of trees (Figure 5-75):

In[9]: from import RandomForestClassifier

model = RandomForestClassifier(n estimators=100, random state=0)
visualize classifier (model, X, y);



Figure 5-75. Decision boundaries for a random forest, which is an optimized ensemble of
decision trees

We see that by averaging over 100 randomly perturbed models, we end up with an overall
model that is much closer to our intuition about how the parameter space should be split.

Random Forest Regression

In the previous section we considered random forests within the context of classifica-tion.
Random forests can also be made to work in the case of regression (that is, con- tinuous
rather than categorical variables). The estimator to use for this is the
RandomForestRegressor, and the syntax is very similar to what we saw earlier.

Consider the following data, drawn from the combination of a fast and slow oscilla-
tion (Figure 5-76):
In[10]: rng = np. random. RandomState (42)
x = 10 * rng. rand (200)

def model (x, sigma=0.3):
fast oscillation = np.sin(5 * x)
slow oscillation = np.sin(0.5 * x)
noise = sigma * rng. randn(len(x))

return slow oscillation + fast oscillation + noise

y = model (x)

plt.errorbar(x, y, 0.3, fmt='0');
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Figure 5-76. Data for random forest regression

Using the random forest regressor, we can find the best-fit curve as follows (Figure 5-77):

In[11]:

from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor (200)
forest. fit (x[:, Nonel, y)

xfit = np. linspace (0, 10, 1000)
yfit = forest.predict (xfit[:, None])

ytrue = model (xfit, sigma=0)

plt. errorbar(x, y, 0.3, fmt='o', alpha=0.5)
plt.plot (xfit, yfit, '-r');

plt.plot (xfit, ytrue, '-k', alpha=0.5);

Here the true model is shown by the smooth curve, while the random forest model is shown
by the jagged curve. As you can see, the nonparametric random forest modelis flexible
enough to fit the multiperiod data, without us needing to specify a multi- period model!
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Figure 5-77. Random forest model fit to the data

Example: Random Forest for Classifying Digits

Earlier we took a quick look at the handwritten digits data (see “Introducing Scikit- Learn” on
page 343). Let’s use that again here to see how the random forest classifiercan be used in this

context.

In[12]: from sklearn.datasets import load digits
digits = load digits()

digits. keys()

Out[12]: dict keys(['target', 'data', 'target names', 'DESCR', 'images'])

To remind us what we’re looking at, we’ll visualize the first few data points
(Figure 5-78):

In[13]:

# set up the figure

fig = plt. figure(figsize=(6, 6)) # figure size in inches

fig. subplots adjust (left=0, right=1, bottom=0, top=I, hspace=0.05, wspace=0.05)

# plot the digits: each image is 8x8 pixels

for i in range (64):
ax = fig.add subplot(8, 8, i + 1, xticks=[], yticks=[])
ax. imshow(digits. images[i], cmap=plt.cm. binary, interpolation='nearest')
# label the image with the target value

ax. text (0, 7, str(digits. target[i]))
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Figure 5-78. Representation of the digits data

We can quickly classify the digits using a random forest as follows (Figure 5-79):
In[14]:

from sklearn.cross_validation import train test split

Xtrain, Xtest, ytrain, ytest = train test split(digits.data, digits. target,

random state=0)
model = RandomForestClassifier(n estimators=1000)
model. fit (Xtrain, ytrain)

ypred = model. predict (Xtest)
We can take a look at the classification report for this classifier:
In[15]: from sklearn import metrics

print (metrics. classification_report (ypred, ytest))

precisio recall fl1- support
n score

0 1.00 0.97 0.99 38

1 1.00 0.98 0.99 44

2 0.95 1.00 0.98 42

3 0.98 0.96 0.97 46

4 0.97 1.00 0.99 37

5 0.98 0.96 0.97 49

6 1.00 1.00 1.00 52

7 1.00 0.96 0.98 50



8 0.94 0.98 0.96 46

9 0.96 0.98 0.97 46
avg / 0.98 0.98 0.98 450
total

And for good measure, plot the confusion matrix (Figure 5-79):

In[16]: from sklearn.metrics import confusion matrix
mat = confusion matrix(ytest, ypred)

sns. heatmap (mat. T, square=True, annot=True, fmt='d', cbar=False)
plt. xlabel (' true label")

plt. ylabel ('predicted label');

predicted label

true label

Figure 5-79. Confusion matrix for digit classification with random forests

We find that a simple, untuned random forest results in a very accurate
classification of the digits data.

Summary of Random Forests

This section contained a brief introduction to the concept of ensemble estimators,
andin particular the random forest model—an ensemble of randomized decision
trees. Random forests are a powerful method with several advantages:

« Both training and prediction are very fast, because of the simplicity of the under-
lying decision trees. In addition, both tasks can be straightforwardly parallelized,
because the individual trees are entirely independent entities.

e The multiple trees allow for a probabilistic classification: a majority vote among
estimators gives an estimate of the probability (accessed in Scikit-Learn with the
predict proba() method).




» The nonparametric model is extremely flexible, and can thus perform well on tasks
that are underfit by other estimators.

A primary disadvantage of random forests is that the results are not easily interpreta- ble;
that is, if you would like to draw conclusions about the meaning of the classifica-tion model,
random forests may not be the best choice.

In Depth: Principal Component Analysis

Up until now, we have been looking in depth at supervised learning estimators: those
estimators that predict labels based on labeled training data. Here we begin looking atseveral
unsupervised estimators, which can highlight interesting aspects of the data without
reference to any known labels.

In this section, we explore what is perhaps one of the most broadly used of unsuper- vised
algorithms, principal component analysis (PCA). PCA is fundamentally a dimensionality
reduction algorithm, but it can also be useful as a tool for visualiza- tion, for noise filtering, for
feature extraction and engineering, and much more. After a brief conceptual discussion of the
PCA algorithm, we will see a couple examples ofthese further applications. We begin with the
standard imports:

In[1]: %matplotlib inline

import as
import as
import as ; sns. set ()

Introducing Principal Component Analysis

Principal component analysis is a fast and flexible unsupervised method for dimen- sionality
reduction in data, which we saw briefly in “Introducing Scikit-Learn” on page 343. Its
behavior is easiest to visualize by looking at a two-dimensional dataset. Consider the
following 200 points (Figure 5-80):

In[2]: rng = np. random. RandomState (1)
X = np. dot (rng. rand (2, 2), rng.randn(2, 200)).T

plt.scatter X[:, 0], X[:, 1)
plt.axis('equal');

By eye, it is clear that there is a nearly linear relationship between the x and y vari- ables. This
is reminiscent of the linear regression data we explored in “In Depth: Lin-ear Regression” on
page 390, but the problem setting here is slightly different: rather than attempting to predict
the y values from the x values, the unsupervised learning problem attempts to learn about the
relationship between the x and y values.
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Figure 5-80. Data for demonstration of PCA

In principal component analysis, one quantifies this relationship by finding a list of the
principal axes in the data, and using those axes to describe the dataset. Using Scikit-Learn’s PCA
estimator, we can compute this as follows:

In[3]: from import PCA
pca = PCA(n_components=2)

peca. fit (X)
Out[3]: PCA(copy=True, n components=2, whiten=False)
The fit learns some quantities from the data, most importantly the “components”
and “explained variance”:
In[4]: print(pca. components_)
[[ 0.94446029 0.32862557]
[ 0.32862557 —0.94446029]]

In[5]: print(pca. explained variance )

[ 0.75871884 0.01838551]

To see what these numbers mean, let’s visualize them as vectors over the input data, using the
“components” to define the direction of the vector, and the “explained var- iance” to define the
squared-length of the vector (Figure 5-81):

In[6]: def draw vector(v0, vl, ax=None):
ax = ax or plt.gca()

arrowprops=dict (arrowstyle='->",

linewidth=2,
shrinkA=0, shrinkB=0)



ax. annotate ("', vl, v0, arrowprops=arrowprops)

# plot data
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

for length, vector in zip(pca. explained variance , pca.components ) :
v = vector * 3 * np. sqrt(length)

draw vector(pca.mean , pca.mean + v)
plt.axis('equal');
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Figure 5-81. Visualization of the principal axes in the data

These vectors represent the principal axes of the data, and the length shown inFigure
5-81 is an indication of how “important” that axis is in describing the distribu-tion of the
data—more precisely, it is a measure of the variance of the data when pro-jected onto that
axis. The projection of each data point onto the principal axes are the “principal components”
of the data.

If we plot these principal components beside the original data, we see the plots shownin
Figure 5-82.

input principal components

component 2
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x component 1

Figure 5-82. Transformed principal axes in the data



This transformation from data axes to principal axes is as an affine transformation, which
basically means it is composed of a translation, rotation, and uniform scaling.

While this algorithm to find principal components may seem like just a
mathematicalcuriosity, it turns out to have very far-reaching applications in the
world of machine learning and data exploration.

PCA as dimensionality reduction

Using PCA for dimensionality reduction involves zeroing out one or more of the smallest
principal components, resulting in a lower-dimensional projection of thedata that
preserves the maximal data variance.

Here is an example of using PCA as a dimensionality reduction transform:

In[7]: pca = PCA(n components=1)
peca. fit (X)

X pca = pca. transform(X)

print("original shape: , X. shape)
print ("transformed shape:", X pca. shape)

original shape: (200, 2)

transformed shape: (200, 1)

The transformed data has been reduced to a single dimension. To understand the effect of this
dimensionality reduction, we can perform the inverse transform of this reduced data and plot
it along with the original data (Figure 5-83):

In[8]: X new = pca. inverse transform(X pca)
plt.scatter X[:, 0], X[:, 1], alpha=0.2)

plt.scatter (X newl:, 0], X new[:, 1], alpha=0.8)
plt.axis('equal');
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Figure 5-83. Visualization of PCA as dimensionality reduction



The light points are the original data, while the dark points are the projected version. This
makes clear what a PCA dimensionality reduction means: the information alongthe least
important principal axis or axes is removed, leaving only the component(s) of the data with the
highest variance. The fraction of variance that is cut out (propor- tional to the spread of points
about the line formed in Figure 5-83) is roughly a meas-ure of how much “information” is
discarded in this reduction of dimensionality.

This reduced-dimension dataset is in some senses “good enough” to encode the most important
relationships between the points: despite reducing the dimension of thedata by 50%, the
overall relationship between the data points is mostly preserved.

PCA for visualization: Handwritten digits

The usefulness of the dimensionality reduction may not be entirely apparent in only two
dimensions, but becomes much more clear when we look at high-dimensional data. To see this,
let’s take a quick look at the application of PCA to the digits data wesaw in “In-Depth: Decision
Trees and Random Forests” on page 421.

We start by loading the data:

In[9]: from import load digits
digits = load digits()

digits. data. shape
Out[9]:
(1797, 64)

Recall that the data consists of 8x8 pixel images, meaning that they are 64-
dimensional. To gain some intuition into the relationships between these points, we
can use PCA to project them to a more manageable number of dimensions, say two:

In[10]: pca = PCA(2) # project from 64 to 2 dimensions
projected = pca. fit transform(digits. data)
print(digits. data. shape)

print (projected. shape)
(1797, 64)
1797, 2)

We can now plot the first two principal components of each point to learn about the data
(Figure 5-84):

In[11]: plt.scatter(projected[:, 0], projected[:, 1],

c=digits. target, edgecolor='none', alpha=0.5,
cmap=plt. cm. get cmap ('spectral', 10))

plt. xlabel ('component 1') plt.ylabel ('component 2')plt.colorbar();
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Figure 5-84. PCA applied to the handwritten digits data

Recall what these components mean: the full data is a 64-dimensional point cloud, and these
points are the projection of each data point along the directions with the largest variance.
Essentially, we have found the optimal stretch and rotation in 64- dimensional space that
allows us to see the layout of the digits in two dimensions, andhave done this in an
unsupervised manner—that is, without reference to the labels.

What do the components mean?

We can go a bit further here, and begin to ask what the reduced dimensions mean. This
meaning can be understood in terms of combinations of basis vectors. For example, each
image in the training set is defined by a collection of 64 pixel values, which we will call the
vector x:

x = fp, %9, X3 Xgq |

One way we can think about this is in terms of a pixel basis. That is, to construct the image, we
multiply each element of the vector by the pixel it describes, and then add the results together
to build the image:

image(x)= x; - Hixel 1 4x, - pikel 2 +X3- pixel 3 --:x}, - pixel 64 )

One way we might imagine reducing the dimension of this data is to zero out all but afew of
these basis vectors. For example, if we use only the first eight pixels, we get aneight-
dimensional projection of the data (Figure 5-85), but it is not very reflective of the whole
image: we've thrown out nearly 90% of the pixels!
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Figure 5-85. A naive dimensionality reduction achieved by discarding pixels

The upper row of panels shows the individual pixels, and the lower row shows the cumulative
contribution of these pixels to the construction of the image. Using only eight of the pixel-
basis components, we can only construct a small portion of the 64- pixel image. Were we to
continue this sequence and use all 64 pixels, we would recover the original image.

But the pixel-wise representation is not the only choice of basis. We can also use otherbasis
functions, which each contain some predefined contribution from each pixel, and write
something like:

image(x)= mean +Xx, - basis 1 ¥x,- bésis 2 Hx5- bdsis 3 -+)

PCA can be thought of as a process of choosing optimal basis functions, such that adding
together just the first few of them is enough to suitably reconstruct the bulk ofthe elements in
the dataset. The principal components, which act as the low- dimensional representation of
our data, are simply the coefficients that multiply each of the elements in this series. Figure 5-
86 is a similar depiction of reconstructing this digit using the mean plus the first eight PCA
basis functions.
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Figure 5-86. A more sophisticated dimensionality reduction achieved by discarding the
least important principal components (compare to Figure 5-85)

Unlike the pixel basis, the PCA basis allows us to recover the salient features of the input
image with just a mean plus eight components! The amount of each pixel in each component
is the corollary of the orientation of the vector in our two- dimensional example. This is the
sense in which PCA provides a low-dimensional representation of the data: it discovers a set
of basis functions that are more efficient than the native pixel-basis of the input data.



Choosing the number of components

A vital part of using PCA in practice is the ability to estimate how many components
are needed to describe the data. We can determine this by looking at the cumulative
explained variance ratio as a function of the number of components (Figure 5-87):

In[12]: pca = PCA(). fit(digits. data)
plt.plot (np. cumsum(pca. explained variance ratio ))
plt. xlabel ('number of components')
plt.ylabel ('cumulative explained variance');
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Figure 5-87. The cumulative explained variance, which measures how well PCA pre-serves
the content of the data

This curve quantifies how much of the total, 64-dimensional variance is contained within the
first N components. For example, we see that with the digits the first 10 components contain
approximately 75% of the variance, while you need around 50 components to describe close
to 100% of the variance.

Here we see that our two-dimensional projection loses a lot of information (as meas- ured by
the explained variance) and that we’d need about 20 components to retain 90% of the
variance. Looking at this plot for a high-dimensional dataset can help youunderstand the level
of redundancy present in multiple observations.

PCA as Noise Filtering

PCA can also be used as a filtering approach for noisy data. The idea is this: any com-ponents
with variance much larger than the effect of the noise should be relatively unaffected by the
noise. So if you reconstruct the data using just the largest subset of principal components, you
should be preferentially keeping the signal and throwing out the noise.



Let’s see how this looks with the digits data. First we will plot several of the inputnoise-
free data (Figure 5-88):

In[13]: def plot digits(data):
fig, axes = plt.subplots(4, 10, figsize=(10, 4),

subplot kw={'xticks':[], 'vticks':[]},
gridspec_kw=dict (hspace=0. 1, wspace=0.1))

for i, ax in enumerate (axes. flat):
ax. imshow(datali]. reshape (8, 8),

cmap='binary', interpolation='nearest',
clim=(0, 16))

plot digits(digits. data)
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Figure 5-88. Digits without noise

Now let’'s add some random noise to create a noisy dataset, and replot it(Figure 5-89):

In[14]: np. random. seed (42)

noisy = np. random. normal (digits. data, 4)
plot digits(noisy)
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Figure 5-89. Digits with Gaussian random noise added

It's clear by eye that the images are noisy, and contain spurious pixels. Let’s train aPCA on
the noisy data, requesting that the projection preserve 50% of the variance:




In[15]: pca = PCA(0.50). fit(noisy)
pca.n_components

Out[15]: 12

Here 50% of the variance amounts to 12 principal components. Now we compute these
components, and then use the inverse of the transform to reconstruct the fil- tered digits
(Figure 5-90):

In[16]: components = pca. transform(noisy)

filtered = pca. inverse transform(components)
plot digits(filtered)
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Figure 5-90. Digits “denoised” using PCA

This signal preserving/noise filtering property makes PCA a very useful feature selec-tion
routine—for example, rather than training a classifier on very high-dimensional data, you
might instead train the classifier on the lower-dimensional representation, which will
automatically serve to filter out random noise in the inputs.

Example: Eigenfaces

Earlier we explored an example of using a PCA projection as a feature selector for facial
recognition with a support vector machine (“In-Depth: Support Vector Machines” on page
405). Here we will take a look back and explore a bit more of whatwent into that. Recall that
we were using the Labeled Faces in the Wild dataset made available through Scikit-Learn:

In[17]: from sklearn.datasets import fetch_1fw_people
faces = fetch 1fw people(min faces per person=60)
print (faces. target_names)
print (faces. images. shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
"Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)

Let’s take a look at the principal axes that span this dataset. Because this is a large
dataset, we will use RandomizedPCA—it contains a randomized method to
approxi-



mate the first N principal components much more quickly than the standard PCA esti-mator,
and thus is very useful for high-dimensional data (here, a dimensionality of nearly 3,000). We
will take a look at the first 150 components:

In[18]: from sklearn.decomposition import RandomizedPCA
pca = RandomizedPCA (150)

pca. fit (faces. data)

Out[18]: RandomizedPCA (copy=True, iterated power=3, n_components=150,
random_state=None, whiten=False)

In this case, it can be interesting to visualize the images associated with the first sev- eral
principal components (these components are technically known as “eigenvec- tors,” so these
types of images are often called “eigenfaces”). As you can see in Figure 5-91, they are as creepy
as they sound:

In[19]: fig, axes = plt.subplots(3, 8, figsize=(9, 1),

subplot kw={'xticks':[], 'vticks':[]},
gridspec kw=dict (hspace=0. I, wspace=0. 1))

for i, ax in enumerate (axes. flat) :
ax. imshow (pca. components_[i]. reshape (62, 47), cmap='bone")

Figure 5-91. A visualization of eigenfaces learned from the LFW dataset

The results are very interesting, and give us insight into how the images vary: for example, the
first few eigenfaces (from the top left) seem to be associated with the angle of lighting on the
face, and later principal vectors seem to be picking out certainfeatures, such as eyes, noses,
and lips. Let’s take a look at the cumulative variance of these components to see how much of
the data information the projection is preserv- ing (Figure 5-92):

In[20]: plt.plot (np. cumsum(pca. explained variance ratio ))
plt. xlabel ('number of components')
plt.ylabel ('cumulative explained variance');
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Figure 5-92. Cumulative explained variance for the LFW data

We see that these 150 components account for just over 90% of the variance. That would lead
us to believe that using these 150 components, we would recover most of the essential
characteristics of the data. To make this more concrete, we can compare the input images with
the images reconstructed from these 150 components (Figure 5-93):

In[21]: # Compute the components and projected faces
pca = RandomizedPCA(150). fit (faces. data)
components = pca. transform(faces. data)
projected = pca. inverse transform(components)

In[22]: # Plot the results
fig, ax = plt.subplots(2, 10, figsize=(10, 2.5),

subplot kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict (hspace=0. 1, wspace=0.1))

for i in range (10):

ax[0, il.imshow(faces. datali]. reshape (62, 47), cmap='binary r')
ax[1, il.imshow(projected[i]. reshape (62, 47), cmap='binary r')

ax[0, 0].set ylabel('full-dim\ninput")

ax[1, 0].set ylabel('150-dim\nreconstruction");
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Figure 5-93. 150-dimensional PCA reconstruction of the LFW data
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The top row here shows the input images, while the bottom row shows the recon- struction of
the images from just 150 of the ~3,000 initial features. This visualization makes clear why the
PCA feature selection used in “In-Depth: Support Vector Machines” on page 405 was so
successful: although it reduces the dimensionality of the data by nearly a factor of 20, the
projected images contain enough information that we might, by eye, recognize the individuals
in the image. What this means is thatour classification algorithm needs to be trained on 150-
dimensional data rather than 3,000-dimensional data, which depending on the particular
algorithm we choose, can lead to a much more efficient classification.
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Week 7: Creating Reports and Dashboards
Day-01 : Introduction to Dashboards

A dashboard for data analytics is a tool used to multi-task, organize, visualize, analyze, and track
data. The overall purpose of a data analytics dashboard is to make it easier for data analysts,
decision makers, and average users to understand their data, gain deeper insights, and make better
data-driven decisions.

Data dashboards are designed to connect and help extract important information from a wide
variety of different data sources, services, and APIs. This information is displayed in a single, unified
view via visuals such as charts, figures, graphs, and tables. An organization can have a different
customizable dashboard for each department and even a dashboard for each individual project,
which helps provide granular monitoring of very specific KPls.

“Smart” data analytics dashboard software uses Al and Machine Learning to save time and automate
processes like data collection, discovery, preparation, replication, and reporting, which is crucial for
big data sets where manual processing is impractical. Advanced interactive dashboards will provide
compelling storytelling through attractive designs and real-time, interactive dynamic data
visualizations that empower team members to quickly and easily reveal hidden insights and draw
valuable conclusions that can help answer business questions and informa business decisions.

Data Analytics Dashboard Benefits

There are many different benefits to be gained from the many different kinds of data analytics
dashboards. Some of the most common benefits include: data visibility and accessibility, measuring
performance, business forecasting abilities, and agile responses:

Visibility and Accessibility: One of the primary benefits of a dashboard is its ability to display all of
the most relevant, important data in a way that is intuitive, digestible, and useful for the average
user. Dashboards should be a place where users can easily access key metrics and insights in a
unified space so that anyone in the organization can derive value from it.

Measuring Performance: Dashboards will help measure and keep track of the performance of
different teams, departments, products, and services. When analyzing the performance of an
organization as a whole, it is crucial to set KPIs and have access to specific performance data in order
to be able to hone in on processes that are creating inefficiencies and develop new strategies.

Agility: Dashboards help users detect changes in data quickly, in turn empowering users to react
quickly. Real-time updates enable users to immediately correct course in the moment, or even get a
jump on forthcoming trends.

Forecasting: Al and machine learning algorithms take historical data and current, real-time data in
order to identify trends and anomalies, and forecast potential issues before they become problems.
Forecasting can help direct things like demand planning, financial operations, future production, risk
reduction, and digital marketing operations.
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What are some Data Analytics Dashboard Examples?

Big data analytics is leveraged in nearly every modern industry. Some big data analytics examples
include retail, manufacturing, oil and gas, government, healthy industries, education, sports,
sciences, airlines, banking, business analytics dashboards, and marketing analytics dashboards. All of
these industries can benefit enormously from data analytics dashboards tailored to their specific
needs. Read on to see some data analytics dashboard examples and data analytics demos.

Examplel: Oil and Gas Data Analytics Dashboard

Companies throughout the oil and gas industry can derive enormous value from big data
analytics dashboards. Industry professionals can interact with spatiotemporal data analytics
in energy to determine things like productivity drivers, assess suitable land, and understand
benchmark performance.

Oil industry professionals can visually analyze data and conclude why wells are over or
underperforming, forecast their estimated potential, compare daily drill and well
performance, manage fleets, and identify production trends across basins. Dashboards for
data analytics can help renewable energy industry professionals visualize and interact with
massive multi-sourced datasets to determine where their customers should make wind,
solar, biomass, hydroelectric, or geothermal energy investments.

In this oil and gas demo, visualizations for 250 million well production records across the

entire United States are available for analysis. Research scenarios and quickly analyze

production decline performance, correlations, and rate of change with a few clicks.
HEAVYAI DASHEOARDS  DATAMANAGER  HELP - SR O -

554 n a Upstream Monthly Production + Add Chart

upstream

Wells by Avg Value Monthly # Wells by Play, Colored by Avg Oil Production
o

Central Basin Platiorm Play. 102742
Midisnd Basin 61,040

# Wells (Blue), Avg Oil Production (Green) by TVD

OO o
7 s @ mapbox

Avg Oil (Green) vs Gas (Red) Prod By Months In Production # Wells (Blue), Avg TVD (Orange), Avg Horiz. Length (Purple) by First Prod Date Total Oil (Green) vs Gas (Red) Prod by Month
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Example2: Covid-19 Pandemic Data Analytics Dashboard

Covid-19 data maps updated with real-time information were crucial for tracking the spread of the
pandemic, recovery rates, and monitoring the effectiveness of quarantine orders and mask
mandates. Covid-19 data analytics dashboards provided a simple, unified view of cases around the
world filtered across location and time, informing decisions made by hospital administrators and
lawmakers, such as office, school and business closure orders; mask mandated spaces; travel bans;
PPE inventory forecasts; and more.

Government data analytics dashboards compile data from a wide variety of sources, like hospitals,
government agencies, the CDC, World Health Organization, and make it easier for users to quickly
identify patterns and draw conclusions.

In this Covid-19 demo, visualize the spread of the virus using maps and charts, compare the growth
of cases across various countries and US states, and analyze the recovery rate in various regions of
the world.

omni-sci DASHBOARDS DATA MANAGER HELP -

oy _ Global Confirmed COVID-19 Cases and Spread

ve all daily_covid

©C ©  Default Filter Set

Confirmed Confirmed Cases by Country + Deaths (Size) + Mortality Rate (%) (Color) by Location Confirmed Infections by State

Deaths

© mapbox
Mortality Rate

Daily Confirmed (Blue), Recoveries (Green), Deaths (Red)

Total Infections by Date Country Statistics

80245

17,660

What are the Best Analytics Dashboard Tools?

The quality, variety, and volume of data analytics dashboard tools has increased in recent years. The
best option for your organization depends on a number of factors, such as budget, deployment,
client, and the specific goals and objectives of the project at hand. There are three main types of
dashboard software: operational, strategic, tactical, and analytical. Analytical dashboard software
functionality is prevalent in many business intelligence tools as they provide the greatest value to
data analysts and data scientists. Learn how to make the most out of your business intelligence
dashboard here.
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The best data analytics dashboard tools will offer: the ability to connect your data from multiple
sources, embedding capabilities, self-service reporting, automated real-time updates, streaming and
predictive analytics driven by Al, filtering across time and location, interactive visual analytics, full
customization, and at-a-click exploration. Some examples of popular enterprise analytics dashboard
software include: HEAVY’s visual analytics platform, Izenda, Periscope Data, Dundas Bl analytics
dashboard, Microsoft Power Bl, IBM Cognos, TIBCO Spotfire, Looker, and Sisense.

Every data analytics dashboard will look different depending on each different project’s goals and
objectives. The best option will be one that empowers you to be at one with your data and to interact
with it instantly and effortlessly. See the key capabilities that OmniSci’s converged analytics platform
provides to help users achieve insights from your largest datasets at the speed of curiosity.

Building interactive dashboards with libraries like Dash or Streamlit
What's a real-time live dashboard?
A real-time live dashboard is a web app used to display Key Performance Indicators (KPls).

If you want to build a dashboard to monitor the stock market, loT Sensor Data, Al Model Training, or
anything else with streaming data, then this tutorial is for you.

1. How to import the required libraries and read input data
Here are the libraries that you’ll need for this dashboard:

Streamilit (st). As you might’ve guessed, you’ll be using Streamlit for building the web
app/dashboard.

Time, NumPy (np). Because you don’t have a data source, you’ll need to simulate a live data feed.
Use NumPy to generate data and make it live (looped) with the Time library (unless you already have
a live data feed).

Pandas (pd). You'll use pandas to read the input data source. In this case, you’ll use a Comma
Separated Values (CSV) file.

Go ahead and import all the required libraries:

import time # to simulate a real time data, time loop

import numpy as np # np mean, np random

import pandas as pd # read csv, df manipulation

import plotly.express as px # interactive charts

import streamlit as st # data web app development

You can read your input data in a CSV by using pd.read_csv(). But remember, this data source could

be streaming from an API, a JSON or an XML object, or even a CSV that gets updated at regular
intervals.

Next, add the pd.read_csv() call within a new function get_data() so that it gets properly cached.
What's caching? It's simple. Adding the decorator @st.experimental_memo will make the function
get_data() run once. Then every time you rerun your app, the data will stay memoized! This way you
can avoid downloading the dataset again and again. Read more about caching in Streamlit docs.
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-
analysis/master/bank.csv"

# read csv from a URL
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@st.experimental_memo

def get_data() -> pd.DataFrame:
return pd.read_csv(dataset_url)

df = get_data()

table-1

2. How to do a basic dashboard setup
Now let’s set up a basic dashboard. Use st.set_page_config() with parameters serving the following
purpose:

The web app title page_title in the HTML tag <title> and in the browser tab
The favicon that uses the argument page_icon (also in the browser tab)
The layout = "wide" that renders the web app/dashboard with a wide-screen layout

st.set_page_config(
page_title="Real-Time Data Science Dashboard",

page_icon="Fd",
layout="wide",

)
3. How to design a user interface
A typical dashboard contains the following basic Ul design components:

e Apagetitle

e Atop-level filter

e KPIs/summary cards
e Interactive charts

e Adatatable

Let’s drill into them in detail.

Page title
The title is rendered as the <h1> tag. To display the title, use st.title(). It'll take the string “Real-Time /
Live Data Science Dashboard” and display it in the Page Title.

# dashboard title
st.title("Real-Time / Live Data Science Dashboard")

Top-level filter

First, create the filter by using st.selectbox(). It'll display a dropdown with a list of options. To
generate it, take the unique elements of the job column from the dataframe df. The selected item is
saved in an object named job_filter:

# top-level filters
job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))
Now that your filter Ul is ready, use job_filter to filter your dataframe df.
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# dataframe filter
df = df[df["job"] == job_filter]

KPIs/summary cards

Before you can design your KPls, divide your layout into a 3 column layout by using st.columns(3). The
three columns are kpil, kpi2, and kpi3. st.metric() helps you create a KPI card. Use it to fill one KPl in
each of those columns.

st.metric()’s label helps you display the KPI title. The value **is the argument that helps you show the
actual metric (value) and add-ons like delta to compare the KPI value with the KPI goal.

# create three columns
kpil, kpi2, kpi3 = st.columns(3)
# fill in those three columns with respective metrics or KPIs
kpil.metric(
label="Age X",
value=round(avg_age),
delta=round(avg_age) - 10,
)

kpi2.metric(
label="Married Count @",
value=int(count_married),
delta=-10 + count_married,

)

kpi3.metric(
label="A/C Balance $",
value=f"$ {round(balance,2)} ",
delta=-round(balance / count_married) * 100,

)

Interactive charts

Split your layout into 2 columns and fill them with charts. Unlike the metric above, use the with clause
to fill the interactive charts in the respective columns:

Density _heatmap in fig_coll
Histogram in fig_col2

# create two columns for charts
fig_coll, fig_col2 = st.columns(2)

with fig_col1:
stmarkdown("### First Chart")
fig = px.density_heatmap(
data_frame=df, y="age_new", x="marital"

)

st.write(fig)

with fig_col2:
stmarkdown("### Second Chart")
fig2 = px.histogram(data_frame=df, x="age_new")
st.write(fig2)
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Data table
Use st.dataframe() to display the data frame. Remember, your data frame gets filtered based on the
filter option selected at the top:

stmarkdown("### Detailed Data View")
st.dataframe(df)

4. How to refresh the dashboard for real-time or live data feed
Since you don’t have a real-time or live data feed yet, you're going to simulate your existing data
frame (unless you already have a live data feed or real-time data flowing in).

To simulate it, use a for loop from 0 to 200 seconds (as an option, on every iteration you’ll have a
second sleep/pause):

for seconds in range(200):

df["age_new"] = df["age"] * np.random.choice(range(1, 5))

df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))

time.sleep(1)
Inside the loop, use NumPy's random.choice to generate a random number between 1 to 5. Use it as
a multiplier to randomize the values of age and balance columns that you’ve used for your metrics

and charts.

5. How to auto-update components
Now you know how to do a Streamlit web app!

To display the live data feed with auto-updating KPIs/Metrics/Charts, put all these components inside
a single-element container using st.empty(). Call it placeholder:

# creating a single-element container.

placeholder = st.empty()

Put your components inside the placeholder by using a with clause. This way you’ll replace them in
every iteration of the data update. The code below contains the placeholder.container() along with

the Ul components you created above:

with placeholder.container():

# create three columns
kpil, kpi2, kpi3 = st.columns(3)

# fill in those three columns with respective metrics or KPIs
kpil.metric(

label="Age X",

value=round(avg_age),

delta=round(avg_age) - 10,
)

kpi2.metric(
label="Married Count @",
value=int(count_married),
delta=-10 + count_married,

)

kpi3.metric(
label="A/C Balance $",
value=f"$ {round(balance,2)} ",

Page 453 of 580



delta=-round(balance / count_married) * 100,

)

# create two columns for charts
fig_coll, fig_col2 = st.columns(2)

with fig_col1:
stmarkdown("### First Chart")
fig = px.density_heatmap(
data_frame=df, y="age_new", x="marital"

st.write(fig)

with fig_col2:
stmarkdown("### Second Chart")
fig2 = px.histogram(data_frame=df, x="age_new")
st.write(fig2)

stmarkdown("### Detailed Data View")
st.dataframe(df)
time.sleep(1)

And...here is the full code!

import time # to simulate a real time data, time loop
import numpy as np # np mean, np random

import pandas as pd # read csv, df manipulation
import plotly.express as px # interactive charts
import streamlit as st # Q data web app development

st.set_page_config(
page_title="Real-Time Data Science Dashboard",
page_icon="[4",
layout="wide",

)

# read csv from a github repo
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-
analysis/master/bank.csv"

# read csv from a URL

@st.experimental_memo

def get_data() -> pd.DataFrame:
return pd.read_csv(dataset_url)

df = get_data()

# dashboard title
st.title("Real-Time / Live Data Science Dashboard")

# top-level filters
job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))

# creating a single-element container
placeholder = st.empty()

# dataframe filter
df = df[df["job"] == job_filter]
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# near real-time / live feed simulation
for seconds in range(200):

df["age_new"] = df["age"] * np.random.choice(range(1, 5))
df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))

# creating KPIs
avg_age = np.mean(df["age_new"])

count_married = int(
df[(df["marital"] == "married")]["marital"].count()
+ np.random.choice(range(1, 30))

)

balance = np.mean(df["balance_new"])
with placeholder.container():

# create three columns
kpil, kpi2, kpi3 = st.columns(3)

# fill in those three columns with respective metrics or KPIs
kpil.metric(

label="Age X",

value=round(avg_age),

delta=round(avg_age) - 10,
)

kpiZ.metric(
label="Married Count @",
value=int(count_married),
delta=-10 + count_married,

)

kpi3.metric(
label="A/C Balance $",
value=f"$ {round(balance,2)} ",
delta=-round(balance / count_married) * 100,

)

# create two columns for charts
fig_col1l, fig_col2 = st.columns(2)
with fig_col1:
st markdown("### First Chart")
fig = px.density_heatmap(
data_frame=df, y="age_new", x="marital"
)
st.write(fig)
with fig_col2:
st.markdown("### Second Chart")
fig2 = px.histogram(data_frame=df, x="age_new")
st.write(fig2)

stmarkdown("### Detailed Data View")
st.dataframe(df)
time.sleep(1)

To run this dashboard on your local computer:
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e Save the code as a single monolithic app.py.

e Open your Terminal or Command Prompt in the same path where the app.py is stored.

e Execute streamlit run app.py for the dashboard to start running on your localhost and the link
would be displayed in your Terminal and also opened as a new Tab in your default browser.

Day-02: Develop Data Visualization Interfaces in Python With Dash

Dash gives data scientists the ability to showcase their results in interactive web applications.
You don’t need to be an expert in web development. In an afternoon, you can build and deploy
a Dash app to share with others.

Here you’ll learn how to:

o Create a Dash application

o Use Dash core components and HTML components
o Customize the style of your Dash application

o Use callbacks to build interactive applications

o Deploy your application on PythonAnywhere

You can download the source code, data, and resources for the sample application that you'll
make in this tutorial by clicking the link below:

What Is Dash?

Dash is an open-source framework for building data visualization interfaces. Released in 2017 as
a Python library, it’s grown to include implementations for R, Julia, and F#. Dash helps data
scientists build analytical web applications without requiring advanced web development
knowledge.

Three technologies constitute the core of Dash:

1. Flask supplies the web server functionality.
2. React.js renders the user interface of the web page.
3. Plotly.js generates the charts used in your application.

But you don’t have to worry about making all these technologies work together. Dash will do
that for you. You just need to write Python, R, Julia, or F# and sprinkle in a bit of CSS.

Plotly, a Canada-based company, built Dash and supports its development. You may know the
company from the popular graphing libraries that share its name. The company released Dash
as open source under an MIT license, so you can use Dash at no cost.

Plotly also offers a commercial companion to Dash called Dash Enterprise. This paid service
provides companies with support services such as hosting, deploying, and handling
authentication on Dash applications. But these features live outside of Dash’s open-source
ecosystem.

Dash will help you build dashboards quickly. If you’re used to analyzing data or building data
visualizations using Python, then Dash will be a useful addition to your toolbox. Here are a few
examples of what you can make with Dash:
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1. Adashboard showing object detection for self-driving cars
2. Avisualization of millions of Uber rides
3. Aninteractive tool for analyzing soccer match data

This is just a tiny sample. If you’d like to see other interesting use cases, then go
check out the Dash App Gallery.

Note: You don’t need advanced knowledge of web development to follow this
manual, but some familiarity with HTML and CSS won't hurt.

You should know the basics of the following topics, though:

o Python graphing libraries such as Plotly, Bokeh, and Matplotlib
o HTML and the structure of an HTML file CSS and style sheets

Get Started With Dash in Python

You’'ll go through the end-to-end process of building a dashboard using Dash. If you follow along
with the examples, then you’ll go from a bare-bones dashboard on your local machine to a
styled dashboard deployed on PythonAnywhere.

To build the dashboard, you'll use a dataset of sales and prices of avocados in the United States
between 2015 and 2018. Justin Kiggins compiled this dataset using data from the Hass Avocado
Board.

How to Set Up Your Local Environment

To develop your app, you’ll need a new directory to store your code and data. You’ll also need a
clean Python virtual environment. To create those, execute the commands below, choosing the
version that matches your operating system:

PS> mkdir avocado_analytics
PS> cd avocado_analytics
PS> python -m venv venv

PS> venv\Scripts\activate

The first two commands create a directory for your project and move your current location there.
The next command creates a virtual environment in that location. The last command activates
the virtual environment.

Next, you need to install the required libraries. You can do that using pip inside your virtual
environment. Install the libraries as follows:

(venv) $ python -m pip install dash==2.8.1 pandas==1.5.3

This command will install Dash and pandas in your virtual environment. You'll use specific
versions of these packages to make sure that you have the same environment as the one used
throughout this tutorial. Alongside Dash, pandas will help you handle reading and wrangling the
data that you’ll use in your app.

Page 457 of 580



Save the data as avocado.csv in the root directory of the project. By now, you should have a virtual
environment with the required libraries and the data in the root folder of your project. Your
project’s structure should look like this:

avocado_analytics/
venv/

avocado.csv
Now you’ll build your first Dash application.

How to Build a Dash Application
For development purposes, it’s useful to think of the process of building a Dash application in
three steps:

1. Define the content of your application using the app’s layout.
2. Style the looks of your app with CSS or styled components.
3. Use callbacks to determine which parts of your app are interactive and what they react to.

Initializing Your Dash Application

Create an empty file named app.py in the root directory of your project, then review the code
of app.py in this section. To make it easier for you to copy the full code, you’ll find the entire
contents of app.py at the end of this section.

Here are the first few lines of app. py:

1# app.py
2

3import pandas as pd

4from dash import Dash, dcc, html

5

6data = (

7 pd.read_csv("avocado.csv")

8 .query("type == 'conventional' and region == 'Albany'")

9 .assign(Date=1lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d"))
10 .sort_values(by="Date")
11)
12

13app = Dash(__name_ )
On lines 3 and 4, you import the required libraries: pandas and dash. You’ll use pandas to read
and organize the data. You’re importing the following elements from dash:

e Dash helps you initialize your application.

e html, also called Dash HTML Components, lets you access HTML tags.

e dcc, short for Dash Core Components, allows you to create interactive components like
graphs, dropdowns, or date ranges.
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On lines 6 to 11, you read the data and preprocess it for use in the dashboard. You filter some of
the data because your dashboard isn’t interactive yet, and the plotted values wouldn’t make
sense otherwise.

On line 13, you create an instance of the Dash class you use Dash(__name__).

Defining the Layout of Your Dash Application

Next, you’ll define the layout property of your application. This property dictates the content of
your app. In this case, you’ll use a heading with a description immediately below it, followed by
two graphs. Here’s how you define it:

1# app.py
2

3# ...

4

S5app.layout = html.Div(
6 children=[

7 html.H1(children="Avocado Analytics"),

8 html.P(

9 children=(

10 "Analyze the behavior of avocado prices and the number"
11 " of avocados sold in the US between 2015 and 2018"
12 )

13 )

14 dcc.Graph(

15 figure={

16 "data": [

17 {

18 "x": data["Date"],

19 "y": data["AveragePrice"],

20 "type": "lines",

21 },

22 1,

23 "layout": {"title": "Average Price of Avocados"},
24 },

25 )

26 dcc.Graph(

27 figure={

28 "data": [

29 {

30 "x": data["Date"],
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31 "y": data["Total Volume"],

32 "type": "lines",

33 Io

34 1,

35 "layout": {"title": "Avocados Sold"},
36 },

37 )

38 ]

39)
With this code, you define the .layout property of the app object. This property determines the
content of your application using a tree structure made of Dash components.

Dash components come prepackaged in Python libraries. Some of them come with Dash when
you install it. You have to install the rest separately. You’ll see two sets of components in almost
every app:

1. TheDash HTML Components module provides you with Python wrappers for HTML
elements. For example, you could use Dash HTML Components to create elements
such as paragraphs, headings, or lists.

2. The Dash Core Components module provides you with Python abstractions for
creating interactive user interfaces. You can use these components to create
interactive elements such as graphs, sliders, or dropdowns.

On lines 5 to 13, you can see the Dash HTML components in practice. You start by defining the
parent component, html.Div. Then you add two more elements, a heading (html.H1) and a
paragraph (html.P), as its children.

These components are equivalent to the <div>, <h1>, and <p>HTML tags. You can use the
components’ arguments to modify attributes or the content of the tags. For example, to specify
what goes inside the <div> tag, you use the children argument in html.Div.

There are also other arguments in the components, such as style, className, and id, that refer to
attributes of the HTML tags. You'll see how to use some of these properties to style your
dashboard in the next section.

The part of the layout shown on lines 5 to 13 will get transformed into the following HTML code:

<div>
<hl>Avocado Analytics</hl>
<p>
Analyze the behavior of avocado prices and the number
of avocados sold in the US between 2015 and 2018
</p>
<!-- Rest of the app -->
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</div>
This HTML code is rendered when you open your application in the browser. It follows the same
structure as your Python code, with a <div> tag containing an <h1> and a <p> element.

On lines 14 and 26 in the layout code snippet, you can see the graph component from Dash Core
Components in practice. There are two dcc.Graph components in app.layout. The first one plots
the average prices of avocados during the period of study, and the second plots the number of
avocados sold in the United States during the same period.

Under the hood, Dash uses Plotly.js to generate graphs. The dcc.Graph components expect
a figure object or a Python dictionary containing the plot’s data and layout. In this case, you

provide the latter.

Finally, these two lines of code help you run your application:

# app.py
# .
if __name__ == "__main__":

app.run_server(debug=True)
These lines make it possible to run your Dash application locally using Flask’s built-in server.
The debug=True parameter enables the hot-reloading option in your application. This means that
when you make a change to your app, it reloads automatically, without you having to restart the
server.

This is the code for your bare-bones dashboard. It includes all the snippets of code that you
reviewed earlier in this section.

Now it’s time to run your application. Open a terminal inside your project’s root directory with

the  project’'s virtual environment activated. Run python app.py, then go
to http://localhost:8050 using your preferred browser.

Note: Install dash by typing followin command on Shell:

conda install dash dash-core-components dash-html-components dash-renderer
-c conda-forge

and the py -m pip install dash

Your dashboard should look like this:
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The dashboard is far from visually pleasing, and you still need to add some interactivity to it.
Style Your Dash Application

Dash provides you with a lot of flexibility to customize the look of your application. You can use
your own CSS or JavaScript files, set afavicon—the small icon shown on tabs in the web
browser—and embed images, among other advanced options.

Now you’ll see how to show off your own style with CSS. There are several packages on PyPI that
provide styled Dash components. For example, dash-bootstrap-components are Bootstrap

themed.

Apply custom styles to components, and then you’ll style the dashboard that you built in the
previous section.

How to Apply a Custom Style to Your Components
You can style components in two ways:

e Using the style argument of individual components
e Providing an external CSS file
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Using the style argument to customize your dashboard is straightforward. This argument takes a
Python dictionary with key-value pairs consisting of the names of CSS properties and the values
that you want to set.

When specifying CSS properties in the style argument, you should use mixedCase syntax instead
of hyphen-separated words. For example, to change the background color of an element, you should
use backgroundColor and not background-color.

If you wanted to change the size and color of the H1 element in app.py, then you could set the
element’s style argument as follows:

html.H1(
children="Avocado Analytics",
style={"fontSize": "48px", "color": "red"},
)>

If you want to include your own local CSS or JavaScript files, then you need to create a folder
called assets/ in the root directory of your project and save the files that you want to add there.
By default, Dash automatically serves any file included in assets/. This will also work for adding a
favicon or embedding images, as you’ll see in a bit.

Then you can use the className or id arguments of the components to adjust their styles using
CSS. These arguments correspond with the class and id attributes when they’re transformed into
HTML tags.

If you wanted to adjust the font size and text color of the H1 element in app.py, then you could
use the className argument as follows:

html.H1(
children="Avocado Analytics",

className="header-title",

)s

Setting the className argument will define the class attribute for the <h1> element. You could
then use a CSS file in the assets folder to specify how you want it to look:

.header-title {
font-size: 48px;
color: red;

}

You use a class selector to format the heading in your CSS file. This selector will adjust the heading
format. You could also use it with another element that needs to share the format by
setting className="header-title".
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How to Improve the Looks of Your Dashboard

You just covered the basics of styling in Dash. Now, you’ll learn how to customize your
dashboard’s looks. You’ll make these improvements:

e Add a favicon and title to the page.
e Change the font family of your dashboard.
e Use an external CSS file to style Dash components.

You'll start by learning how to use external assets in your application. That'll allow you to add a
favicon, a custom font family, and a CSS style sheet. Then you’ll learn how to use
the className argument to apply custom styles to your Dash components.

Adding External Assets to Your Application

Create a folder called assets/in your project’s root directory. Download a favicon from
the Twemoji open-source project and save it as favicon.ico in assets/. Finally, create a CSS file
in assets/ called style.css and add the code in the collapsible section below:

style.cssShow/Hide

The assets/style.css file contains the styles that you’ll apply to components in your application’s
layout. By now, your project structure should look like this:

avocado_analytics/

|
F—— assets/

| — favicon.ico
| L— style.css

|

F—— venv/
|

— app.py

L— avocado.csv

Once you start the server, Dash will automatically serve the files located in assets/. You include
two files, favicon.ico and style.css, in assets/. To set a default favicon, you don’t have to take any
additional steps. To use the styles that you defined instyle.css, you’ll need to use
the className argument in Dash components.

You need to make a few changes in app.py. You’'ll include an external style sheet, add a title to
your dashboard, and style the components using the style.css file. Review the changes below.

Then, in the last part of this section, you'll find the full code for your updated version of app.py.

Here’s how you include an external style sheet and add a title to your dashboard:

# app.py
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external_stylesheets = [
{
"href": (
"https://fonts.googleapis.com/css2?"
"family=Lato:wght@400;700&display=swap"
)>
"rel": "stylesheet",
}s
]
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

app.title = "Avocado Analytics: Understand Your Avocados!"

# ...

In these code lines, you specify an external CSS file containing a font family, which you want to
load in your application. You add external files to the head tag of your application, so they load
before the body of your application loads. You use the external_stylesheets argument for adding
external CSS files or external_scripts for external JavaScript files like Google Analytics.

You also set the title of your application. This is the text that appears in the title bar of your web
browser, in Google’s search results, and in social media cards when you share your site.

Customizing the Styles of Components

To use the styles in style.css, you’ll need to use the className argument in Dash components.
The code below adds a className with a corresponding class selector to each of the components
in the header of your dashboard:

# app.py

app.layout = html.Div(

children=[
html.Div(
children=[
html.P(children="%%", className="header-emoji"),
html.H1(
children="Avocado Analytics", className="header-title"

)>
html.P(
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children=(
"Analyze the behavior of avocado prices and the number"
" of avocados sold in the US between 2015 and 2018"
)>
className="header-description”,
)
1

className="header",

# ...
In the highlighted lines, you can see that you’ve made three changes to the initial version of the
dashboard:

1. There's a new <div> element that wraps all the header components.
2. There’s a new paragraph element with an avocado emoji, %, that’ll serve as a logo on the

page.
3. There’s a className argument in each component. These class names match a class
selector in style.css, which defines the looks of each component.

For example, the header-description class assighned to the paragraph component starting
with "Analyze the behavior of avocado prices" has a corresponding selector in style.css. In that
file, you'll see the following:

.header-description {
color: #CFCFCF;
margin: 4px auto;
text-align: center;
max-width: 384px;

}

These lines define the format for the header-description class selector. They’ll change the color,
margin, alignment, and maximum width of any component with className="header-
description". All the components have corresponding class selectors in the CSS file.

The other significant change is in the graphs. Here’s the new code for the price chart:

1# app.py
2

3# ...

4

Sapp.layout = html.Div(
6 children=[

7 # ...

8
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

html.Div(
children=[

1,

html.Div(
children=dcc.Graph(
id="price-chart",

config={"displayModeBar": False},

figure={
"data": [
{
"x": data["Date"],
"y": data["AveragePrice"],
"type": "lines",
"hovertemplate": (
"$%{y:.2f}<extra></extra>"
)>
}s
1B
"layout": {
"title": {
"text": "Average Price of Avocados",
"x": 0.05,
"xanchor": "left",
1

"xaxis": {"fixedrange": True},
"yaxis": {
"tickprefix": "$",

"fixedrange": True,

¥
"colorway": ["#17b897"],
¥
¥
)>
className="card",
)>
# .
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47 className="wrapper",

48 ),
49 ]

50)

51

5% ...

In this code, you define a className and a few customizations for
the config and figure parameters of your chart. Here are the changes:

e Line 14: You remove the floating toolbar that Plotly shows by default.

e Lines 21 to 23: You set the hover template so that when users hover over a data point, it
shows the price in dollars. Instead of 2.5, it’ll show as $2.5.

e Lines 26 to 38: You adjust the axes, the color of the figure, and the title format in the layout
section of the graph.

e Lines 11 and 41: You wrap the graph in a <div> element with a "card" class. This will give
the graph a white background and add a small shadow below it.

e Lines9and 47: You add a <div> element that wraps the graph components with
awrapper class.

There are similar adjustments to the sales and volume charts. You can see those in the full
code for the updated app. py in the collapsible section below:

# app.py

import pandas as pd

from dash import Dash, dcc, html

data = (
pd.read_csv("avocado.csv")
.query("type == 'conventional' and region == 'Albany'")
.assign(Date=1lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d"))

.sort_values(by="Date")

external_stylesheets = [

{

"href": (
"https://fonts.googleapis.com/css2?"
"family=Lato:wght@400;700&display=swap"

)s

"rel": "stylesheet",

}s
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]

app = Dash(__name__, external_stylesheets=external_stylesheets)

app.title = "Avocado Analytics: Understand Your Avocados!"

app.layout = html.Div(

children=[
html.Div(
children=[
html.P(children="®", className="header-emoji"),
html.H1(
children="Avocado Analytics", className="header-title"
)s
html.P(
children=(
"Analyze the behavior of avocado prices and the number"
" of avocados sold in the US between 2015 and 2018"
)>
className="header-description”,
)
1B
className="header",
)>
html.Div(
children=[
html.Div(

children=dcc.Graph(
id="price-chart",

config={"displayModeBar": False},

figure={
"data": [

{
"x": data["Date"],
"y": data["AveragePrice"],
"type": "lines",
"hovertemplate": (

"$%{y:.2f}<extra></extra>"

)>

}s
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"layout": {

"title": {
"text": "Average Price of Avocados",
"x": 0.05,
"xanchor": "left",

}s

"xaxis": {"fixedrange": True},

"yaxis": {
"tickprefix": "$",

"fixedrange": True,

}s
"colorway": ["#17b897"],
}s
}s
)>
className="card",
)s
html.Div(

children=dcc.Graph(
id="volume-chart",

config={"displayModeBar": False},

figure={
"data": [
{
"x": data["Date"],
"y": data["Total Volume"],
"type": "lines",
}s
1,
"layout": {
"title": {
"text": "Avocados Sold",
"x": 0.05,
"xanchor": "left",
}s

"xaxis": {"fixedrange": True},

"yaxis": {"fixedrange": True},

Page 470 of 580



"colorway": ["#E12D39"],

}s
}s
)>
className="card",
)s
1B
className="wrapper",
)>
]
)
if __name__ == "_main__ ":

app.run_server(debug=True)
This is the updated version of app.py. It has the required changes in the code to

add a favicon and a page title, update the font family, and use an external CSS
file. After these changes, your dashboard should look like this:
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Add Interactivity to Your Dash Apps Using Callbacks
In this section, you’ll learn how to add interactive elements to your dashboard.
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Dash’s interactivity is based on a paradigm. This means that you can
link components with elements of your app that you want to update. If a user interacts with an
input component like a dropdown or a range slider, then the output, such as a graph, will react
automatically to the changes in the input.

Now you’re going to make your dashboard interactive. This new version of your dashboard
will allow the user to interact with the following filters:

e Region
e Type of avocado
e Daterange

The collapsible boxes below contain the full source code that you’ll be exploring in this
section. Start by replacing your local app. py with the new version in the collapsible section
below:

app.py
Next, replace style.css with the code in the collapsible section below:

style.css
Now you’re ready to explore the interactive components that you’ve added to your
application!

How to Create Interactive Components

First, you’ll learn how to create components that users can interact with. For
that, you’ll include a new <div> element above your charts. It’ll include two
dropdowns and a date range selector that the user can use to filter the data and
update the graphs.

You start by changing how you process your data. You no longer filter the data
when you read them. Instead you find the regions and avocado types that are
presentin your data:

# app.py
# .
data = (

pd.read_csv("avocado.csv")
# Remove .query(...)
.assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d"))
.sort_values(by="Date")
)
regions = data["region"].sort_values().unique()

avocado_types = data["type"].sort_values().unique()
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Next, you’ll use regions and avocado_types to populate a few dropdowns. Here’s
how that looks in app.py:

1# app.py
2

3 ...

4

S5app.layout = html.Div(
6 children=[

7

8 # ...

9

10 html.Div(

11 children=[

12 html.Div(

13 children=[

14 html.Div(children="Region", className="menu-title"),
15 dcc.Dropdown (

16 id="region-filter",

17 options=[

18 {"label": region, "value": region}
19 for region in regions

20 1B

21 value="Albany",

22 clearable=False,

23 className="dropdown",

24 )

25 ]

26 )s

27 html.Div(

28 children=[

29 html.Div(children="Type", className="menu-title"),
30 dcc.Dropdown (

31 id="type-filter",

32 options=[

33 {

34 "label": avocado_type.title(),
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

"value": avocado_type,
}
for avocado_type in avocado_types
1
value="organic",
clearable=False,
searchable=False,

className="dropdown",

)>
1,
)s
html.Div(
children=[
html.Div(
children="Date Range", className="menu-title"
)>
dcc.DatePickerRange(
id="date-range",
min_date allowed=data["Date"].min().date(),
max_date_allowed=data["Date"].max().date(),
start_date=data["Date"].min().date(),
end_date=data["Date"].max().date(),
)>
]
)s
1,
className="menu",
)>
#

On lines 10 to 62, you define a <div> element above your graphs, consisting of
two dropdowns and a date range selector. I’ll serve as a menu that the user will
use to interact with the data:

Type Date Range

organic - 01/04/2015  — 03/25/2018
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The first component in the menu is the Region dropdown. Focus on the code for
that component:

html.Div(
children=[
html.Div(children="Region", className="menu-title"),
dcc.Dropdown (
id="region-filter",
options=[
{"label": region, "value": region}
for region in regions
1,
value="Albany",
clearable=False,

className="dropdown",

)s

)5
Here, you define the dropdown that users will use to filter the data by region. In

addition to the title, it has a dcc.Dropdown component. Here’s what each of the
parameters means:

« idistheidentifier of this element.

« options indicates the options shown when the dropdown is selected. It
expects a dictionary with labels and values.

« value is the default value when the page loads.

o clearable allows the user to leave this field empty if set to True.

o className is a CSS class selector used for applying styles.

The Type and Date Range selectors follow the same structure as the Region
dropdown. Feel free to review them on your own.

Next, take a look at the dcc.Graphs components:

# app.py

app.layout = html.Div(

children=[

Page 475 of 580



html.Div(
children=[
html.Div(
children=dcc.Graph(
id="price-chart",
config={"displayModeBar": False},
)>
className="card",
)>
html.Div(
children=dcc.Graph(
id="volume-chart",
config={"displayModeBar": False},
)>
className="card",
)
1B
className="wrapper",
)>
]
)
#

In this part of the code, you define the dcc.Graph components. You may have
noticed that, compared to the previous version of the dashboard, the
components are missing the figure argument. That’s because a callback
function will now generate the figure argument using the inputs that the user
sets using the Region, Type, and Date Range selectors.

How to Define Callbacks
You’ve defined how the user will interact with your application. Now you need to make your
application react to user interactions. For that, you’ll use callback functions.

Dash’s callback functions are regular Python functions with an app.callback decorator. In
Dash, when an input changes, a callback function is triggered. The function performs some
predetermined operations, like filtering a dataset, and returns an output to the application. In
essence, callbacks link inputs and outputs in your app.
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Here’s the callback function that’s used for updating the graphs:

1# app.py
2

3# ..

4

S5@app.callback(

6 Output("price-chart", "figure"),

7 Output("volume-chart", "figure"),
8 Input("region-filter", "value"),

9 Input("type-filter", "value"),
10 Input("date-range", "start_date"),
11 Input("date-range", "end_date"),
12)
13def update_charts(region, avocado_type, start_date, end_date):
14 filtered_data = data.query(

15 "region == @region and type == @avocado_type"

16 " and Date >= @start_date and Date <= @end_date"
17 )

18 price_chart_figure = {

19 "data": [

20 {

21 "x": filtered_data["Date"],

22 "y": filtered_data["AveragePrice"],

23 "type": "lines",

24 "hovertemplate": "$%{y:.2f}<extra></extra>",
25 ¥

26 1,

27 "layout": {

28 "title": {

29 "text": "Average Price of Avocados",

30 "x": 0.05,

31 "xanchor": "left",

32 },

33 "xaxis": {"fixedrange": True},

34 "yaxis": {"tickprefix": "$", "fixedrange": True},
35 "colorway": ["#17B897"],

36 },

37 }
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38

39 volume_chart_figure = {

40 "data": [

41 {

42 "x": filtered_data["Date"],

43 "y": filtered_data["Total Volume"],
44 "type": "lines",

45 },

46 1,

47 "layout": {

48 "title": {"text": "Avocados Sold", "x": ©.05, "xanchor": "left"},
49 "xaxis": {"fixedrange": True},

50 "yaxis": {"fixedrange": True},

51 "colorway": ["#E12D39"],

52 },

53 }

54 return price_chart_figure, volume_chart_figure
55

56# ...

On lines 6 to 11, you define the inputs and outputs inside the app.callback decorator.
First, you define the outputs using Output objects. They take two arguments:

1. The identifier of the element that they’ll modify when the function executes
2. The property of the element to be modified

For example, Output("price-chart", "figure") will update the figure property of
the "price-chart" element.

Then you define the inputs using Input objects. They also take two arguments:

1. The identifier of the element that they’ll be watching for changes
2. The property of the watched element that they’ll be watching for changes

So, Input("region-filter", "value") will watch the "region-filter" element and
its value property for changes. The argument passed on to the callback function will be the
new value of region-filter.value.

Note: The Input object that you’re using here is imported directly from dash. Be careful not
to confuse it with the Input component coming from dcc. These objects aren’t
interchangeable, and they have different purposes.

On line 13, you define the function that’ll be applied when an input changes. It’s worth
noticing that the arguments of the function will correspond with the order of
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the Input objects supplied to the callback. There’s no explicit relationship between the
names of the arguments in the function and the values specified in the Input objects.

Finally, on lines 14 to 54, you define the body of the function. In this case, the function takes
the inputs (region, type of avocado, and date range), filters the data, and generates the figure
objects for the price and volume charts.

That’s all! If you’ve followed along to this point, then your dashboard should look like this:

Way to go! That’s the final version of your dashboard. In addition to making it look beautiful,
you also made it interactive. The only missing step is making it public so you can share it
with others.

Deploy Your Dash Application to PythonAnywhere
You’re done building your application, and you have a beautiful, fully interactive
dashboard. Now you’ll learn how to deploy it.

Dash apps are Flask apps, so both share the same .In this
section, you’ll deploy your app on PythonAnywhere, which offers a free tier for
hosting Python web applications in the cloud.

Day-03: Host, run, and code Python in the cloud!
PythonAnywhere by anaconda

How to Create a Free PythonAnywhere Account

Before you get started, make sure you’ve signed up for a PythonAnywhere beginner
account, which is completely free of charge and doesn’t require you to provide any payment
details. That said, it comes with a few limitations that you should be aware of. The most
important ones will prevent you from doing the following:

Running more than one web application at a time
Defining a custom

Exceeding the available disk quota (512 MB)

Using the CPU for longer than 100 seconds per day
Making unrestricted HTTP requests from your app

For this tutorial, though, you won’t need any of that!

If you’re based in Europe, then consider signing up through instead
of the . It’ll ensure compliance for your data, which
PythonAnywhere will store on servers in Germany. Because of that, you may also experience
slightly faster response times. Finally, if you decide to become a paid customer one day, then
you’ll be charged in euros instead of US dollars.

Feel free to follow either of the two PythonAnywhere links above if you don’t care about any

of these features at the moment. Note, however, that once you register a username on one
domain, then you won’t be able to reuse it on the other!
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Another reason to think carefully about your username is that it must be unique, as it’ll
become a part of your very own domain name, such as in these examples:

http://realpython.pythonanywhere.com/

http://realpython.eu.pythonanywhere.com/

Once you register a new account on PythonAnywhere, you must confirm your email address
so that you can reset the password if you forget it. Also, it might be a good idea to

enable on the Security tab in your Account settings as an extra
security measure.

If you’ve just created a new account, then you’re already good to go. But if you registered a
PythonAnywhere account a while ago, then you might need to toa
newer one, which comes with a more recent Python version and newer third-party libraries.
At the time of writing, the latest image, called haggis, shipped with Python 3.10.5, pandas
1.3.5, and Dash 2.4.1.

Note: You can always check the for a given image and Python version.
With that out of the way, it’s time to create your first web app on PythonAnywhere!

How to Deploy Your Avocado Analytics App

Because Dash apps are Flask apps with some extra frills, you can take advantage of
PythonAnywhere’s excellent support for this popular Python web framework.

When you’re logged in to your PythonAnywhere account, create a new console,
either from the Dashboard or the Consoles tab. This will throw you into an interactive
prompt of the virtual server, letting you remotely execute commands straight from your web
browser.

There are already several useful programs installed for you, including a Git client, which
you’ll use to get your project’s source code into PythonAnywhere. You can also upload files
in other ways, but using Git seems the most convenient. If you haven’t made your own
repository yet, then you might clone Real Python’s repository with your sample
Dash application in it:

$ git clone --depth=1 https://github.com/realpython/materials.git
The --depth=1 option tells Git only to clone the latest commit, which saves time and disk
space. Note that if you don’t want to configure for your PythonAnywhere machine,
then you’ll have to clone a public repository using the HTTPS protocol. Since August 2021,
cloning private repositories has been possible only after configuring a

in GitHub.

When the repository is cloned, you can move and rename a subfolder with the finished

avocado app to your home folder on PythonAnywhere, and then remove the rest of the
materials:

$ mv materials/python-dash/avocado_analytics_3/ ~/avocado_analytics

$ rm -rf materials/
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Remember that you only have 512 megabytes of disk space on the free tier at your disposal,
and the materials take up a significant portion of that!

At this point, your home folder should look like this:

home/realpython/

|

L— avocado_analytics/
|
F—— assets/

| — favicon.ico
| L— style.css

|
— app.py
L— avocado.csv

Of course, the username realpython will be different on your account, but the overall folder
structure should remain the same.

Now, go the Web tab and click the button labeled Add a new web app. This will open a

wizard, asking you a few questions. First, select Flask as the Python web framework of your
choice:
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Create new web app ®

Select a Python Web framework

...or select "Manual configuration” if you want detailed control.
» Django
» web2p
» Bottle

» Manual configuration (including virtualenvs)

What other frameworks should we have here? Send us some feedback using the link at the
top of the page!

Next, you’ll see a specific Flask version running on top of the given Python interpreter.
Select the latest version available:
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Create new web app ®

Select a Python version

» Python 3.7 (Flask 2.1.2)
» Python 3.8 (Flask 2.1.2)
» Python 3.9 (Flask 2.1.2)
» Python 3.10 (Flask 2.1.2)

MNote: If you'd like to use a different version of Flask to the default version, you can
use a virtualenv for your web app. There are instructions here.

In the next step, you’ll need to update the file path leading up to the main Python module
with your Flask app:
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Create new web app x

Quickstart new Flask project

Enter a path for a Python file you wish to use to hold your Flask
app. If this file already exists, its contents will be
overwritten with the new app.

Path

fhome/real pythur‘a vocado_analytics|flask_app.py

.
I.

- ~ - ~
Cancel | | « Back )iEAR

e A h

While you can change it later, it’s much easier if you do it right now, so make sure to rename
the default mysite/ folder with avocado_analytics/ to match your project’s name. At the
same time, you want to keep the suggested flask_app.py filename intact. PythonAnywhere
will generate this file and populate it with a demo app, so if you renamed it to app. py, then
the code that you cloned from GitHub would get overwritten!

Once this is done, you’ll be presented with a number of configuration options for your new
web app. First, you need to update the working directory of the app to be the same as the
source code:

Code:
What your site is running.
Source code: /home/realpython/avocado_analytics ~Go to directory
Working directory: /home/realpythonjavocado_analytics ~Go to directory
WSGI configuration file: fvar/www/realpython_pythonanywhere_com_wsgi.py
Pythonversion:  3.10

This will ensure that Python can find your avocado. csv file at runtime and open it for
reading.
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Next, you’ll need to tweak the default configuration, which is slightly different
for Dash apps than it is for Flask. PythonAnywhere uses the server behind the scenes,
which reads the configuration from a special Python module located in the /var/www/ folder.

Click the WSGI configuration file option visible in the screenshot above to open it in an
editor in your web browser:

This file contains the WSGI configuration required to serve up your
web application at http://<your-username>.pythonanywhere.com/
It works by setting the variable 'application' to a WSGI handler of some

description.

H OH H O OH O O#H

The below has been auto-generated for your Flask project

import sys

# add your project directory to the sys.path
project_home = '/home/realpython/avocado_analytics'
if project_home not in sys.path:

sys.path = [project_home] + sys.path

# import flask app but need to call it "application" for WSGI to work
-from flask_app import app as application # noga
+from app import app

+application = app.server

You need to rename the flask_app module generated by the wizard to the actual app module
that came with your avocado project. Besides that, you must expose the callable WSGI
application through the Dash app’s . server field, as described in the official on
PythonAnywhere. You might as well double-check if the path in

your project_home variable is correct.

Finally, save the file by hitting ctrl + s, go back to the Web tab, and click the green button
to reload your web app:

When you visit the corresponding URL of your web app deployed to PythonAnywhere, you
should see the familiar interface:
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Avocado Analytics Web App Deployed to PythonAnywhere

That’s it! Note that you never installed Dash or pandas because they were already shipped
with PythonAnywhere. Also, you didn’t have to configure static resources, which are

typically served by the web server rather than Flask, because Dash takes care of them
automatically.

Note: If you need more control over the external library versions, then you can

use virtualenvwrapper to create a virtual environment for the platform and manually install
those dependencies. Unfortunately, doing so will likely consume all of your disk space and
drain your CPU bandwidth to the point you’ll end up in the tarpit.

You can now share your Dash apps with the world by deploying them to PythonAnywhere or
other web hosting providers.
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Day-04: Interactive Data Visualization in
Python With Bokeh

Bokeh prides itself on being a library for interactive data visualization.

Unlike popular counterparts in the Python visualization space, like Matplotlib and Seaborn, Bokeh
renders its graphics using HTML and JavaScript. This makes it a great candidate for building web-
based dashboards and applications. However, it’s an equally powerful tool for exploring and
understanding your data or creating beautiful custom charts for a project or report.

Using a number of examples on a real-world dataset, the goal of this tutorial is to get you up and
running with Bokeh.

e Transform your data into visualizations, using Bokeh
e Customize and organize your visualizations
e Add interactivity to your visualizations

Building a visualization with Bokeh involves the following steps:
e Prepare the data
e Determine where the visualization will be rendered
e Setup the figure(s)
e Connect to and draw your data
e QOrganize the layout
e Preview and save your beautiful data creation

Prepare the Data

Any good data visualization starts with—you guessed it—data. If you need a quick refresher
on handling data in Python.

This step commonly involves data handling libraries like Pandas and Numpy and is all about
taking the required steps to transform it into a form that is best suited for your intended
visualization.

Determine Where the Visualization Will Be Rendered

At this step, you’ll determine how you want to generate and ultimately view your
visualization. In this tutorial, you’ll learn about two common options that Bokeh provides:
generating a static HTML file and rendering your visualization inline in a Jupyter Notebook.

Set up the Figure(s)

From here, you’ll assemble your figure, preparing the canvas for your visualization. In this
step, you can customize everything from the titles to the tick marks. You can also set up a
suite of tools that can enable various user interactions with your visualization.
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Connect to and Draw Your Data

Next, you’ll use Bokeh’s multitude of renderers to give shape to your data. Here, you have
the flexibility to draw your data from scratch using the many available marker and shape
options, all of which are easily customizable. This functionality gives you incredible creative
freedom in representing your data.

Additionally, Bokeh has some built-in functionality for building things like stacked bar charts
and plenty of examples for creating more advanced visualizations like network graphs and

maps.

Organize the Layout

If you need more than one figure to express your data, Bokeh’s got you covered. Not only
does Bokeh offer the standard grid-like layout options, but it also allows you to easily
organize your visualizations into a tabbed layout in just a few lines of code.

In addition, your plots can be quickly linked together, so a selection on one will be reflected
on any combination of the others.

Preview and Save Your Beautiful Data Creation

Finally, it’s time to see what you created.

Whether you’re viewing your visualization in a browser or notebook, you’ll be able to
explore your visualization, examine your customizations, and play with any interactions that
were added.

If you like what you see, you can save your visualization to an image file. Otherwise, you can
revisit the steps above as needed to bring your data vision to reality.

That’s it! Those six steps are the building blocks for a tidy, flexible template that can be used
to take your data from the table to the big screen:

"""Bokeh Visualization Template

This template is a general outline for turning your data into a
visualization using Bokeh.

# Data handling

import pandas as pd

import numpy as np

# Bokeh libraries

from bokeh.io import output file, output notebook
from bokeh.plotting import figure, show

from bokeh.models import ColumnDataSource

from bokeh.layouts import row, column, gridplot
from bokeh.models.widgets import Tabs, Panel

# Prepare the data

# Determine where the visualization will be rendered
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output file('filename.html') # Render to static HTML, or
output notebook() # Render inline in a Jupyter Notebook

# Set up the figure(s)
fig = figure() # Instantiate a figure() object

# Connect to and draw the data
# Organize the layout

# Preview and save
show (fig) # See what I made, and save 1if I like it

Some common code snippets that are found in each step are previewed above, and you’ll see
how to fill out the rest as you move through the rest of the tutorial!

Generating Your First Figure

There are multiple ways to output your visualization in Bokeh. In this tutorial, you’ll see
these two options:

e output file('filename.html') will write the visualization to a static HTML file.
e output notebook () will render your visualization directly in a Jupyter Notebook.

It’s important to note that neither function will actually show you the visualization. That
doesn’t happen until show () is called. However, they will ensure that, when show () is called,
the visualization appears where you intend it to.

By calling both output file () and output notebook () in the same execution, the
visualization will be rendered both to a static HTML file and inline in the notebook.
However, if for whatever reason you run multiple output file () commands in the same
execution, only the last one will be used for rendering.

This is a great opportunity to give you your first glimpse at a default Bokeh figure () using
output file():

# Bokeh Libraries
from bokeh.io import output file
from bokeh.plotting import figure, show

# The figure will be rendered in a static HTML file called
output file test.html
output file('output file test.html',

title="Empty Bokeh Figure')

# Set up a generic figure() object
fig = figure ()

# See what it looks like
show (fig)
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file:///Users/Isdangio/Deski:. & o (4]

Empty Bokeh Figure

As you can see, a new browser window opened with a tab called Empty Bokeh Figure and an
empty figure. Not shown is the file generated with the name output_file_test.html in your
current working directory.

If you were to run the same code snippet with output notebook () in place of

output file (), assuming you have a Jupyter Notebook fired up and ready to go, you will
get the following:

# Bokeh Libraries
from bokeh.io import output notebook
from bokeh.plotting import figure, show

# The figure will be right in my Jupyter Notebook
output notebook ()

# Set up a generic figure() object
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fig = figure()

# See what it looks like
show (fiqg)

In [1l]: | # Bokeh Libraries
from bokeh.io import output notebook
from bokeh.plotting import figure, show

# The figure will be right in my Jupyter Notebook
output notebook()

# Set up a generic figure() object
fig = figure()

# See what it looks like
show(fiqg)

:.k BokehJS 0.13.0 successfully loaded.

<

As you can see, the result is the same, just rendered in a different location.

More information about both ocutput file () and output notebook () can be found in the
Bokeh official docs.

Note: Sometimes, when rendering multiple visualizations sequentially, you’ll see that past
renders are not being cleared with each execution. If you experience this, import and run the
following between executions:

# Import reset output (only needed once)
from bokeh.plotting import reset output

# Use reset output() between subsequent show() calls, as needed
reset output ()

Before moving on, you may have noticed that the default Bokeh figure comes pre-loaded
with a toolbar. This is an important sneak preview into the interactive elements of Bokeh that
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come right out of the box. You’ll find out more about the toolbar and how to configure it in
the Adding Interaction section at the end of this tutorial.

Getting Your Figure Ready for Data

Now that you know how to create and view a generic Bokeh figure either in a browser or
Jupyter Notebook, it’s time to learn more about how to configure the figure () 0Object.

The figure () object is not only the foundation of your data visualization but also the object
that unlocks all of Bokeh’s available tools for visualizing data. The Bokeh figure is a subclass
of the Bokeh Plot object, which provides many of the parameters that make it possible to
configure the aesthetic elements of your figure.

To show you just a glimpse into the customization options available, let’s create the ugliest
figure ever:

# Bokeh Libraries
from bokeh.io import output notebook
from bokeh.plotting import figure, show

# The figure will be rendered inline in my Jupyter Notebook
output notebook ()

# Example figure

fig = figure(background fill color='gray',
background fill alpha=0.5,
border fill color='blue',
border fill alpha=0.25,
plot height=300,
plot width=500,
h symmetry=True,
x axis label='X Label',
X axis type='datetime',
x axis location='above',
x_range=('2018-01-01', '2018-06-30"),
y_axis label='Y Label',
y_axis type='linear',
y_axis location='left',
y_range=(0, 100),
title='Example Figure',
title location='right',
toolbar location='below',
tools="'save')

# See what it looks like
show (fiqg)

Page 492 of 580



Once the figure () object is instantiated, you can still configure it after the fact. Let’s say
you want to get rid of the gridlines:

# Remove the gridlines from the figure() object
fig.grid.grid line color = None

# See what it looks like
show (fig)

The gridline properties are accessible via the figure’s grid attribute. In this case, setting
grid line color t0 None effectively removes the gridlines altogether. More details about
figure attributes can be found below the fold in the Plot class documentation.
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Note: If you’re working in a notebook or IDE with auto-complete functionality, this feature
can definitely be your friend! With so many customizable elements, it can be very helpful in
discovering the available options:

In [ 1=.fig-=4 H

Otherwise, doing a quick web search, with the keyword bokeh and what you are trying to do,
will generally point you in the right direction.

There is tons more I could touch on here, but don’t feel like you’re missing out. I’ll make
sure to introduce different figure tweaks as the tutorial progresses. Here are some other
helpful links on the topic:

e The Bokeh Plot Class is the superclass of the figure () object, from which figures inherit a
lot of their attributes.

e The Figure Class documentation is a good place to find more detail about the arguments of
the figure () object.
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Here are a few specific customization options worth checking out:
e Text Properties covers all the attributes related to changing font styles, sizes, colors, and so
forth.
e TickFormatters are built-in objects specifically for formatting your axes using Python-like

string formatting syntax.

Sometimes, it isn’t clear how your figure needs to be customized until it actually has some
data visualized in it, so next you’ll learn how to make that happen.

Drawing Data With Glyphs

An empty figure isn’t all that exciting, so let’s look at glyphs: the building blocks of Bokeh
visualizations. A glyph is a vectorized graphical shape or marker that is used to represent your data,
like a circle or square. More examples can be found in the Bokeh gallery. After you create your
figure, you are given access to a bevy of configurable glyph methods.

Let’s start with a very basic example, drawing some points on an x-y coordinate grid:

# Bokeh Libraries
from bokeh.io import output_file

from bokeh.plotting import figure, show

# My x-y coordinate data
x=[1,2,1]

y=[1,1,2]
# Output the visualization directly in the notebook

output_file('first_glyphs.html', title="First Glyphs')

# Create a figure with no toolbar and axis ranges of [0,3]
fig = figure(title='"My Coordinates',

plot_height=300, plot_width=300,

x_range=(0, 3), y_range=(0, 3),

toolbar_location=None)
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# Draw the coordinates as circles
fig.circle(x=x, y=y,

color='green’, size=10, alpha=0.5)
# Show plot

show(fig)

First Glyphs

Once your figure is instantiated, you can see how it can be used to draw the x-y coordinate data
using customized circle glyphs.

Here are a few categories of glyphs:

Marker includes shapes like circles, diamonds, squares, and triangles and is effective for creating
visualizations like scatter and bubble charts.

Line covers things like single, step, and multi-line shapes that can be used to build line charts.

Bar/Rectangle shapes can be used to create traditional or stacked bar (hbar) and column (vbar)
charts as well as waterfall or gantt charts.

Information about the glyphs above, as well as others, can be found in Bokeh’s Reference Guide.
These glyphs can be combined as needed to fit your visualization needs. Let’s say | want to create
a visualization that shows how many words | wrote per day to make this tutorial, with an overlaid
trend line of the cumulative word count:

import numpy as np

# Bokeh libraries

from bokeh.io import output_notebook

from bokeh.plotting import figure, show

# My word count data

day_num = np.linspace(1, 10, 10)

daily_words = [450, 628, 488, 210, 287, 791, 508, 639, 397, 943]
cumulative_words = np.cumsum(daily_words)
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# Output the visualization directly in the notebook
output_notebook()
# Create a figure with a datetime type x-axis
fig = figure(title="My Tutorial Progress’,
plot_height=400, plot_width=700,
x_axis_label='Day Number', y_axis_label='"Words Written',
Xx_minor_ticks=2, y_range=(0, 6000),
toolbar_location=None)
# The daily words will be represented as vertical bars (columns)
fig.vbar(x=day_num, bottom=0, top=daily_words,
color='blue’', width=0.75,

legend="Daily")

# The cumulative sum will be a trend line

fig.line(x=day_num, y=cumulative_words,
color="gray', line_width=1,
legend="Cumulative')

# Put the legend in the upper left corner

fig.legend.location = 'top_left'

# Let's check it out
show(fig)
Multi-Glyph Example

To combine the columns and lines on the figure, they are simply created using the same figure()
object.
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Additionally, you can see above how seamlessly a legend can be created by setting the legend
property for each glyph. The legend was then moved to the upper left corner of the plot by
assigning 'top_left' to fig.legend.location.

You can check out much more info about styling legends. Teaser: they will show up again later in
the tutorial when we start digging into interactive elements of the visualization.

A Quick Aside About Data
Anytime you are exploring a new visualization library, it’s a good idea to start with some datain a
domain you are familiar with. The beauty of Bokeh is that nearly any idea you have should be

possible. It’s just a matter of how you want to leverage the available tools to do so.

The remaining examples will use publicly available data from Kaggle, which has information about
the National Basketball Association’s (NBA) 2017-18 season, specifically:

2017-18_playerBoxScore.csv: game-by-game snapshots of player statistics
2017-18_teamBoxScore.csv: game-by-game snapshots of team statistics
2017-18_standings.csv: daily team standings and rankings

This data has nothing to do with what | do for work, but | love basketball and enjoy thinking about
ways to visualize the ever-growing amount of data associated with it.

If you don’t have data to play with from school or work, think about something you’re interested
in and try to find some data related to that. It will go a long way in making both the learning and

the creative process faster and more enjoyable!

To follow along with the examples in the tutorial, you can download the datasets from the links
above and read them into a Pandas DataFrame using the following commands:

import pandas as pd

# Read the csv files

player_stats = pd.read_csv('2017-18_playerBoxScore.csv', parse_dates=['gmDate'])
team_stats = pd.read_csv('2017-18_teamBoxScore.csv', parse_dates=['gmDate'])
standings = pd.read_csv('2017-18_standings.csv', parse_dates=['stDate'])

This code snippet reads the data from the three CSV files and automatically interprets the date
columns as datetime objects.

It’s now time to get your hands on some real data.
Using the ColumnDataSource Object
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The examples above used Python lists and Numpy arrays to represent the data, and Bokeh is well
equipped to handle these datatypes. However, when it comes to data in Python, you are most
likely going to come across Python dictionaries and Pandas DataFrames, especially if you’re
reading in data from a file or external data source.

Bokeh is well equipped to work with these more complex data structures and even has built-in
functionality to handle them, namely the ColumnDataSource.

You may be asking yourself, “Why use a ColumnDataSource when Bokeh can interface with other
data types directly?”

For one, whether you reference a list, array, dictionary, or DataFrame directly, Bokeh is going to
turn it into a ColumnDataSource behind the scenes anyway. More importantly, the
ColumnDataSource makes it much easier to implement Bokeh’s interactive affordances.

The ColumnDataSource is foundational in passing the data to the glyphs you are using to visualize.
Its primary functionality is to map names to the columns of your data. This makes it easier for you
to reference elements of your data when building your visualization. It also makes it easier for
Bokeh to do the same when building your visualization.

The ColumnDataSource can interpret three types of data objects:

Python dict: The keys are names associated with the respective value sequences (lists, arrays,
and so forth).

Pandas DataFrame: The columns of the DataFrame become the reference names for the
ColumnDataSource.

Pandas groupby: The columns of the ColumnDataSource reference the columns as seen by
calling groupby.describe().

Let’s start by visualizing the race for first place in the NBA’s Western Conference in 2017-18

between the defending champion Golden State Warriors and the challenger Houston Rockets. The

daily win-loss records of these two teams is stored in a DataFrame named west_top_2:

>>> west_top_2 = (standings[(standings['teamAbbr'] == '"HOU') | (standings['teamAbbr'] == 'GS')]
Jdoc[:, ['stDate’, 'teamAbbr', 'sameWon']]
.sort_values(['teamAbbr','stDate']))

>>> west_top_2.head()

stDate teamAbbr gameWon
9 2017-10-17 GS 0

39 2017-10-18 GS 0

69 2017-10-19 GS 0
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99 2017-10-20 GS 1
129 2017-10-21 GS 1

From here, you can load this DataFrame into two ColumnDataSource objects and visualize the
race:

# Bokeh libraries
from bokeh.plotting import figure, show
from bokeh.io import output_file

from bokeh.models import ColumnDataSource

# Output to file
output_file('west-top-2-standings-race.html’,

title="Western Conference Top 2 Teams Wins Race')

# Isolate the data for the Rockets and Warriors
rockets_data = west_top_2[west_top_2['teamAbbr'] == '"HOU']

warriors_data = west_top_2[west_top_2['teamAbbr'] == 'GS']

# Create a ColumnDataSource object for each team
rockets_cds = ColumnDataSource(rockets_data)

warriors_cds = ColumnDataSource(warriors_data)

# Create and configure the figure

fig = figure(x_axis_type='datetime’,
plot_height=300, plot_width=600,
title="Western Conference Top 2 Teams Wins Race, 2017-18',
x_axis_label='Date’, y_axis_label='Wins',
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toolbar_location=None)

# Render the race as step lines

fig.step('stDate’, 'gameWon',
color="#CE1141', legend="Rockets’,
source=rockets_cds)

fig.step('stDate’, 'gameWon',
color="#006BB6', legend='Warriors',

source=warriors_cds)

# Move the legend to the upper left corner

fig.legend.location = 'top_left'

# Show the plot
show(fig)
Rockets vs. Warriors

Notice how the respective ColumnDataSource objects are referenced when creating the two lines.
You simply pass the original column names as input parameters and specify which
ColumnDataSource to use via the source property.

The visualization shows the tight race throughout the season, with the Warriors building a pretty
big cushion around the middle of the season. However, a bit of a late-season slide allowed the
Rockets to catch up and ultimately surpass the defending champs to finish the season as the
Western Conference number-one seed.

Note: In Bokeh, you can specify colors either by name, hex value, or RGB color code.

For the visualization above, a color is being specified for the respective lines representing the two
teams. Instead of using CSS color names like 'red' for the Rockets and 'blue’ for the Warriors, you
might have wanted to add a nice visual touch by using the official team colors in the form of hex
color codes. Alternatively, you could have used tuples representing RGB color codes: (206, 17, 65)
for the Rockets, (0, 107, 182) for the Warriors.

Bokeh provides a helpful list of CSS color names categorized by their general hue. Also,
htmicolorcodes.com is a great site for finding CSS, hex, and RGB color codes.
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ColumnDataSource objects can do more than just serve as an easy way to reference DataFrame
columns. The ColumnDataSource object has three built-in filters that can be used to create views
on your data using a CDSView object:

GroupFilter selects rows from a ColumnDataSource based on a categorical reference value

IndexFilter filters the ColumnDataSource via a list of integer indices

BooleanFilter allows you to use a list of boolean values, with True rows being selected

In the previous example, two ColumnDataSource objects were created, one each from a subset of
the west_top_2 DataFrame. The next example will recreate the same output from one
ColumnDataSource based on all of west_top_2 using a GroupFilter that creates a view on the data:

# Bokeh libraries
from bokeh.plotting import figure, show
from bokeh.io import output_file

from bokeh.models import ColumnDataSource, CDSView, GroupFilter

# Output to file
output_file('west-top-2-standings-race.html’,

title="Western Conference Top 2 Teams Wins Race')

# Create a ColumnDataSource

west_cds = ColumnDataSource(west_top_2)

# Create views for each team
rockets_view = CDSView(source=west_cds,
filters=[GroupFilter(column_name="teamAbbr', group="HOU')])

warriors_view = CDSView(source=west_cds,
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filters=[GroupFilter(column_name="'teamAbbr’, group='GS')])

# Create and configure the figure

west_fig = figure(x_axis_type="'datetime’,
plot_height=300, plot_width=600,
title="Western Conference Top 2 Teams Wins Race, 2017-18',
x_axis_label='Date', y_axis_label='Wins',

toolbar_location=None)

# Render the race as step lines

west_fig.step('stDate’, 'gameWon’,
source=west_cds, view=rockets_view,
color="#CE1141', legend='Rockets')

west_fig.step('stDate’, 'gameWon’,
source=west_cds, view=warriors_view,

color="#006BB6', legend="Warriors')

# Move the legend to the upper left corner

west_fig.legend.location = 'top_left'

# Show the plot

show(west_fig)

Rockets vs. Warriors 2

Page 503 of 580



Notice how the GroupFilter is passed to CDSView in a list. This allows you to combine multiple
filters together to isolate the data you need from the ColumnDataSource as needed.

For information about integrating data sources, check out the Bokeh user guide’s post on the
ColumnDataSource and other source objects available.

The Western Conference ended up being an exciting race, but say you want to see if the Eastern
Conference was just as tight. Not only that, but you’d like to view them in a single visualization. This
is a perfect segue to the next topic: layouts.

Day-05:0rganizing Multiple Visualizations With Layouts

The Eastern Conference standings came down to two rivals in the Atlantic Division: the
Boston Celtics and the Toronto Raptors. Before replicating the steps used to create

west top 2, let’s try to put the ColumnDataSource t0 the test one more time using what you
learned above.

In this example, you’ll see how to feed an entire DataFrame into a ColumnDataSource and
create views to isolate the relevant data:

# Bokeh libraries

from bokeh.plotting import figure, show

from bokeh.io import output file

from bokeh.models import ColumnDataSource, CDSView, GroupFilter

# Output to file
output file('east-top-2-standings-race.html',

title='Eastern Conference Top 2 Teams Wins Race')

# Create a ColumnDataSource
standings_cds = ColumnDataSource (standings)

# Create views for each team

celtics view = CDSView (source=standings cds,
filters=[GroupFilter (column name='teamAbbr',
group="'B0S')])

raptors view = CDSView (source=standings cds,
filters=[GroupFilter (column name='teamAbbr',
group="TOR') ])

# Create and configure the figure
east fig = figure(x_axis type='datetime',
plot height=300, plot width=600,
title='Eastern Conference Top 2 Teams Wins Race, 2017-18"',
x axis label='Date', y axis label='Wins',
toolbar location=None)

# Render the race as step lines
east fig.step('stDate', 'gameWon',
color="#007A33', legend='Celtics',
source=standings_ cds, view=celtics view)
east fig.step('stDate', 'gameWon',
color="#CE1141', legend='Raptors',
source=standings_cds, view=raptors view)

# Move the legend to the upper left corner
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east fig.legend.location = 'top left'

# Show the plot
show (east fiqg)

Eastern Conference Top 2 Teams Wins Race, 2017-18
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The columnpatasource Was able to isolate the relevant data within a 5,040-by-39
DataFrame Without breaking a sweat, saving a few lines of Pandas code in the process.

Looking at the visualization, you can see that the Eastern Conference race was no slouch.
After the Celtics roared out of the gate, the Raptors clawed all the way back to overtake their
division rival and finish the regular season with five more wins.

With our two visualizations ready, it’s time to put them together.
Similar to the functionality of Matplotlib’s subpiot, Bokeh offers the column, row, and

gridplot functions in its bokeh.1ayouts module. These functions can more generally be
classified as layouts.

The usage is very straightforward. If you want to put two visualizations in a vertical
configuration, you can do so with the following:

# Bokeh library

from bokeh.plotting import figure, show
from bokeh.io import output file

from bokeh.layouts import column

# Output to file
output file('east-west-top-2-standings-race.html’,

title="'Conference Top 2 Teams Wins Race')

# Plot the two visualizations in a vertical configuration
show (column (west fig, east fig))
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I’1l save you the two lines of code, but rest assured that swapping column for row in the
snippet above will similarly configure the two plots in a horizontal configuration.

Note: If you’re trying out the code snippets as you go through the tutorial, | want to take a
quick detour to address an error you may see accessing west fig and east fig inthe
following examples. In doing so, you may receive an error like this:

WARNING:bokeh.core.validation.check:W-1004 (BOTH CHILD AND ROOT): Models
should not be a document root...

This is one of many errors that are part of Bokeh’s validation module, where w-1004 in
particular is warning about the re-use of west fig and east fig inanew layout.

To avoid this error as you test the examples, preface the code snippet illustrating each layout
with the following:

# Bokeh libraries
Page 506 of 580



from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource, CDSView, GroupFilter

# Create a ColumnDataSource
standings_cds = ColumnDataSource (standings)

# Create the views for each team
celtics view = CDSView (source=standings cds,
filters=[GroupFilter (column name='teamAbbr',
group="'BOS"') ])

raptors _view = CDSView (source=standings cds,
filters=[GroupFilter (column name='teamAbbr',

group="'TOR") ])
rockets view = CDSView (source=standings cds,
filters=[GroupFilter (column name='teamAbbr',
group="'HOU'") ])
warriors view = CDSView (source=standings_cds,
filters=[GroupFilter (column name='teamAbbr',
group='GS"')])

# Create and configure the figure

east fig = figure(x_axis type='datetime',
plot height=300,
x_axis label='Date',
y_axis label='Wins',
toolbar location=None)

west fig = figure(x axis type='datetime',
plot height=300,
x axis label='Date',
y_axis label='Wins',
toolbar location=None)

# Configure the figures for each conference
east fig.step('stDate', 'gameWon',
color="#007A33"', legend='Celtics',
source=standings cds, view=celtics view)
east fig.step('stDate', 'gameWon',
color="#CE1141', legend='Raptors',
source=standings cds, view=raptors view)

west fig.step('stDate', 'gameWon', color='#CE1141', legend='Rockets',
source=standings_cds, view=rockets view)

west fig.step('stDate', 'gameWon', color='#006BB6', legend='Warriors',
source=standings_cds, view=warriors view)

# Move the legend to the upper left corner

east fig.legend.location = 'top left'

west fig.legend.location = 'top left'

# Layout code snippet goes here!

Doing so will renew the relevant components to render the visualization, ensuring that no
warning is needed.

Instead of using column Or row, you may want to use a gridplot instead.
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One key difference of gridplot is that it will automatically consolidate the toolbar across all
of its children figures. The two visualizations above do not have a toolbar, but if they did,
then each figure would have its own when using column or row. With that, it also has its own
toolbar location property, seen below setto 'right'.

Syntactically, you’ll also notice below that gridplot differs in that, instead of being passed a
tuple as input, it requires a list of lists, where each sub-list represents a row in the grid:

# Bokeh libraries
from bokeh.io import output file
from bokeh.layouts import gridplot

# Output to file
output file('east-west-top-2-gridplot.html',
title="'Conference Top 2 Teams Wins Race')

# Reduce the width of both figures
east fig.plot width = west fig.plot width = 300

# Edit the titles
east fig.title.text 'Eastern Conference'
west fig.title.text = 'Western Conference'

# Configure the gridplot
east west gridplot = gridplot([[west fig, east fig]],
toolbar location='right')

# Plot the two visualizations in a horizontal configuration
show (east west gridplot)
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Lastly, gridp1ot allows the passing of None values, which are interpreted as blank subplots.
Therefore, if you wanted to leave a placeholder for two additional plots, then you could do
something like this:

# Bokeh libraries
from bokeh.io import output file
from bokeh.layouts import gridplot

Page 508 of 580



# Output to file
output file('east-west-top-2-gridplot.html',
title="'Conference Top 2 Teams Wins Race')

# Reduce the width of both figures
east fig.plot width = west fig.plot width = 300

# Edit the titles
east fig.title.text = 'Eastern Conference'
west fig.title.text = 'Western Conference'

# Plot the two visualizations with placeholders
east west gridplot = gridplot([[west fig, None], [None, east figl],
toolbar location='right')

# Plot the two visualizations in a horizontal configuration
show (east _west gridplot)
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If you’d rather toggle between both visualizations at their full size without having to squash
them down to fit next to or on top of each other, a good option is a tabbed layout.
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A tabbed layout consists of two Bokeh widget functions: tab () and panel () from the
bokeh.models.widgets SUb-module. Like using gridplot (), making a tabbed layout is
pretty straightforward:

# Bokeh Library
from bokeh.io import output file
from bokeh.models.widgets import Tabs, Panel

# Output to file
output file('east-west-top-2-tabbed layout.html',
title="'Conference Top 2 Teams Wins Race')

# Increase the plot widths
east fig.plot width = west fig.plot width = 800

# Create two panels, one for each conference
east panel = Panel(child=east fig, title='Eastern Conference')
west panel = Panel (child=west fig, title='Western Conference')

# Assign the panels to Tabs
tabs = Tabs(tabs=[west panel, east panel])

# Show the tabbed layout
show(tabs)
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The first step is to create a pane1 () for each tab. That may sound a little confusing, but think
of the Tabs () function as the mechanism that organizes the individual tabs created with
Panel ().

Each rane1 () takes as input a child, which can either be a single figure () or a layout.
(Remember that a layout is a general name for a column, row, Of gridplot.) Once your
panels are assembled, they can be passed as input to Tabs () in a list.

Now that you understand how to access, draw, and organize your data, it’s time to move on to
the real magic of Bokeh: interaction! As always, check out Bokeh’s User Guide for more
information on layouts.
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Adding Interaction

The feature that sets Bokeh apart is its ability to easily implement interactivity in your
visualization. Bokeh even goes as far as describing itself as an interactive visualization
library:

Bokeh is an interactive visualization library that targets modern web browsers for
presentation. (Source)

In this section, we’ll touch on five ways that you can add interactivity:

e Configuring the toolbar

e Selecting data points

e Adding hover actions

e Linking axes and selections

e Highlighting data using the legend

Implementing these interactive elements open up possibilities for exploring your data that
static visualizations just can’t do by themselves.

Configuring the Toolbar

As you saw all the way back in Generating Your First Figure, the default Bokeh figure ()
comes with a toolbar right out of the box. The default toolbar comes with the following tools
(from left to right):

e Pan

e BoxZoom

e  Wheel Zoom

e Save

e Reset

e Alink to Bokeh’s user guide for Configuring Plot Tools
e Alink to the Bokeh homepage

The toolbar can be removed by passing toolbar location=None When instantiating a
figure () object, or relocated by passing any of 'above', 'below', 'left', Of 'right".

Additionally, the toolbar can be configured to include any combination of tools you desire.
Bokeh offers 18 specific tools across five categories:

. Pan/Drag: box select,box zoom, lasso_select, pan, xpan, ypan, resize select
o Click/Tap: poly select, tap

e Scroll/Pinch: wheel zoom, xwheel zoom, ywheel zoom

e Actions: undo, redo, reset, save

e |nspectors: crosshair, hover

To geek out on tools , make sure to visit Specifying Tools. Otherwise, they’ll be illustrated in
covering the various interactions covered herein.
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Selecting Data Points

Implementing selection behavior is as easy as adding a few specific keywords when declaring
your glyphs.

The next example will create a scatter plot that relates a player’s total number of three-point
shot attempts to the percentage made (for players with at least 100 three-point shot attempts).

The data can be aggregated from the p1ayer stats DataFrame:

# Find players who took at least 1 three-point shot during the season
three takers = player stats[player stats['play3PA'] > 0]

# Clean up the player names, placing them in a single column
three takers['name'] = [f'{p["playFNm"]} {p["playLNm"]}'
for , p in three takers.iterrows()]

# Aggregate the total three-point attempts and makes for each player
three takers = (three takers.groupby('name')

.sum{()

.loc[:, ['play3PA', 'play3PM']]

.sort values('play3PA', ascending=False))

# Filter out anyone who didn't take at least 100 three-point shots
three takers = three takers[three takers['play3PA'] >= 100].reset index()

# Add a column with a calculated three-point percentage (made/attempted)
three takers['pct3PM'] = three takers['play3PM'] / three takers['play3PA']

Here’s a sample of the resulting bataFrame:

>>> three takers.sample (5)

name play3PA play3PM pct3PM
229 Corey Brewer 110 31 0.281818
78 Marc Gasol 320 109 0.340625
126 Raymond Felton 230 81 0.352174
127 Kristaps Porzingis 229 90 0.393013
66 Josh Richardson 336 127 0.377976

Let’s say you want to select a groups of players in the distribution, and in doing so mute the
color of the glyphs representing the non-selected players:

# Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output file

from bokeh.models import ColumnDataSource, NumeralTickFormatter

# Output to file
output file('three-point-att-vs-pct.html',
title="'Three-Point Attempts vs. Percentage')

# Store the data in a ColumnDataSource
three takers cds = ColumnDataSource (three takers)

# Specify the selection tools to be made available
select tools = ['box select', 'lasso_select', 'poly select', 'tap',
'reset']
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# Create the figure
fig = figure(plot height=400,

plot width=600,

x_axis label='Three-Point Shots Attempted',

y_axis label='Percentage Made',

title="'3PT Shots Attempted vs. Percentage Made (min. 100 3PA),
2017-18",

toolbar location='below',

tools=select tools)

# Format the y-axis tick labels as percentages
fig.yaxis[0].formatter = NumeralTickFormatter (format='00.0%")

# Add square representing each player
fig.square (x="'play3PA"',
y="'pct3PM',
source=three takers cds,
color='royalblue',
selection color='deepskyblue',
nonselection color='lightgray',
nonselection alpha=0.3)

# Visualize
show (fig)

First, specify the selection tools you want to make available. In the example above,
'box_select','lasso_select','poly_select',and'tap' qﬂusaresetbuuon)MKwe
specified in a list called se1ect tools. When the figure is instantiated, the toolbar is
positioned 'velow' the plot, and the list is passed to tools to make the tools selected above
available.

Each player is initially represented by a royal blue square glyph, but the following
configurations are set for when a player or group of players is selected:

e Turn the selected player(s) to deepskyblue
e Change all non-selected players’ glyphs to a 1ightgray color with 0. 3 opacity

That’s it! With just a few quick additions, the visualization now looks like this:
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3PT Shots Attempted vs. Percentage Made (min. 100 3PA), 2017-18
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Three-Point Shots Attempted

For even more information about what you can do upon selection, check out Selected and
Unselected Glyphs.

Adding Hover Actions

So the ability to select specific player data points that seem of interest in my scatter plot is
implemented, but what if you want to quickly see what individual players a glyph represents?
One option is to use Bokeh’s HoverTool () to show a tooltip when the cursor crosses paths
with a glyph. All you need to do is append the following to the code snippet above:

# Bokeh Library
from bokeh.models import HoverTool

# Format the tooltip
tooltips = [
('Player', '@name'),
('Three-Pointers Made', '@play3PM'),
('Three-Pointers Attempted', '@play3PA'),
('Three-Point Percentage', '@pct3PM{00.0%}"),
]

# Add the HoverTool to the figure
fig.add tools(HoverTool (tooltips=tooltips))

# Visualize
show (fig)

The HoverTool () Is slightly different than the selection tools you saw above in that it has
properties, specifically tooltips.
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First, you can configure a formatted tooltip by creating a list of tuples containing a
description and reference to the columnbatasource. This list was passed as input to the
HoverTool () and then simply added to the figure using add_tools (). Here’s what
happened:

3PT Shots Attempted vs. Percentage Made (min. 100 3PA), 2017-18
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Three-Point Shots Attempted

Notice the addition of the Hover button to the toolbar, which can be toggled on and off.

If you want to even further emphasize the players on hover, Bokeh makes that possible with
hover inspections. Here is a slightly modified version of the code snippet that added the
tooltip:

# Format the tooltip
tooltips = [
('Player', '@name'),
('Three-Pointers Made', '@play3PM'),
('Three-Pointers Attempted', '@play3PA'),
('"Three-Point Percentage', '@pct3PM{00.0%}"),
]

# Configure a renderer to be used upon hover

hover glyph = fig.circle(x='play3PA', y='pct3PM', source=three takers cds,
size=15, alpha=0,
hover fill color='black', hover alpha=0.5)

# Add the HoverTool to the figure
fig.add tools(HoverTool (tooltips=tooltips, renderers=[hover glyphl]))

# Visualize
show (fiqg)
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This is done by creating a completely new glyph, in this case circles instead of squares, and
assigning it to hover glyph. Note that the initial opacity is set to zero so that it is invisible
until the cursor is touching it. The properties that appear upon hover are captured by setting
hover alpha t0 0.5 along with the hover fill color

Now you will see a small black circle appear over the original square when hovering over the
various markers:

3PT Shots Attempted vs. Percentage Made (min. 100 3PA), 2017-18
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To further explore the capabilities of the HoverToo1 (), see the HoverTool and Hover
Inspections guides.

Linking Axes and Selections

Linking is the process of syncing elements of different visualizations within a layout. For
instance, maybe you want to link the axes of multiple plots to ensure that if you zoom in on
one it is reflected on another. Let’s see how it is done.

For this example, the visualization will be able to pan to different segments of a team’s
schedule and examine various game stats. Each stat will be represented by its own plot in a
two-by-two gridplot () .

The data can be collected from the team stats DataFrame, selecting the Philadelphia 76ers
as the team of interest:

# Isolate relevant data

phi gm stats = (team stats[ (team stats['teamAbbr'] == 'PHI') &
(team stats['seasTyp'] == 'Regular')]
.loc[:, ['gmDate',
'teamPTS"',
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'teamTRB',
'teamAST',
'teamTO"',
'opptPTS', ]]
.sort values ('gmbDate'))

# Add game number
phi gm stats['game num'] = range(l, len(phi gm stats)+1)

# Derive a win loss column
win loss = []
for , row in phi gm stats.iterrows():

# If the 76ers score more points, it's a win
if row['teamPTS'] > row['opptPTS']:

win loss.append('W'")
else:

win loss.append('L")

# Add the win loss data to the DataFrame
phi gm stats['winLoss'] = win loss

Here are the results of the 76ers’ first 5 games:

>>> phi gm stats.head()
gmDate teamPTS teamTRB teamAST teamTO opptPTS game num
winLoss

10 2017-10-18 115 48 25 17 120 1
59 2017-10-20 92 47 20 17 102 2
22 2017-10-21 94 41 18 20 128 3
20 2017-10-23 97 49 25 21 86 4
?13 2017-10-25 104 43 29 16 105 5
L

Start by importing the necessary Bokeh libraries, specifying the output parameters, and
reading the data into a columnbatasource:

# Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output file

from bokeh.models import ColumnDataSource, CategoricalColorMapper, Div
from bokeh.layouts import gridplot, column

# Output to file
output file('phi-gm-linked-stats.html',
title='76ers Game Log')

# Store the data in a ColumnDataSource
gm_stats cds = ColumnDataSource (phi gm stats)

Each game is represented by a column, and will be colored green if the result was a win and

red for a loss. To accomplish this, Bokeh’s categoricalColorMapper can be used to map
the data values to specified colors:
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# Create a CategoricalColorMapper that assigns a color to wins and losses
win loss mapper = CategoricalColorMapper (factors = ['W', 'L'],
palette=['green', 'red'])

For this use case, a list specifying the categorical data values to be mapped is passed to
factors and a list with the intended colors to palette. FOr more on the
CategoricalColorMapper, See the Colors section of Handling Categorical Data on Bokeh’s
User Guide.

There are four stats to visualize in the two-by-two gridplot: points, assists, rebounds, and
turnovers. In creating the four figures and configuring their respective charts, there is a lot of
redundancy in the properties. So to streamline the code a for loop can be used:

# Create a dict with the stat name and its corresponding column in the data
stat names = {'Points': 'teamPTS',

'Assists': 'teamAST',
'Rebounds': 'teamTRB',
'Turnovers': 'teamTO', }

# The figure for each stat will be held in this dict
stat figs = {}

# For each stat in the dict
for stat label, stat col in stat names.items():

# Create a figure
fig = figure(y axis label=stat label,
plot height=200, plot width=400,
x range=(1l, 10), tools=['xpan', 'reset', 'save'l])

# Configure vbar
fig.vbar (x='game num', top=stat col, source=gm stats cds, width=0.9,
color=dict (field='winLoss', transform=win loss mapper))

# Add the figure to stat figs dict
stat figs[stat label] = fig

As you can see, the only parameters that needed to be adjusted were the y-axis-1abel of the
figure and the data that will dictate top in the vbar. These values were easily stored ina dict
that was iterated through to create the figures for each stat.

You can also see the implementation of the categoricalColorMapper in the configuration
of the vbar glyph. The color property is passed a dict with the field in the
ColumnDataSource t0 be mapped and the name of the categoricalColorMapper created
above.

The initial view will only show the first 10 games of the 76ers’ season, so there needs to be a
way to pan horizontally to navigate through the rest of the games in the season. Thus
configuring the toolbar to have an xpan tool allows panning throughout the plot without
having to worry about accidentally skewing the view along the vertical axis.

Now that the figures are created, gridplot can be setup by referencing the figures from the
dict created above:
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# Create layout
grid = gridplot([[stat figs['Points'], stat figs['Assists']],
[stat _figs['Rebounds'], stat figs['Turnovers']]])

Linking the axes of the four plots is as simple as setting the x range of each figure equal to
one another:

# Link together the x-axes

stat figs['Points'].x range = \
stat figs['Assists'].x range = \
stat figs['Rebounds'].x range = \
stat figs['Turnovers'].x range

To add a title bar to the visualization, you could have tried to do this on the points figure, but
it would have been limited to the space of that figure. Therefore, a nice trick is to use Bokeh’s
ability to interpret HTML to insert a piv element that contains the title information. Once that
is created, simply combine that with the gridplot () ina column layout:

# Add a title for the entire visualization using Div

html = """<h3>Philadelphia 76ers Game Log</h3>
<b><i>2017-18 Regular Season</i>
<br>

</b><i>Wins in green, losses in red</i>
LARARAS

sup_title = Div(text=html)

# Visualize
show (column (sup_title, grid))

Putting all the pieces together results in the following:

Philadelphia 76ers Game Log
2017-18 Regular Season

Wins in green, losses in red
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Similarly you can easily implement linked selections, where a selection on one plot will be
reflected on others.
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To see how this works, the next visualization will contain two scatter plots: one that shows
the 76ers’ two-point versus three-point field goal percentage and the other showing the 76ers’
team points versus opponent points on a game-by-game basis.

The goal is to be able to select data points on the left-side scatter plot and quickly be able to
recognize if the corresponding datapoint on the right scatter plot is a win or loss.

The DataFrame for this visualization is very similar to that from the first example:

# Isolate relevant data

phi gm stats 2 = (team stats[ (team stats['teamAbbr'] == 'PHI') &
(team stats['seasTyp'] == 'Regular')]
.locl:, ['gmDate',

'team2P%"',
'team3P%"',
'teamPTS"',
'opptPTS'] ]
.sort values ('gmbDate'))

# Add game number
phi gm stats 2['game num'] = range(l, len(phi gm stats 2) + 1)

# Derive a win loss column
win loss = []
for , row in phi gm stats 2.iterrows():

# If the 76ers score more points, it's a win
if row['teamPTS'] > row['opptPTS']:

win loss.append('W'")
else:

win loss.append('L")

# Add the win loss data to the DataFrame
phi gm stats 2['winLoss'] = win loss

Here’s what the data looks like:

>>> phi gm stats_ 2.head()
gmDate team2P% team3P% teamPTS opptPTS game num winLoss

10 2017-10-18 0.4746 0.4286 115 120 1 L
39 2017-10-20 0.4167 0.3125 92 102 2 L
52 2017-10-21 0.4138 0.3333 94 128 3 L
80 2017-10-23 0.5098 0.3750 97 86 4 W
113 2017-10-25 0.5082 0.3333 104 105 5 L

The code to create the visualization is as follows:

# Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output file

from bokeh.models import ColumnDataSource, CategoricalColorMapper,
NumeralTickFormatter

from bokeh.layouts import gridplot

# Output inline in the notebook

output file('phi-gm-linked-selections.html',
title="'76ers Percentages vs. Win-Loss')
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# Store the data in a ColumnDataSource
gm_stats cds = ColumnDataSource (phi gm stats 2)

# Create a CategoricalColorMapper that assigns specific colors to wins and
losses

win loss mapper = CategoricalColorMapper (factors = ['W', 'L'],
palette=['Green', 'Red'])

# Specify the tools
toolList = ['lasso select', 'tap', 'reset', 'save']

# Create a figure relating the percentages

pctFig = figure(title='2PT FG % vs 3PT FG %, 2017-18 Regular Season',
plot height=400, plot width=400, tools=toolList,
x _axis label='"'2PT FG%', y axis label='3PT FG%')

# Draw with circle markers
pctFig.circle (x="team2P%', y='team3P%', source=gm stats cds,
size=12, color='black"')

# Format the y-axis tick labels as percenages
pctFig.xaxis[0].formatter = NumeralTickFormatter (format='00.0%")
pctFig.yaxis[0].formatter = NumeralTickFormatter (format='00.0%")

# Create a figure relating the totals
totFig = figure(title='Team Points vs Opponent Points, 2017-18 Regular
Season',

plot height=400, plot width=400, tools=toolList,

X _axis label='Team Points', y axis label='Opponent Points')

# Draw with square markers
totFig.square (x='teamPTS', y='opptPTS', source=gm stats cds, size=10,
color=dict (field="'winLoss', transform=win loss mapper) )

# Create layout
grid = gridplot ([[pctFig, totFigll])

# Visualize
show (grid)

This is a great illustration of the power in using a columnbataSource. As long as the glyph
renderers (in this case, the circ1e glyphs for the percentages, and square glyphs for the
wins and losses) share the same columnbatasource, then the selections will be linked by
default.

Here’s how it looks in action, where you can see selections made on either figure will be
reflected on the other:
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2PT FG % vs 3PT FG %, 2017-18 Regular Season
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By selecting a random sample of data points in the upper right quadrant of the left scatter
plot, those corresponding to both high two-point and three-point field goal percentage, the
data points on the right scatter plot are highlighted.

Similarly, selecting data points on the right scatter plot that correspond to losses tend to be
further to the lower left, lower shooting percentages, on the left scatter plot.

All the details on linking plots can be found at Linking Plots in the Bokeh User Guide.
Highlighting Data Using the Legend

That brings us to the final interactivity example in this tutorial: interactive legends.

In the Drawing Data With Glyphs section, you saw how easy it is to implement a legend
when creating your plot. With the legend in place, adding interactivity is merely a matter of

assigning a click policy. Using a single line of code, you can quickly add the ability to
either hide or mute data using the legend.

In this example, you’ll see two identical scatter plots comparing the game-by-game points
and rebounds of LeBron James and Kevin Durant. The only difference will be that one will
Use a hide as its click policy, while the other uses mute.

The first step is to configure the output and set up the data, creating a view for each player
from the p1ayer stats DataFrame:

# Bokeh Libraries

from
from
from
from

bokeh.
bokeh.
bokeh.
bokeh.

plotting import figure, show
io import output file

models import ColumnDataSource,
layouts import row

# Output inline in the notebook

output file(

'lebron-vs-durant.html',

CDSView,
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title='LeBron James vs. Kevin Durant')
# Store the data in a ColumnDataSource
player gm stats = ColumnDataSource (player stats)

# Create a view for each player
lebron filters =
lebron view = CDSView (source=player gm stats,

filters=lebron filters)

durant filters =

durant view = CDSView (source=player gm stats,

filters=durant filters)

[GroupFilter (column name='playFNm',
GroupFilter (column name='playLNm',

[GroupFilter (column name='playFNm',
GroupFilter (column name='playLNm',

group="'LeBron'),
group="'James"') ]

group="'Kevin'),
group="'Durant"') ]

Before creating the figures, the common parameters across the figure, markers, and data can
be consolidated into dictionaries and reused. Not only does this save redundancy in the next
step, but it provides an easy way to tweak these parameters later if need be:

# Consolidate the common keyword arguments in dicts
common_ figure kwargs = {

'plot _width': 400,

'x _axis label': 'Points',

'toolbar location': None,
}

common circle kwargs = {

'x': 'playPTS',
'y': 'playTRB',
'source': player gm stats,

'size': 12,
'alpha': 0.7,

}

common lebron kwargs = {
'view': lebron view,
'color': '#002859"',
'legend': 'LeBron James'

}

common_durant kwargs = {
'view': durant view,
'color': '"#FFC324',
'legend': 'Kevin Durant'

Now that the various properties are set, the two scatter plots can be built in a much more

concise fashion:

# Create the two figures and draw the data
hide fig = figure(**common figure kwargs,

title='Click Legend to HIDE Data',

y_axis label='Rebounds"')

hide fig.
hide fig.

mute fig
Data')

mute fig.

mute fig.

circle (**common circle kwargs,
circle (**common circle kwargs,

= figure (**common figure kwargs,

circle (**common circle kwargs,
muted alpha=0.1)
circle (**common circle kwargs,

**common lebron kwargs)
**common durant kwargs)

title='Click Legend to MUTE
**common lebron kwargs,

**common durant kwargs,
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muted alpha=0.1)

Note that mute fig has an extra parameter called muted alpha. This parameter controls the
opacity of the markers when mute is used as the c1ick policy.

Finally, the c1ickx policy for each figure is set, and they are shown in a horizontal
configuration:

# Add interactivity to the legend
hide fig.legend.click policy = 'hide'
mute fig.legend.click policy = 'mute'

# Visualize
show(row(hide_fig, mute fig))
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Once the legend is in place, all you have to do is assign either hide or mute to the figure’s
click policy property. This will automatically turn your basic legend into an interactive
legend.

Also note that, specifically for mute, the additional property of muted alpha was set in the
respective circle glyphs for LeBron James and Kevin Durant. This dictates the visual effect
driven by the legend interaction.

For more on all things interaction in Bokeh, Adding Interactions in the Bokeh User Guide is a
great place to start.

Presenting insights effectively through visualizations and narratives
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Week 8: Text analysis and sentiment analysis

Day- 01 & 02: NLTK libaray for text analysis
Natural language processing (NLP) is a field that focuses on making natural human language usable by
computer programs. NLTK, or Natural Language Toolkit, is a Python package that you can use for NLP.

A lot of the data that you could be analyzing is unstructured data and contains human-readable text.
Before you can analyze that data programmatically, you first need to preprocess it. In this tutorial,
you'll take your first look at the kinds of text preprocessing tasks you can do with NLTK so that you'll
be ready to apply them in future projects. You’ll also see how to do some basic text analysis and
create visualizations.

Steps:
Find text to analyze
Preprocess your text for analysis

Analyze your text

The first thing you need to do is make sure that you have Python installed. For this tutorial, you’ll be
using Python 3.9. If you don’t yet have Python installed, then check out Python 3 Installation & Setup
Guide to get started. In shell type following commamd

S python -m pip install nltk==3.5
python -m pip install numpy matplotlib

Once you have that dealt with, your next step is to install NLTK with pip. It's a best practice to install it
in a virtual environment. To learn more about virtual environments, check out Python Virtual
Environments: A Primer.

Tokenizing

By tokenizing, you can conveniently split up text by word or by sentence. This will allow you to work
with smaller pieces of text that are still relatively coherent and meaningful even outside of the
context of the rest of the text. It’s your first step in turning unstructured data into structured data,
which is easier to analyze.

When you’re analyzing text, you’ll be tokenizing by word and tokenizing by sentence. Here’s what
both types of tokenization bring to the table:

Tokenizing by word: Words are like the atoms of natural language. They're the smallest unit of
meaning that still makes sense on its own. Tokenizing your text by word allows you to identify words
that come up particularly often. For example, if you were analyzing a group of job ads, then you might
find that the word “Python” comes up often. That could suggest high demand for Python knowledge,
but you’d need to look deeper to know more.

Tokenizing by sentence: When you tokenize by sentence, you can analyze how those words relate to
one another and see more context. Are there a lot of negative words around the word “Python”
because the hiring manager doesn’t like Python? Are there more terms from the domain of
herpetology than the domain of software development, suggesting that you may be dealing with an
entirely different kind of python than you were expecting?

from nltk.tokenize import sent_tokenize, word_tokenize
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You can use sent_tokenize() to split up example_string into sentences:
>>>sent_tokenize(example_string)

>>>word_tokenize(example_string)

Filtering Stop Words

Stop words are words that you want to ignore, so you filter them out of your text when you're
processing it. Very common words like 'in', 'is', and 'an' are often used as stop words since they don’t
add a lot of meaning to a text in and of themselves.

Here’s how to import the relevant parts of NLTK in order to filter out stop words:
>>> nltk.download("stopwords")

>>> from nltk.corpus import stopwords

>>> from nltk.tokenize import word_tokenize

>>>worf_quote = "Sir, | protest. | am not a merry man!"

>>>words_in_quote = word_tokenize(worf_quote)

>>>words_in_quote

['Sir', "', 'protest’, '.", 'merry', 'man’, '!']

You have a list of the words in worf_quote, so the next step is to create a set of stop words to
filter words_in_quote. For this example, you'll need to focus on stop words in "english":

>>> stop_words = set(stopwords.words("english"))

>>> stop_words = set(stopwords.words("english"))

Next, create an empty list to hold the words that make it past the filter:
>>>

>>> filtered_list =[]

You created an empty list, filtered_list, to hold all the words in words_in_quote that aren’t stop
words. Now you can use stop_words to filter words_in_quote:

>>>
>>> for word in words_in_quote:

if word.casefold() not in stop_words:
filtered_list.append(word)

You iterated over words_in_quote with a for loop and added all the words that weren’t stop words
to filtered_list. You used .casefold() on word so you could ignore whether the letters in word were
uppercase or lowercase. This is worth doing because stopwords.words('english') includes only
lowercase versions of stop words.
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Alternatively, you could use a list comprehension to make a list of all the words in your text that
aren’t stop words:

>>>
>>> filtered_list = |
word for word in words_in_quote if word.casefold() not in stop_words

]

When you use a list comprehension, you don’t create an empty list and then add items to the end of
it. Instead, you define the list and its contents at the same time. Using a list comprehension is often
seen as more Pythonic.

Take a look at the words that ended up in filtered_list:
>>>

>>> filtered_list

['Sir', "', 'protest’, ", 'merry', 'man’, 'l']
You filtered out a few words like 'am' and 'a’, but you also filtered out 'not', which does affect the
overall meaning of the sentence. (Worf won’t be happy about this.)

Words like 'l' and 'not' may seem too important to filter out, and depending on what kind of analysis
you want to do, they can be. Here’s why:

'I'is a pronoun, which are context words rather than content words:

Content words give you information about the topics covered in the text or the sentiment that the
author has about those topics.

Context words give you information about writing style. You can observe patterns in how authors use
context words in order to quantify their writing style. Once you’ve quantified their writing style, you
can analyze a text written by an unknown author to see how closely it follows a particular writing style
so you can try to identify who the author is.

'not' is technically an adverb but has still been included in NLTK's list of stop words for English. If you
want to edit the list of stop words to exclude 'not' or make other changes, then you can download it.

So, 'l'and 'not' can be important parts of a sentence, but it depends on what you’re trying to learn
from that sentence.

Stemming

Stemming is a text processing task in which you reduce words to their root, which is the core part of a
word. For example, the words “helping” and “helper” share the root “help.” Stemming allows you to
zero in on the basic meaning of a word rather than all the details of how it’s being used. NLTK

has more than one stemmer, but you’ll be using the Porter stemmer.

Here’s how to import the relevant parts of NLTK in order to start stemming:

>>>

>>> from nltk.stem import PorterStemmer
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>>> from nltk.tokenize import word_tokenize

Now that you’re done importing, you can create a stemmer with PorterStemmer():
>>>

>>> stemmer = PorterStemmer()

The next step is for you to create a string to stem. Here’s one you can use:

>>>

>>> string_for_stemming ="""

... The crew of the USS Discovery discovered many discoveries.
... Discovering is what explorers do."""

Before you can stem the words in that string, you need to separate all the words in it:

>>>

>>> words = word_tokenize(string_for_stemming)

Now that you have a list of all the tokenized words from the string, take a look at what’s in words:
>>>

>>> words

['The',

‘crew!’,

‘of',

‘the’,

'Uss',

‘Discovery’,

‘discovered',

'many’,

'discoveries',

(]
R

'Discovering’,
"is',
'‘what!,
‘explorers’,
‘do’,
)
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Create a list of the stemmed versions of the words in words by using stemmer.stem() in a list

comprehension:

>>>

>>> stemmed_words = [stemmer.stem(word) for word in words]
Take a look at what’s in stemmed_words:

>>>

>>>stemmed_words

['the',

‘crew!’,

‘of,

'the',

'uss',
'discoveri',
'discoVv',
'mani',

'discoveri',

Here’s what happened to all the words that started with 'discov' or 'Discov':

Original word Stemmed version
'Discovery' 'discoveri'
'discovered' ‘discov'
'discoveries' ‘discoveri'
'Discovering' ‘discov'

Those results look a little inconsistent. Why would 'Discovery' give
you 'discoveri' when 'Discovering' gives you 'discov'?
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Understemming and overstemming are two ways stemming can go wrong:

Understemming happens when two related words should be reduced to the same stem but aren’t.

This is a false negative.

Overstemming happens when two unrelated words are reduced to the same stem even though they

shouldn’t be. This is a false positive.

The Porter stemming algorithm dates from 1979, so it’s a little on the older side. The Snowball

stemmer, which is also called Porter2, is an improvement on the original and is also available through
NLTK, so you can use that one in your own projects. It’s also worth noting that the purpose of the

Porter stemmer is not to produce complete words but to find variant forms of a word.

Fortunately, you have some other ways to reduce words to their core meaning, such as lemmatizing,

which you’ll see later in this tutorial. But first, we need to cover parts of speech.

Tagging Parts of Speech

Part of speech is a grammatical term that deals with the roles words play when you use them

together in sentences. Tagging parts of speech, or POS tagging, is the task of labeling the words in

your text according to their part of speech.

In English, there are eight parts of speech:

Part of
speech

Noun

Pronoun

Adjective

Verb

Adverb

Preposition

Conjunction

Interjection

Some sources also include the category articles (like “a” or “the”) in the list of parts of speech, but
other sources consider them to be adjectives. NLTK uses the word determiner to refer to articles.

Role

Is a person, place, or thing

Replaces a noun

Gives information about what a noun is like

Is an action or a state of being

Gives information about a verb, an adjective, or another
adverb

Gives information about how a noun or pronoun is
connected to another word

Connects two other words or phrases

Is an exclamation

“u_n

Examples

mountain, bagel,
Poland

you, she, we

efficient, windy,
colorful

learn, is, go

efficiently, always,
very

from, about, at

so, because, and

yay, ow, wow

Here’s how to import the relevant parts of NLTK in order to tag parts of speech:

>>>

>>> from nltk.tokenize import word_tokenize
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Now create some text to tag. You can use this Carl Sagan guote:

>>>
>>>sagan_quote ="""

... If you wish to make an apple pie from scratch,
... you must first invent the universe."""

Use word_tokenize to separate the words in that string and store them in a list:
>>>

>>>words_in_sagan_quote = word_tokenize(sagan_quote)

Now call nltk.pos_tag() on your new list of words:

>>>

>>> import nltk

>>> nltk.pos_tag(words_in_sagan_quote)

[("1f', 'IN"),

('you', 'PRP'),

(‘'wish', 'VBP'"),

('to', 'TO"),

('make’, 'VB'),

(‘an', 'DT"),

(‘apple’, 'NN'),

('pie’, 'NN'),

(from', 'IN"),

('scratch’, 'NN'),

5"

('you', 'PRP'),

('must’, 'MD"),

(‘first’, 'VB'),

('invent', 'VB'),

(‘the', 'DT"),

(‘'universe', 'NN'),

(",
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All the words in the quote are now in a separate tuple, with a tag that represents their part of speech.
But what do the tags mean? Here’s how to get a list of tags and their meanings:

>>>
>>> nltk.help.upenn_tagset()

The list is quite long, but feel free to expand the box below to see it.
POS Tags and Their MeaningsShow/Hide

Here’s a summary that you can use to get started with NLTK’s POS tags:

Tags that start with Deal with
1 Adjectives
NN Nouns

RB Adverbs
PRP Pronouns
VB Verbs

Now that you know what the POS tags mean, you can see that your tagging was fairly successful:
'pie’ was tagged NN because it’s a singular noun.

'yvou' was tagged PRP because it’s a personal pronoun.

'invent' was tagged VB because it’s the base form of a verb.

But how would NLTK handle tagging the parts of speech in a text that is basically
gibberish? Jabberwocky is a nonsense poem that doesn’t technically mean much but is still written in
a way that can convey some kind of meaning to English speakers.

Make a string to hold an excerpt from this poem:
>>>

>>> jabberwocky_excerpt ="""

... 'Twas brillig, and the slithy toves did gyre and gimble in the wabe:
... all mimsy were the borogoves, and the mome raths outgrabe.""

Use word_tokenize to separate the words in the excerpt and store them in a list:
>>>

>>>words_in_excerpt = word_tokenize(jabberwocky_excerpt)

Call nltk.pos_tag() on your new list of words:

>>>

>>> nltk.pos_tag(words_in_excerpt)
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(T, 'NN)
(‘'was', 'VBD'),
('brillig', 'VBN'),
(5%,
(‘and','CC"),
('the', 'DT"),
('slithy', '11'),
('toves', 'NNS'),
('did', 'VBD'),
(‘gyre’, 'NN'),
(‘and','CC"),
('gimble’, 1)),
('in', 'IN"),

('the', 'DT"),
('wabe', 'NN'),
(", "),

(‘all', 'DT"),
('mimsy', 'NNS"),
(‘'were', 'VBD'),
(‘the', 'DT"),
('borogoves', 'NNS'),
(%),
(‘and','CC"),
('the', 'DT"),
('mome’, '1J"),
('raths', 'NNS'),
('outgrabe’, 'RB'),
("]

Accepted English words like 'and' and 'the' were correctly tagged as a conjunction and a determiner,
respectively. The gibberish word 'slithy' was tagged as an adjective, which is what a human English
speaker would probably assume from the context of the poem as well. Way to go, NLTK!
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Lemmatizing

Now that you’re up to speed on parts of speech, you can circle back to lemmatizing. Like
stemming, lemmatizing reduces words to their core meaning, but it will give you a complete English
word that makes sense on its own instead of just a fragment of a word like 'discoveri'.

Note: A lemma is a word that represents a whole group of words, and that group of words is called
a lexeme.

For example, if you were to look up the word “blending” in a dictionary, then you’d need to look at
the entry for “blend,” but you would find “blending” listed in that entry.

In this example, “blend” is the lemma, and “blending” is part of the lexeme. So when you lemmatize a
word, you are reducing it to its lemma.

Here’s how to import the relevant parts of NLTK in order to start lemmatizing:
>>>

>>> from nltk.stem import WordNetLemmatizer

Create a lemmatizer to use:

>>>

>>> lemmatizer = WordNetLemmatizer()

Let’s start with lemmatizing a plural noun:

>>>

>>> lemmatizer.lemmatize("scarves")

'scarf'

"scarves" gave you 'scarf', so that’s already a bit more sophisticated than what you would have gotten
with the Porter stemmer, which is 'scarv'. Next, create a string with more than one word to
lemmatize:

>>>

>>> string_for_lemmatizing = "The friends of DeSoto love scarves."
Now tokenize that string by word:

>>>

>>> words = word_tokenize(string_for_lemmatizing)
Here’s your list of words:

>>>

>>> words

['The',

'friends',

‘of!,
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'DeSoto’,

'love’

'scarves',

X

Create a list containing all the words in words after they’ve been lemmatized:
>>>

>>> lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
Here’s the list you got:
>>>
>>>lemmatized_words

['The',

'friend',

That looks right. The plurals 'friends' and 'scarves' became the singulars 'friend' and 'scarf'.

But what would happen if you lemmatized a word that looked very different from its lemma? Try
lemmatizing "worst":

>>>
>>> lemmatizer.lemmatize("worst")
'worst'

You got the result 'worst' because lemmatizer.lemmatize() assumed that "worst" was a noun. You can
make it clear that you want "worst" to be an adjective:

>>>

>>> lemmatizer.lemmatize("worst", pos="a")
'bad'

The default parameter for pos is 'n' for noun, but you made sure that "worst" was treated as an
adjective by adding the parameter pos="a". As a result, you got 'bad’, which looks very different from
your original word and is nothing like what you’d get if you were stemming. This is because "worst" is
the superlative form of the adjective 'bad', and lemmatizing reduces superlatives as well

as comparatives to their lemmas.
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Now that you know how to use NLTK to tag parts of speech, you can try tagging your words before
lemmatizing them to avoid mixing up homographs, or words that are spelled the same but have
different meanings and can be different parts of speech.

Chunking
While tokenizing allows you to identify words and sentences, chunking allows you to identify phrases.

Note: A phrase is a word or group of words that works as a single unit to perform a grammatical
function. Noun phrases are built around a noun.

Here are some examples:
“A planet”

“Atilting planet”

“A swiftly tilting planet”

Chunking makes use of POS tags to group words and apply chunk tags to those groups. Chunks don’t
overlap, so one instance of a word can be in only one chunk at a time.

Here’s how to import the relevant parts of NLTK in order to chunk:
>>>
>>> from nltk.tokenize import word_tokenize

Before you can chunk, you need to make sure that the parts of speech in your text are tagged, so
create a string for POS tagging. You can use this quote from The Lord of the Rings:

>>>

>>> |otr_quote = "It's a dangerous business, Frodo, going out your door."
Now tokenize that string by word:

>>>

>>>words_in_lotr_quote = word_tokenize(lotr_quote)
>>>words_in_lotr_quote

[t

‘dangerous’,

'business',
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out',

'vour',

'door’,

X

Now you’ve got a list of all of the words in lotr_quote.
The next step is to tag those words by part of speech:
>>>

>>> nltk.download("averaged perceptron_tagger")
>>> |otr_pos_tags = nltk.pos_tag(words_in_lotr_quote)

>>> |otr_pos_tags

[("It', 'PRP"),
("'s", 'VBZ'),
(‘a','DTY),

('dangerous', '11"),
('business', 'NN'),
("),

('Frodo’, 'NNP'"),
("),

(‘'going', 'VBG'),
('out', 'RP"),
('your', 'PRPS'),
('door', 'NN'),

(") )]

You’ve got a list of tuples of all the words in the quote, along with their POS tag. In order to chunk,
you first need to define a chunk grammar.

Note: A chunk grammar is a combination of rules on how sentences should be chunked. It often
uses regular expressions, or regexes.

For this tutorial, you don’t need to know how regular expressions work, but they will definitely come
in handy for you in the future if you want to process text.

Create a chunk grammar with one regular expression rule:

>>>

>>> grammar = "NP: {<DT>?<JJ>*<NN>}"
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NP stands for noun phrase. You can learn more about noun phrase chunking in Chapter 7 of Natural
Language Processing with Python—Analyzing Text with the Natural Language Toolkit.

According to the rule you created, your chunks:
Start with an optional (?) determiner ('DT')

Can have any number (*) of adjectives (JJ)

End with a noun (<NN>)

Create a chunk parser with this grammar:

>>>

>>> chunk_parser = nltk.RegexpParser(grammar)
Now try it out with your quote:

>>>

>>> tree = chunk_parser.parse(lotr_pos_tags)
Here’s how you can see a visual representation of this tree:
>>>

>>> tree.draw()

This is what the visual representation looks like:

S
R e
ItPRP 'sVBZ NP Frodo NNP going VBG outRP your PRP$ NP
——t g e |
aDT dangerous JJ Dbusiness NN door NN

You got two noun phrases:

'a dangerous business' has a determiner, an adjective, and a noun.
'door' has just a noun.

Now that you know about chunking, it’s time to look at chinking.

Chinking
Chinking is used together with chunking, but while chunking is used to include a pattern, chinking is
used to exclude a pattern.

Let’s reuse the quote you used in the section on chunking. You already have a list of tuples containing
each of the words in the quote along with its part of speech tag:

>>>
>>> |otr_pos_tags

[("It', 'PRP"),
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("'s",'VBZ'),

(‘a', 'DT'),
('dangerous', '11"),
('business', 'NN'),
(5%,

('Frodo', 'NNP'),
("),

('going', 'VBG'),
('out', 'RP"),
('your', 'PRPS'),
('door', 'NN'),
(")

The next step is to create a grammar to determine what you want to include and exclude in your
chunks. This time, you’re going to use more than one line because you’re going to have more than
one rule. Because you're using more than one line for the grammar, you’ll be using triple quotes ("""):

>>>

>>>grammar ="

... Chunk: {<.*>+}
>

The first rule of your grammar is {<.*>+}. This rule has curly braces that face inward ({}) because it’s
used to determine what patterns you want to include in you chunks. In this case, you want to include
everything: <.*>+,

The second rule of your grammar is }<JJ>{. This rule has curly braces that face outward (}) because it’s
used to determine what patterns you want to exclude in your chunks. In this case, you want to
exclude adjectives: <JJ>.

Create a chunk parser with this grammar:

>>>

>>> chunk_parser = nltk.RegexpParser(grammar)

Now chunk your sentence with the chink you specified:
>>>

>>> tree = chunk_parser.parse(lotr_pos_tags)

You get this tree as a result:

>>>
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>>> {ree

Tree('S', [Tree('Chunk’, [('It', 'PRP'), ("'s", 'VBZ'), ('a', 'DT')]), (‘dangerous', '1J)'), Tree('Chunk’,
[('business', 'NN"), (',", "), ('Frodo', 'NNP"), (", ',)), ('going', 'VBG'), (‘out', 'RP"), (‘your', 'PRPS'), ('door’,
'NN), (5 SD])

In this case, (‘dangerous', '1J') was excluded from the chunks because it’s an adjective (JJ). But that will
be easier to see if you get a graphic representation again:

>>>
>>> tree.draw()

You get this visual representation of the tree:

S

——— o
_.—4—’~_'_'—’-—'_ -
Chunk dangerous JJ Chunk
— et / R —
tPRP 'sVBZ aDT business NN Frodo NNP going VBG outRP your PRP$ door NN

Here, you've excluded the adjective 'dangerous' from your chunks and are left with two chunks
containing everything else. The first chunk has all the text that appeared before the adjective that was
excluded. The second chunk contains everything after the adjective that was excluded.

Now that you know how to exclude patterns from your chunks, it’s time to look into named entity
recognition (NER).

Using Named Entity Recognition (NER)

Named entities are noun phrases that refer to specific locations, people, organizations, and so on.
With named entity recognition, you can find the named entities in your texts and also determine what
kind of named entity they are.

Here’s the list of named entity types from the NLTK book:

NE type Examples

ORGANIZATION Georgia-Pacific Corp., WHO

PERSON Eddy Bonte, President Obama
LOCATION Murray River, Mount Everest

DATE June, 2008-06-29

TIME two fifty am, 1:30 p.m.

MONEY 175 million Canadian dollars, GBP 10.40
PERCENT twenty pct, 18.75 %

FACILITY Washington Monument, Stonehenge
GPE South East Asia, Midlothian

You can use nltk.ne_chunk() to recognize named entities. Let’s use lotr_pos_tags again to test it out:
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>>>
>>> nltk.download("maxent_ne_chunker")
>>> nltk.download("words")

>>> tree = nltk.ne_chunk(lotr_pos_tags)
Now take a look at the visual representation:
>>>

>>> tree.draw()

Here’s what you get:

S
— N =
tPRP 'sVBZ aDT dangerousJJ businessNN ,, PERSON goingVBG outRP your PRP$ door NN
|
Frodo NNP

See how Frodo has been tagged as a PERSON? You also have the option to use the
parameter binary=True if you just want to know what the named entities are but not what kind of
named entity they are:

>>>
>>> tree = nltk.ne_chunk(lotr_pos_tags, binary=True)
>>> tree.draw()

Now all you see is that Frodo is an NE:

S

JE—— ———

tPRP 'sVBZ aDT dangerousJJ business NN NE going VBG outRP your PRP$ door NN

Frodo NNP

That’s how you can identify named entities! But you can take this one step further and extract named
entities directly from your text. Create a string from which to extract named entities. You can use this
guote from The War of the Worlds:

>>>
>>>quote = """

.. Men like Schiaparelli watched the red planet—it is odd, by-the-bye, that
.. for countless centuries Mars has been the star of war—but failed to

.. interpret the fluctuating appearances of the markings they mapped so well.

.. All that time the Martians must have been getting ready.

.. During the opposition of 1894 a great light was seen on the illuminated
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... part of the disk, first at the Lick Observatory, then by Perrotin of Nice,
... and then by other observers. English readers heard of it first in the
... issue of Nature dated August 2."""
Now create a function to extract named entities:
>>>
>>> def extract_ne(quote):
words = word_tokenize(quote, language=language)
tags = nltk.pos_tag(words)
tree = nltk.ne_chunk(tags, binary=True)
return set(
""" join(i[0] foriint)
fortin tree
if hasattr(t, "label") and t.label() == "NE"
)

With this function, you gather all named entities, with no repeats. In order to do that, you tokenize by
word, apply part of speech tags to those words, and then extract named entities based on those tags.
Because you included binary=True, the named entities you’ll get won’t be labeled more specifically.
You’ll just know that they’re named entities.

Take a look at the information you extracted:

>>>

>>> extract_ne(quote)

{'Lick Observatory', '‘Mars', 'Nature', 'Perrotin’, 'Schiaparelli'}

You missed the city of Nice, possibly because NLTK interpreted it as a regular English adjective, but
you still got the following:

An institution: 'Lick Observatory'
A planet: 'Mars'

A publication: 'Nature'

People: 'Perrotin', 'Schiaparelli'
That’s some pretty decent variety!

Getting Text to Analyze

Now that you’ve done some text processing tasks with small example texts, you're ready to analyze a
bunch of texts at once. A group of texts is called a corpus. NLTK provides several corpora covering
everything from novels hosted by Project Gutenberg to inaugural speeches by presidents of the
United States.
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In order to analyze texts in NLTK, you first need to import them. This requires nltk.download("book"),
which is a pretty big download:

>>>
>>> nltk.download("book")

>>> from nltk.book import *

*** Introductory Examples for the NLTK Book ***

Loading textl, ..., text9 and sentl, ..., sent9

Type the name of the text or sentence to view it.

Type: 'texts()' or 'sents()' to list the materials.

text1l: Moby Dick by Herman Melville 1851

text2: Sense and Sensibility by Jane Austen 1811

text3: The Book of Genesis

text4: Inaugural Address Corpus

text5: Chat Corpus

text6: Monty Python and the Holy Grail

text7: Wall Street Journal

text8: Personals Corpus

text9: The Man Who Was Thursday by G . K. Chesterton 1908

You now have access to a few linear texts (such as Sense and Sensibility and Monty Python and the
Holy Grail) as well as a few groups of texts (such as a chat corpus and a personals corpus). Human
nature is fascinating, so let’s see what we can find out by taking a closer look at the personals corpus!

This corpus is a collection of personals ads, which were an early version of online dating. If you
wanted to meet someone, then you could place an ad in a newspaper and wait for other readers to
respond to you.

If you'd like to learn how to get other texts to analyze, then you can check out Chapter 3 of Natural
Language Processing with Python — Analyzing Text with the Natural Language Toolkit.

Using a Concordance

When you use a concordance, you can see each time a word is used, along with its immediate
context. This can give you a peek into how a word is being used at the sentence level and what words
are used with it.

Let’s see what these good people looking for love have to say! The personals corpus is called text8, so
we’re going to call .concordance() on it with the parameter "man":

>>>

>>> text8.concordance("man")
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Displaying 14 of 14 matches:

to hearing from you all . ABLE young man seeks, sexy older women . Phone for
ble relationship . GENUINE ATTRACTIVE MAN 40y . 0 ., no ties, secure, 5 ft.
ship, and quality times . VIETNAMESE MAN Single , never married , financially

ip . WELL DRESSED emotionally healthy man 37 like to meet full figured woman fo
nth subs LIKE TO BE MISTRESS of YOUR MAN like to be treated well . Bold DTE no
eeks lady in similar position MARRIED MAN 50, attrac . fit, seeks lady 40 - 5

eks nice girl 25 - 30 serious rship . Man 46 attractive fit, assertive , and k

40 - 50 sought by Aussie mid 40s b / man f / ship r / ship LOVE to meet widowe
discreet times . Sth E Subs . MARRIED MAN 42yo 6ft, fit, seeks Lady for discr
woman, seeks professional , employed man , with interests in theatre , dining
tall and of large build seeks a good man . | am a nonsmoker, social drinker,

lead to relationship . SEEKING HONEST MAN lam 41y.o0 . 5ft. 4, med. bui
quiet times . Seeks 35 - 45, honest man with good SOH & similar interests , f
genuine, caring , honest and normal man for fship, poss rship.S/S,S/

Interestingly, the last three of those fourteen matches have to do with seeking an honest man,
specifically:

SEEKING HONEST MAN

Seeks 35 - 45, honest man with good SOH & similar interests

genuine, caring , honest and normal man for fship , poss rship

Let’s see if there’s a similar pattern with the word "woman":

>>>

>>> text8.concordance("woman")

Displaying 11 of 11 matches:

at home . Seeking an honest, caring woman, slim or med . build , who enjoys t
thy man 37 like to meet full figured woman for relationship . 48 slim, shy, S

rry . MALE 58 years old . Is there a Woman who would like to spend 1 weekend a
other interests . Seeking Christian Woman for fship , view to rship . SWM 45 D
ALE 60 - burly beared seeks intimate woman for outingsn/ss/dF/ston/P
ington . SCORPIO 47 seeks passionate woman for discreet intimate encounters SEX

le dad . 42, East sub . 5" 9 seeks woman 30 + for f / ship relationship TALL
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personal trainer looking for married woman age open for fun MARRIED Dark guy 37
rinker , seeking slim - medium build woman who is happy in life , age open . AC

. O . TERTIARY Educated professional woman , seeks professional , employed man
real romantic, age 50-65y .o . WOMAN OF SUBSTANCE 56, 59 kg ., 50, fit

The issue of honesty came up in the first match only:

Seeking an honest, caring woman , slim or med . build

Dipping into a corpus with a concordance won’t give you the full picture, but it can still be interesting
to take a peek and see if anything stands out.

Making a Dispersion Plot

You can use a dispersion plot to see how much a particular word appears and where it appears. So
far, we’ve looked for "man" and "woman", but it would be interesting to see how much those words
are used compared to their synonyms:

>>>
>>> text8.dispersion_plot(

non n n "nn

["woman", "lady", "girl", "gal", "man", "gentleman", "boy", "guy"]

)

Here’s the dispersion plot you get:

Lexical Dispersion Plot

woman [ [ (BN I [
lady 4 0 V00 L0 Hinme P T I |
girl - |
gal 1
man | | | | [
gentleman I I 1 |
boy |

guy | I |l [ S B | |

] 1000 2000 3000 4000
Word Offset

Each vertical blue line represents one instance of a word. Each horizontal row of blue lines represents
the corpus as a whole. This plot shows that:

"lady" was used a lot more than "woman" or "girl". There were no instances of "gal".

"man" and "guy" were used a similar number of times and were more common
than "gentleman" or "boy".
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You use a dispersion plot when you want to see where words show up in a text or corpus. If you're
analyzing a single text, this can help you see which words show up near each other. If you’re analyzing
a corpus of texts that is organized chronologically, it can help you see which words were being used
more or less over a period of time.

Staying on the theme of romance, see what you can find out by making a dispersion plot for Sense
and Sensibility, which is text2. Jane Austen novels talk a lot about people’s homes, so make a
dispersion plot with the names of a few homes:

>>>
>>> text2.dispersion_plot(["Allenham"”, "Whitwell", "Cleveland", "Combe"])

Here’s the plot you get:

Lexical Dispersion Plot

Allenharm 4 W mi 1] [N |

Whitwell L1 i
Cleveland 1 1 | | o
Combe [ 1 I [ [

20000 A0000 BOO00 80000 100000 120000
Word Offset

Apparently Allenham is mentioned a lot in the first third of the novel and then doesn’t come up much
again. Cleveland, on the other hand, barely comes up in the first two thirds but shows up a fair bit in
the last third. This distribution reflects changes in the relationship between Marianne and Willoughby:

Allenham is the home of Willoughby’s benefactress and comes up a lot when Marianne is first
interested in him.

Cleveland is a home that Marianne stays at after she goes to see Willoughby in London and things go
wrong.

Dispersion plots are just one type of visualization you can make for textual data. The next one you'll
take a look at is frequency distributions.

Making a Frequency Distribution

With a frequency distribution, you can check which words show up most frequently in your text. You'll
need to get started with an import:

>>>
>>> from nltk import FreqDist

FregDist is a subclass of collections.Counter. Here’s how to create a frequency distribution of the
entire corpus of personals ads:
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>>>

>>> frequency_distribution = FregDist(text8)

>>> print(frequency_distribution)

<FreqgDist with 1108 samples and 4867 outcomes>

Since 1108 samples and 4867 outcomes is a lot of information, start by narrowing that down. Here’s
how to see the 20 most common words in the corpus:

>>>

>>> frequency_distribution.most_common(20)
[(",', 539),
("', 353),
('/,110),
(‘for', 99),
(‘and', 74),
('to', 74),
('lady', 68),
(-, 66),
('seeks', 60),
(‘a', 52),
(‘with', 44),
('S', 36),
('ship', 33),
('&', 30),
('relationship’, 29),
(‘fun', 28),
('in', 27),
('slim', 27),
('build", 27),
('o', 26)]

You have a lot of stop words in your frequency distribution, but you can remove them just as you
did earlier. Create a list of all of the words in text8 that aren’t stop words:

>>>

>>> meaningful_words = [
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word for word in text8 if word.casefold() not in stop_words
]

Now that you have a list of all of the words in your corpus that aren’t stop words, make a frequency
distribution:

>>>

>>> frequency_distribution = FregDist(meaningful _words)
Take a look at the 20 most common words:
>>>

>>> frequency_distribution.most_common(20)
[(",', 539),

("', 353),

('/,110),

('lady’, 68),

(-, 66),

('seeks', 60),

('ship', 33),

('&', 30),

('relationship’, 29),

('fun', 28),

('slim', 27),

('build", 27),

('smoker', 23),

('50', 23),

('non', 22),

(‘'movies', 22),

('good', 21),

('honest', 20),

('dining', 19),

('rship', 18)]
You can turn this list into a graph:

>>>
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>>> frequency_distribution.plot(20, cumulative=True)

Here’s the graph you get:
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Samples

Some of the most common words are:
'lady’

'seeks'

'ship'
'relationship’
'fun'

'slim’

'build'
'smoker

50

'non’
'movies'
'good'
'honest’

From what you’ve already learned about the people writing these personals ads, they did seem
interested in honesty and used the word 'lady' a lot. In addition, 'slim' and 'build' both show up the
same number of times. You saw slim and build used near each other when you were learning
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about concordances, so maybe those two words are commonly used together in this corpus. That
brings us to collocations!

Finding Collocations

A collocation is a sequence of words that shows up often. If you’re interested in common collocations
in English, then you can check out The BBI Dictionary of English Word Combinations. It’s a handy
reference you can use to help you make sure your writing is idiomatic. Here are some examples of

collocations that use the word “tree”:

Syntax tree

Family tree

Decision tree

To see pairs of words that come up often in your corpus, you need to call .collocations() on it:
>>>

>>> text8.collocations()

would like; medium build; social drinker; quiet nights; non smoker;
long term; age open; Would like; easy going; financially secure; fun
times; similar interests; Age open; weekends away; poss rship; well
presented; never married; single mum; permanent relationship; slim
build

slim build did show up, as did medium build and several other word combinations. No long walks on
the beach though!

But what would happen if you looked for collocations after lemmatizing the words in your corpus?
Would you find some word combinations that you missed the first time around because they came up
in slightly varied versions?

If you followed the instructions earlier, then you’ll already have a lemmatizer, but you can’t
call collocations() on just any data type, so you're going to need to do some prep work. Start by
creating a list of the lemmatized versions of all the words in text8:

>>>
>>> lemmatized_words = [lemmatizer.lemmatize(word) for word in text8]

But in order for you to be able to do the linguistic processing tasks you’ve seen so far, you need to
make an NLTK text with this list:

>>>
>>> new_text = nltk.Text(lemmatized_words)
Here’s how to see the collocations in your new_text:

>>>
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>>> new_text.collocations()

medium build; social drinker; non smoker; long term; would like; age

open; easy going; financially secure; Would like; quiet night; Age

open; well presented; never married; single mum; permanent

relationship; slim build; year old; similar interest; fun time; Photo

pls

Compared to your previous list of collocations, this new one is missing a few:
weekends away

poss rship

The idea of quiet nights still shows up in the lemmatized version, quiet night. Your latest search for
collocations also brought up a few news ones:

year old suggests that users often mention ages.
photo pls suggests that users often request one or more photos.

That’s how you can find common word combinations to see what people are talking about and how
they’re talking about it!

Conclusion

Congratulations on taking your first steps with NLP! A whole new world of unstructured data is now
open for you to explore. Now that you’ve covered the basics of text analytics tasks, you can get out
there are find some texts to analyze and see what you can learn about the texts themselves as well as
the people who wrote them and the topics they’re about.

Now you know how to:

Find text to analyze

Preprocess your text for analysis

Analyze your text

Create visualizations based on your analysis

For your next step, you can use NLTK to analyze a text to see whether the sentiments expressed in it
are positive or negative. To learn more about sentiment analysis, check out Sentiment Analysis: First
Steps With Python’s NLTK Library. If you’d like to dive deeper into the nuts and bolts of NLTK, then
you can work your way through Natural Language Processing with Python—Analyzing Text with the
Natural Language Toolkit.

Day-03 & 04: Sentiment Analysis: First Steps With Python's NLTK Library
Sentiment Analysis

Sentiment analysis can help you determine the ratio of positive to negative engagements about a
specific topic. You can analyze bodies of text, such as comments, tweets, and product reviews, to
obtain insights from your audience. In this tutorial, you’ll learn the important features of NLTK for
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processing text data and the different approaches you can use to perform sentiment analysis on your
data.

Steps for Sentiment Analysis
Split and filter text data in preparation for analysis

Analyze word frequency

Find concordance and collocations using different methods
Perform quick sentiment analysis with NLTK’s built-in classifier
Define features for custom classification

Use and compare classifiers for sentiment analysis with NLTK
Getting Started With NLTK

The NLTK library contains various utilities that allow you to effectively manipulate and analyze
linguistic data. Among its advanced features are text classifiers that you can use for many kinds of
classification, including sentiment analysis.

Sentiment analysis is the practice of using algorithms to classify various samples of related text into
overall positive and negative categories. With NLTK, you can employ these algorithms through
powerful built-in machine learning operations to obtain insights from linguistic data.

import nltk

nltk.download()

NLTK will display a download manager showing all available and installed resources. Here are the ones
you'll need to download for this task:

names: A list of common English names compiled by Mark Kantrowitz

stopwords: A list of really common words, like articles, pronouns, prepositions, and conjunctions

state_union: A sample of transcribed State of the Union addresses by different US presidents,
compiled by Kathleen Ahrens

twitter_samples: A list of social media phrases posted to Twitter

movie_reviews: Two thousand movie reviews categorized by Bo Pang and Lillian Lee

averaged_perceptron_tagger: A data model that NLTK uses to categorize words into their part of
speech

vader_lexicon: A scored list of words and jargon that NLTK references when performing sentiment
analysis, created by C.J. Hutto and Eric Gilbert

punkt: A data model created by Jan Strunk that NLTK uses to split full texts into word lists

A quick way to download specific resources directly from the console is to pass
a list to nltk.download():

>>>
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>>> import nltk

>>> nltk.download(|
"names",
"stopwords",
"state_union",
"twitter_samples",
"movie_reviews",
"averaged_perceptron_tagger",
"vader_lexicon",
"punkt",

- 1)

his will tell NLTK to find and download each resource based on its identifier.

Should NLTK require additional resources that you haven’t installed, you’ll see a
helpful LookupError with details and instructions to download the resource:

>>> import nltk

>>> w = nltk.corpus.shakespeare.words()

LookupError:
3k 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk kosk kosk
Resource shakespeare not found.

Please use the NLTK Downloader to obtain the resource:

>>> import nltk
>>> nltk.download('shakespeare’)

Compiling Data

NLTK provides a number of functions that you can call with few or no arguments that will help you
meaningfully analyze text before you even touch its machine learning capabilities. Many of NLTK’s
utilities are helpful in preparing your data for more advanced analysis.

Soon, you'll learn about frequency distributions, concordance, and collocations. But first, you need
some data.

Start by loading the State of the Union corpus you downloaded earlier:
Page 553 of 580



words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]

Note that you build a list of individual words with the corpus’s .words() method, but you
use str.isalpha() to include only the words that are made up of letters. Otherwise, your word list may
end up with “words” that are only punctuation marks.

” u.

Have a look at your list. You’ll notice lots of little words like “of,” “a,” “the,” and similar. These
common words are called stop words, and they can have a negative effect on your analysis because

they occur so often in the text. Thankfully, there’s a convenient way to filter them out.
NLTK provides a small corpus of stop words that you can load into a list:
stopwords = nltk.corpus.stopwords.words("english")

Make sure to specify english as the desired language since this corpus contains stop words in various
languages.

Now you can remove stop words from your original word list:
words = [w for w in words if w.lower() not in stopwords]

Since all words in the stopwords list are lowercase, and those in the original list may not be, you
use str.lower() to account for any discrepancies. Otherwise, you may end up with mixedCase or
capitalized stop words still in your list.

While you'll use corpora provided by NLTK for this tutorial, it's possible to build your own text corpora
from any source. Building a corpus can be as simple as loading some plain text or as complex as
labeling and categorizing each sentence. Refer to NLTK’s documentation for more information on how
to work with corpus readers.

For some quick analysis, creating a corpus could be overkill. If all you need is a word list, there are
simpler ways to achieve that goal. Beyond Python’s own string manipulation methods, NLTK
provides nltk.word_tokenize(), a function that splits raw text into individual words.

While tokenization is itself a bigger topic (and likely one of the steps you’ll take when creating a
custom corpus), this tokenizer delivers simple word lists really well.

To use it, call word_tokenize() with the raw text you want to split:
>>>

>>> from pprint import pprint

>>> text = """

... For some quick analysis, creating a corpus could be overkill.
... If all you need is a word list,

... there are simpler ways to achieve that goal."""

>>> pprint(nltk.word_tokenize(text), width=79, compact=True)
['For', 'some’, 'quick’, 'analysis', ',', 'creating’, 'a’, 'corpus', 'could’,
'‘be’, 'overkill', ., 'If', all', 'you', 'need', "is', 'a’, 'word', 'list',
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., 'there', 'are’, 'simpler’, 'ways', 'to', 'achieve’, 'that', 'goal’, '."]

Now you have a workable word list! Remember that punctuation will be counted as individual words,
so use str.isalpha() to filter them out later.

Creating Frequency Distributions

Now you’re ready for frequency distributions. A frequency distribution is essentially a table that tells
you how many times each word appears within a given text. In NLTK, frequency distributions are a
specific object type implemented as a distinct class called FreqDist. This class provides useful
operations for word frequency analysis.

To build a frequency distribution with NLTK, construct the nltk.FreqDist class with a word list:
words: list[str] = nltk.word_tokenize(text)
fd = nltk.FreqDist(words)

This will create a frequency distribution object similar to a Python dictionary but with added features.

Note: Type hints with generics as you saw above in words: list[str] = ... is a new feature in Python 3.9

After building the object, you can use methods like .most_common() and .tabulate() to start
visualizing information:

>>>
>>> fd.most_common(3)
[('must’, 1568), ('people’, 1291), (‘world', 1128)]
>>> fd.tabulate(3)
must people world
1568 1291 1128

These methods allow you to quickly determine frequently used words in a sample.
With .most_common(), you get a list of tuples containing each word and how many times it appears
in your text. You can get the same information in a more readable format with .tabulate().

In addition to these two methods, you can use frequency distributions to query particular words. You
can also use them as iterators to perform some custom analysis on word properties.

For example, to discover differences in case, you can query for different variations of the same word:
>>>

>>> fd["America"]

1076

>>> fd["america"] # Note this doesn't result in a KeyError

0

>>> fd["AMERICA"]

3
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These return values indicate the number of times each word occurs exactly as given.

Since frequency distribution objects are iterable, you can use them within list comprehensions to
create subsets of the initial distribution. You can focus these subsets on properties that are useful for
your own analysis.

Try creating a new frequency distribution that’s based on the initial one but normalizes all words to
lowercase:

lower_fd = nltk.FregDist([w.lower() for w in fd])
Now you have a more accurate representation of word usage regardless of case.

Think of the possibilities: You could create frequency distributions of words starting with a particular
letter, or of a particular length, or containing certain letters. Your imagination is the limit!

Extracting Concordance and Collocations

In the context of NLP, a concordance is a collection of word locations along with their context. You
can use concordances to find:

How many times a word appears
Where each occurrence appears
What words surround each occurrence

In NLTK, you can do this by calling .concordance(). To use it, you need an instance of
the nltk.Text class, which can also be constructed with a word list.

Before invoking .concordance(), build a new word list from the original corpus text so that all the
context, even stop words, will be there:

>>>

>>> text = nltk.Text(nltk.corpus.state_union.words())

>>> text.concordance("america", lines=5)

Displaying 5 of 1079 matches:

would want us to do . That is what America will do . So much blood has already
ay, the entire world is looking to America for enlightened leadership to peace
beyond any shadow of a doubt, that America will continue the fight for freedom
to make complete victory certain , America will never become a party to any pl
nly in law and in justice . Here in America , we have labored long and hard to

Note that .concordance() already ignores case, allowing you to see the context of all case variants of a
word in order of appearance. Note also that this function doesn’t show you the location of each word
in the text.

Additionally, since .concordance() only prints information to the console, it’s not ideal for data
manipulation. To obtain a usable list that will also give you information about the location of each
occurrence, use .concordance_list():
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>>>
>>> concordance_list = text.concordance_list("america", lines=2)
>>>for entry in concordance_list:

print(entry.line)

would want us to do . That is what America will do . So much blood has already
ay, the entire world is looking to America for enlightened leadership to peace

.concordance_list() gives you a list of Concordanceline objects, which contain information about
where each word occurs as well as a few more properties worth exploring. The list is also sorted in
order of appearance.

The nltk.Text class itself has a few other interesting features. One of them is .vocab(), which is worth
mentioning because it creates a frequency distribution for a given text.

Revisiting nltk.word_tokenize(), check out how quickly you can create a custom nltk.Text instance and
an accompanying frequency distribution:

>>>

>>> words: list[str] = nltk.word_tokenize(
"""Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.""

)

>>> text = nltk.Text(words)

>>>fd = text.vocab() # Equivalent to fd = nltk.FregDist(words)

>>> fd.tabulate(3)

is better than

3 3 3

.vocab() is essentially a shortcut to create a frequency distribution from an instance of nltk.Text. That
way, you don’t have to make a separate call to instantiate a new nltk.FreqgDist object.

Another powerful feature of NLTK is its ability to quickly find collocations with simple function calls.
Collocations are series of words that frequently appear together in a given text. In the State of the
Union corpus, for example, you’d expect to find the words United and States appearing next to each
other very often. Those two words appearing together is a collocation.

Collocations can be made up of two or more words. NLTK provides classes to handle several types of
collocations:

Bigrams: Frequent two-word combinations
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Trigrams: Frequent three-word combinations
Quadgrams: Frequent four-word combinations

NLTK provides specific classes for you to find collocations in your text. Following the pattern you've
seen so far, these classes are also built from lists of words:

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]
finder = nltk.collocations.TrigramCollocationFinder.from_words(words)

The TrigramCollocationFinder instance will search specifically for trigrams. As you may have guessed,
NLTK also has the BigramCollocationFinder and QuadgramCollocationFinder classes for bigrams and
quadgrams, respectively. All these classes have a number of utilities to give you information about all
identified collocations.

One of their most useful tools is the ngram_fd property. This property holds a frequency distribution
that is built for each collocation rather than for individual words.

Using ngram_fd, you can find the most common collocations in the supplied text:
>>>
>>> finder.ngram_fd.most_common(2)
[(('the', 'United', 'States'), 294), (('the', 'American’, '‘people'’), 185)]
>>> finder.ngram_fd.tabulate(2)
('the', 'United', 'States') ('the', 'American’, 'people’)
294 185

You don’t even have to create the frequency distribution, as it’s already a property of the collocation
finder instance.

Now that you’ve learned about some of NLTK’s most useful tools, it’s time to jump into sentiment
analysis!

Using NLTK’s Pre-Trained Sentiment Analyzer

NLTK already has a built-in, pretrained sentiment analyzer called VADER (Valence Aware Dictionary
and sEntiment Reasoner).

Since VADER is pretrained, you can get results more quickly than with many other analyzers.

However, VADER is best suited for language used in social media, like short sentences with some slang
and abbreviations. It’s less accurate when rating longer, structured sentences, but it’s often a good
launching point.

To use VADER, first create an instance of nltk.sentiment.SentimentintensityAnalyzer, then
use .polarity_scores() on a raw string:

>>>
>>> from nltk.sentiment import SentimentintensityAnalyzer

>>> sia = SentimentIntensityAnalyzer()
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>>> sia.polarity_scores("Wow, NLTK is really powerful!")
{'neg': 0.0, 'neu': 0.295, 'pos': 0.705, 'compound': 0.8012}

You'll get back a dictionary of different scores. The negative, neutral, and positive scores are related:
They all add up to 1 and can’t be negative. The compound score is calculated differently. It's not just
an average, and it can range from -1 to 1.

Now you'll put it to the test against real data using two different corpora. First, load
the twitter_samples corpus into a list of strings, making a replacement to render URLs inactive to
avoid accidental clicks:

tweets = [t.replace("://", "//") for tin nltk.corpus.twitter_samples.strings()]

Notice that you use a different corpus method, .strings(), instead of .words(). This gives you a list of
raw tweets as strings.

Different corpora have different features, so you may need to use Python’s help(), as
in help(nltk.corpus.tweet_samples), or consult NLTK’s documentation to learn how to use a given
corpus.

Now use the .polarity_scores() function of your SentimentintensityAnalyzer instance to classify
tweets:

from random import shuffle

defis_positive(tweet: str) -> bool:

"""True if tweet has positive compound sentiment, False otherwise.

return sia.polarity_scores(tweet)["compound"] >0

shuffle(tweets)
for tweet in tweets[:10]:
print(">", is_positive(tweet), tweet)

In this case, is_positive() uses only the positivity of the compound score to make the call. You can
choose any combination of VADER scores to tweak the classification to your needs.

Now take a look at the second corpus, movie_reviews. As the name implies, this is a collection of
movie reviews. The special thing about this corpus is that it’s already been classified. Therefore, you
can use it to judge the accuracy of the algorithms you choose when rating similar texts.

Keep in mind that VADER is likely better at rating tweets than it is at rating long movie reviews. To get
better results, you'll set up VADER to rate individual sentences within the review rather than the
entire text.

Since VADER needs raw strings for its rating, you can’t use .words() like you did earlier. Instead, make
a list of the file IDs that the corpus uses, which you can use later to reference individual reviews:

positive_review_ids = nltk.corpus.movie_reviews.fileids(categories=["pos"])
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negative_review_ids = nltk.corpus.movie_reviews.fileids(categories=["neg"])
all_review_ids = positive_review_ids + negative_review_ids

fileids() exists in most, if not all, corpora. In the case of movie_reviews, each file corresponds to a
single review. Note also that you're able to filter the list of file IDs by specifying categories. This
categorization is a feature specific to this corpus and others of the same type.

Next, redefine is_positive() to work on an entire review. You'll need to obtain that specific review
using its file ID and then split it into sentences before rating:

from statistics import mean

defis_positive(review_id: str) -> bool:
"""True if the average of all sentence compound scores is positive."""
text = nltk.corpus.movie_reviews.raw(review_id)
scores = |
sia.polarity_scores(sentence)["compound"]
for sentence in nltk.sent_tokenize(text)
]

return mean(scores) >0

.raw() is another method that exists in most corpora. By specifying a file ID or a list of file IDs, you can
obtain specific data from the corpus. Here, you get a single review, then use nltk.sent_tokenize() to
obtain a list of sentences from the review. Finally, is_positive() calculates the average compound
score for all sentences and associates a positive result with a positive review.

You can take the opportunity to rate all the reviews and see how accurate VADER is with this setup:
>>>
>>> shuffle(all_review_ids)
>>> correct =0
>>> for review_id in all_review_ids:
if is_positive(review_id):
if review_id in positive_review_ids:
correct+=1
else:
if review_id in negative_review_ids:

correct+=1

Page 560 of 580



>>> print(F"{correct / len(all_review_ids):.2%} correct")
64.00% correct

After rating all reviews, you can see that only 64 percent were correctly classified by VADER using the
logic defined in is_positive().

A 64 percent accuracy rating isn’t great, but it’s a start. Have a little fun tweaking is_positive() to see if
you can increase the accuracy.

In the next section, you’ll build a custom classifier that allows you to use additional features for
classification and eventually increase its accuracy to an acceptable level.

Customizing NLTK’s Sentiment Analysis

NLTK offers a few built-in classifiers that are suitable for various types of analyses, including sentiment
analysis. The trick is to figure out which properties of your dataset are useful in classifying each piece
of data into your desired categories.

In the world of machine learning, these data properties are known as features, which you must reveal
and select as you work with your data. While this tutorial won’t dive too deeply into feature
selection and feature engineering, you'll be able to see their effects on the accuracy of classifiers.

Selecting Useful Features

Since you’ve learned how to use frequency distributions, why not use them as a launching point for
an additional feature?

By using the predefined categories in the movie_reviews corpus, you can create sets of positive and
negative words, then determine which ones occur most frequently across each set. Begin by
excluding unwanted words and building the initial category groups:

lunwanted = nltk.corpus.stopwords.words("english")
2unwanted.extend([w.lower() for w in nltk.corpus.names.words()])
3

4def skip_unwanted(pos_tuple):

5 word, tag = pos_tuple

6 if not word.isalpha() or word in unwanted:

7 return False

8 if tag.startswith("NN"):

9 return False

10 return True

11

12positive_words = [word for word, tag in filter(

13 skip_unwanted,
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14 nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["pos"]))
15)]

16negative_words = [word for word, tag in filter(

17 skip_unwanted,

18 nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["neg"]))
19)]

This time, you also add words from the names corpus to the unwanted list on line 2 since movie
reviews are likely to have lots of actor names, which shouldn’t be part of your feature sets.
Notice pos_tag() on lines 14 and 18, which tags words by their part of speech.

It’s important to call pos_tag() before filtering your word lists so that NLTK can more accurately tag all
words. skip_unwanted(), defined on line 4, then uses those tags to exclude nouns, according to

NLTK's default tag set.

Now you’re ready to create the frequency distributions for your custom feature. Since many words
are present in both positive and negative sets, begin by finding the common set so you can remove it
from the distribution objects:

positive_fd = nltk.FreqDist(positive_words)

negative_fd = nltk.FregDist(negative_words)

common_set = set(positive_fd).intersection(negative_fd)

for word in common_set:
del positive_fd[word]

del negative_fd[word]

top_100_positive = {word for word, count in positive_fd.most_common(100)}
top_100_negative = {word for word, count in negative_fd.most_common(100)}

Once you're left with unique positive and negative words in each frequency distribution object, you
can finally build sets from the most common words in each distribution. The amount of words in each
set is something you could tweak in order to determine its effect on sentiment analysis.

This is one example of a feature you can extract from your data, and it’s far from perfect. Looking
closely at these sets, you'll notice some uncommon names and words that aren’t necessarily positive
or negative. Additionally, the other NLTK tools you’ve learned so far can be useful for building more
features. One possibility is to leverage collocations that carry positive meaning, like the bigram
“thumbs up!”

Here’s how you can set up the positive and negative bigram finders:
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unwanted = nltk.corpus.stopwords.words("english")

unwanted.extend([w.lower() for w in nltk.corpus.names.words()])

positive_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([
w for w in nltk.corpus.movie_reviews.words(categories=["pos"])
if w.isalpha() and w not in unwanted

)

negative_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([
w for w in nltk.corpus.movie_reviews.words(categories=["neg"])
if w.isalpha() and w not in unwanted

1)

The rest is up to you! Try different combinations of features, think of ways to use the negative VADER
scores, create ratios, polish the frequency distributions. The possibilities are endless!

Training and Using a Classifier

With your new feature set ready to use, the first prerequisite for training a classifier is to define a
function that will extract features from a given piece of data.

Since you’re looking for positive movie reviews, focus on the features that indicate positivity,
including VADER scores:

def extract_features(text):
features = dict()
wordcount =0
compound_scores = list()

positive_scores = list()

for sentence in nltk.sent_tokenize(text):
for word in nltk.word_tokenize(sentence):
if word.lower() in top_100_positive:
wordcount +=1
compound_scores.append(sia.polarity scores(sentence)["compound"])

positive_scores.append(sia.polarity_scores(sentence)["pos"])

# Adding 1 to the final compound score to always have positive numbers
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# since some classifiers you'll use later don't work with negative numbers.
features["mean_compound"] = mean(compound_scores) + 1
features["mean_positive"] = mean(positive_scores)

features["wordcount"] = wordcount

return features
extract_features() should return a dictionary, and it will create three features for each piece of text:
The average compound score
The average positive score
The amount of words in the text that are also part of the top 100 words in all positive reviews

In order to train and evaluate a classifier, you’ll need to build a list of features for each text you’ll
analyze:

features = |
(extract_features(nltk.corpus.movie_reviews.raw(review)), "pos")
for review in nltk.corpus.movie_reviews.fileids(categories=["pos"])

]

features.extend([
(extract_features(nltk.corpus.movie_reviews.raw(review)), "neg")
for review in nltk.corpus.movie_reviews.fileids(categories=["neg"])

1)

Each item in this list of features needs to be a tuple whose first item is the dictionary returned
by extract_features and whose second item is the predefined category for the text. After initially
training the classifier with some data that has already been categorized (such as

the movie_reviews corpus), you'll be able to classify new data.

Training the classifier involves splitting the feature set so that one portion can be used for training
and the other for evaluation, then calling .train():

>>>

>>> # Use 1/4 of the set for training

>>>train_count = len(features) // 4

>>> shuffle(features)

>>> classifier = nltk.NaiveBayesClassifier.train(features[:train_count])
>>> classifier.show_most_informative_features(10)

Most Informative Features
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wordcount =2 pos:neg = 41:1.0

wordcount =3 pos:neg = 3.8:1.0
wordcount =0 neg:pos = 16:1.0
wordcount =1 pos:neg = 15:1.0

>>> nltk.classify.accuracy(classifier, features[train_count:])
0.668

Since you’re shuffling the feature list, each run will give you different results. In fact, it’s important to
shuffle the list to avoid accidentally grouping similarly classified reviews in the first quarter of the list.

Adding a single feature has marginally improved VADER's initial accuracy, from 64 percent to 67
percent. More features could help, as long as they truly indicate how positive a review is. You can

use classifier.show_most_informative_features() to determine which features are most indicative of a
specific property.

To classify new data, find a movie review somewhere and pass it to classifier.classify(). You can also
use extract_features() to tell you exactly how it was scored:

>>>
>>>new_review = ...

>>> classifier.classify(new_review)

>>> extract_features(new_review)

Was it correct? Based on the scoring output from extract_features(), what can you improve?

Feature engineering is a big part of improving the accuracy of a given algorithm, but it’s not the whole
story. Another strategy is to use and compare different classifiers.

Comparing Additional Classifiers

NLTK provides a class that can use most classifiers from the popular machine learning
framework scikit-learn.

Many of the classifiers that scikit-learn provides can be instantiated quickly since they have defaults
that often work well. In this section, you’ll learn how to integrate them within NLTK to classify
linguistic data.

Installing and Importing scikit-learn
Like NLTK, scikit-learn is a third-party Python library, so you’ll have to install it with pip:

S python3 -m pip install scikit-learn
After you've installed scikit-learn, you'll be able to use its classifiers directly within NLTK.

The following classifiers are a subset of all classifiers available to you. These will work within NLTK for
sentiment analysis:

from sklearn.naive_bayes import (

BernoulliNB,
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ComplementNB,
MultinomialNB, )
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

With these classifiers imported, you'll first have to instantiate each one. Thankfully, all of these have
pretty good defaults and don’t require much tweaking.

To aid in accuracy evaluation, it’s helpful to have a mapping of classifier names and their instances:
classifiers={ "BernoulliNB": BernoulliNB(),
"ComplementNB": ComplementNB(),
"MultinomialNB": MultinomialNB(),
"KNeighborsClassifier": KNeighborsClassifier(),
"DecisionTreeClassifier": DecisionTreeClassifier(),
"RandomForestClassifier": RandomForestClassifier(),
"LogisticRegression": LogisticRegression(),
"MLPClassifier": MLPClassifier(max_iter=1000),
"AdaBoostClassifier": AdaBoostClassifier(), }
Now you can use these instances for training and accuracy evaluation.
Using scikit-learn Classifiers With NLTK

Since NLTK allows you to integrate scikit-learn classifiers directly into its own classifier class, the
training and classification processes will use the same methods you’ve already
seen, .train() and .classify().

You'll also be able to leverage the same features list you built earlier by means of extract_features().
To refresh your memory, here’s how you built the features list:

features = [
(extract_features(nltk.corpus.movie_reviews.raw(review)), "pos")
for review in nltk.corpus.movie_reviews.fileids(categories=["pos"])

]

features.extend([
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(extract_features(nltk.corpus.movie_reviews.raw(review)), "neg")
for review in nltk.corpus.movie_reviews.fileids(categories=["neg"]) ])

The features list contains tuples whose first item is a set of features given by extract_features(), and
whose second item is the classification label from preclassified data in the movie_reviews corpus.

Since the first half of the list contains only positive reviews, begin by shuffling it, then iterate over all
classifiers to train and evaluate each one:

>>>
>>> # Use 1/4 of the set for training
>>> train_count = len(features) // 4
>>> shuffle(features)
>>> for name, sklearn_classifier in classifiers.items():
classifier = nltk.classify.SklearnClassifier(sklearn_classifier)
classifier.train(features[:train_count])
accuracy = nltk.classify.accuracy(classifier, features[train_count:])

print(F"{accuracy:.2%} - {name}")

67.00% - BernoulliNB

66.80% - ComplementNB
66.33% - MultinomialNB

69.07% - KNeighborsClassifier
62.73% - DecisionTreeClassifier
66.60% - RandomForestClassifier
72.20% - LogisticRegression
73.13% - MLPClassifier

69.40% - AdaBoostClassifier

For each scikit-learn classifier, call nltk.classify.SklearnClassifier to create a usable NLTK classifier that
can be trained and evaluated exactly like you’ve seen before with nltk.NaiveBayesClassifier and its
other built-in classifiers. The .train() and .accuracy() methods should receive different portions of the
same list of features.

Day-05: Labs and Practice activities for sentiments analysis on various datasets

This day is reserved for various data analysis and practice activities activities along with assessments.
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Week 9: Time series analysis and forecasting

Day-01: Time Series — Introduction

NumPy

Numerical Python is a library used for scientific computing. It works on an N-dimensional array object
and provides basic mathematical functionality such as size, shape, mean, standard deviation,
minimum, maximum as well as some more complex functions such as linear algebraic functions and
Fourier transform. You will learn more about these as we move ahead in this tutorial.

Pandas

This library provides highly efficient and easy-to-use data structures such as series, dataframes and
panels. It has enhanced Python’s functionality from mere data collection and preparation to data
analysis. The two libraries, Pandas and NumPy, make any operation on small to very large dataset
very simple. To know more about these functions,follow this tutorial.

SciPy

Science Python is a library used for scientific and technical computing. It provides functionalities for
optimization, signal and image processing, integration, interpolation and linear algebra. This library
comes handy while performing machine learning. We will discuss these functionalities as we move
ahead in this tutorial.

Scikit Learn

This library is a SciPy Toolkit widely used for statistical modelling, machine learning and deep learning,
as it contains various customizable regression, classification and clustering models. It works well with
Numpy, Pandas and other libraries which makes it easier to use.

Statsmodels

Like Scikit Learn, this library is used for statistical data exploration and statistical
modelling. It also operates well with other Python libraries.

Matplotlib

This library is used for data visualization in various formats such as line plot, bar graph,
heat maps, scatter plots, histogram etc. It contains all the graph related functionalities
required from plotting to labelling. We will discuss these functionalities as we move ahead
in this tutorial.

Datetime

This library, with its two modules — datetime and calendar, provides all necessary datetime
functionality for reading, formatting and manipulating time.

These libraries are very essential to start with machine learning with any sort of data.
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Time Series — Data Processing and Visualization

Time Series is a sequence of observations indexed in equi-spaced time intervals. Hence, the
order and continuity should be maintained in any time series. The dataset we will be using is a
multi-variate time series having hourly data for approximately one year, for air quality in a
significantly polluted Italian city. The dataset can be downloaded from the link given below:
http://archive.ics.uci.edu/ml/datasets/air+quality

It is necessary to make sure that: e The time series is equally spaced, and e There are no
redundant values or gaps in it. In case the time series is not continuous, we can upsample or
downsample it.

Showing df.head()

import pandas

df = pandas.read_csv("AirQualityUCI.csv", sep =";", decimal =",") df = df.iloc[ : , 0:14]
len(df)

9471

df.head()

df.isna().sum()

df = df[df['Date].notnull()]

For preprocessing the time series, we make sure there are no NaN(NULL) values in the dataset;
if there are, we can replace them with either 0 or average or preceding or succeeding values.
Replacing is a preferred choice over dropping so that the continuity of the time series is
maintained. However, in our dataset the last few values seem to be NULL and hence dropping

will not affect the continuity.

Dropping NaN(Not-a-Number)
df.isna().sum()

df = df[df['Date'].notnull()]

df = df[df['Date'].notnull()]

Converting to datetime object
df['DateTime'] = (df.Date) + ' ' + (df.Time)
print (type(df.DateTime[0]))

import datetime

df.DateTime = df.DateTime.apply(lambda x: datetime.datetime.strptime(x,'%d/%m/%Y
%H.%M.%S"))
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print (type(df.DateTime[0]))

Showing plots
df.index = df.DateTime

import matplotlib.pyplot as plt
plt.plot(df['T"])
plt.plot(df['C6H6(GT)'])

Box-plots are another useful kind of graphs that allow you to condense a lot of information
about a dataset into a single graph. It shows the mean, 25% and 75% quartile and outliers of
one or multiple variables. In the case when number of outliers is few and is very distant from
the mean, we can eliminate the outliers by setting them to mean value or 75% quartile value.
Showing Boxplots

plt.ooxplot(df[['T",'C6H6(GT)']].values)

Time Series — Modeling

A time series has 4 components as given below:

e Level: It is the mean value around which the series varies.

e Trend: It is the increasing or decreasing behavior of a variable with time.

e Seasonality: It is the cyclic behavior of time series.

e Noise: It is the error in the observations added due to environmental factors.

Time Series Modeling Techniques

To capture these components, there are a number of popular time series modelling techniques.
This section gives a brief introduction of each technique, however we will discuss about them
in detail in the upcoming chapters:

Naive Methods

These are simple estimation techniques, such as the predicted value is given the value equal to
mean of preceding values of the time dependent variable, or previous actual value. These are
used for comparison with sophisticated modelling techniques.

Auto Regression

Auto regression predicts the values of future time periods as a function of values at previous
time periods. Predictions of auto regression may fit the data better than that of naive methods,
but it may not be able to account for seasonality.

ARIMA Model

An Auto-Regressive Integrated Moving-Average(ARIMA) models the value of a variable as
a linear function of previous values and residual errors at previous time steps of a stationary
time series. However, the real world data may be non-stationary and have seasonality, thus
Seasonal-ARIMA and Fractional-ARIMA were developed. ARIMA works on univariate time
series, to handle multiple variables VARIMA was introduced.
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Exponential Smoothing

It models the value of a variable as an exponential weighted linear function of previous
values. This statistical model can handle trend and seasonality as well.

LSTM

Long Short-Term Memory model (LSTM) is a recurrent neural network which is used for
time series to account for long term dependencies. It can be trained with large amount of
data to capture the trends in multi-variate time series.

Time Series — Parameter Calibration

Any statistical or machine learning model has some parameters which greatly influence how
the data is modeled. For example, ARIMA has p, d, q values. These parameters are to be
decided such that the error between actual values and modeled values is minimum.

Parameter calibration is said to be the most crucial and time-consuming task of model fitting.
Hence, it is very essential for us to choose optimal parameters.

Methods for Calibration of Parameters

There are various ways to calibrate parameters. This section talks about some of them in
detail.
Hit-and-try

One common way of calibrating models is hand calibration, where you start by visualizing the
time-series and intuitively try some parameter values and change them over and over until you
achieve a good enough fit. It requires a good understanding of the model we are trying. For
ARIMA model, hand calibration is done with the help of auto-correlation plot for ‘p’
parameter, partial auto-correlation plot for ‘q’ parameter and ADF-test to confirm the
stationarity of time-series and setting ‘d” parameter. We will discuss all these in detail in the
coming chapters.

Grid Search

Another way of calibrating models is by grid search, which essentially means you try building
a model for all possible combinations of parameters and select the one with minimum error.
This is time-consuming and hence is useful when number of parameters to be calibrated and
range of values they take are fewer as this involves multiple nested for loops.

Genetic Algorithm
Genetic algorithm works on the biological principle that a good solution will eventually
evolve to the most ‘optimal’ solution. It uses biological operations of mutation, cross-over

and selection to finally reach to an optimal solution.

For further knowledge you can read about other parameter optimization techniques like
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Bayesian optimization and Swarm optimization.

Time Series — Naive Methods

Naive Methods such as assuming the predicted value at time ‘t’ to be the actual value of
the variable at time ‘t-1’ or rolling mean of series, are used to weigh how well do the statistical
models and machine learning models can perform and emphasize their need. In this chapter,
let us try these models on one of the features of our time-series data. First we shall see the mean
of the ‘temperature’ feature of our data and the deviation around it. It is also useful to see
maximum and minimum temperature values. We can use the functionalities of numpy library
here.

Showing statistics

import numpy print  (‘Mean: ',numpy.mean(df[T]), '; Standard Deviation:
numpy.std(df['T']),"; \nMaximum Temperature: 'max(df[T]),; Minimum Temperature:
“min(df['T"]))

We have the statistics for all 9357 observations across equi-spaced timeline which are useful
for us to understand the data. Now we will try the first naive method, setting the predicted value
at present time equal to actual value at previous time and calculate the root mean squared
error(RMSE) for it to quantify the performance of this method.

Showing 1st naive method
Before executing following commands first install scikit-learn in notebook:

Ipip install scikit-learn

df['T'] df['T_t-1'] = df['T"].shift(1)

df_naive = df[['T",'T_t-1'1][1:]

from sklearn import metrics

from math import sqrt

df['T_rm'] = df['T"].rolling(3).mean().shift(1)

df_naive = df[['T",'T_rm']].dropna()

true = df_naive[T']

prediction = df_naive['T_t-1']

error = sqrt(metrics.mean_squared_error(true,prediction))
print (RMSE for Naive Method 1: ', error)

Let us see the next naive method, where predicted value at present time is equated to the mean
of the time periods preceding it. We will calculate the RMSE for this method too.
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Showing 2nd naive method
df['T_rm'] = df['T'].rolling(3).mean().shift(1)

df_naive = df[['T",'T_rm']].dropna()

true = df_naive['T']

prediction = df_naive['T_rm’]

error = sqrt(metrics.mean_squared_error(true,prediction))

print (RMSE for Naive Method 2: ', error)

Here, you can experiment with various number of previous time periods also called ‘lags’
you want to consider, which is kept as 3 here. In this data it can be seen that as you increase
the number of lags and error increases. If lag is kept 1, it becomes same as the naive method
used earlier.

Points to Note

[1 You can write a very simple function for calculating root mean squared error. Here, we
have used the mean squared error function from the package ‘sklearn’ and then taken its
square root.

[1 In pandas df ‘column_name’] can also be written as df.column_name, however for this
dataset df. T will not work the same as df[‘T’] because df.T is the function for transposing a
dataframe. So use only df[*“T’] or consider renaming this column before using the other

syntax.

Time Series — Auto Regression

For a stationary time series, an auto regression models sees the value of a variable at time ‘t’
as a linear function of values ‘p’ time steps preceding it. Mathematically it can be written as:

Ve =C+ P1YVe1 + P2Veot. .+ PpVip + €
Where, ‘p’ is the auto-regressive trend parameter
€t IS white noise, and
yt—1, yt—2 ...yt—p denote the value of variable at previous time periods.

The value of p can be calibrated using various methods. One way of finding the apt
value of ‘p’ is plotting the auto-correlation plot.
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Note: We should separate the data into train and test at 8:2 ratio of total data available
prior to doing any analysis on the data because test data is only to find out the accuracy of our
model and assumption is, it is not available to us until after predictions have been made. In
case of time series, sequence of data points is very essential so one should keep in mind not to
lose the order during splitting of data. An auto-correlation plot or a correlogram shows the
relation of a variable with itself at prior time steps. It makes use of Pearson’s correlation and
shows the correlations within 95% confidence interval. Let’s see how it looks like for
‘temperature’ variable of our data.

Showing ACP

split = len(df) - int(0.2*len(df))

train, test = df['T'][0:split], df['T'][split:]

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(train, lags = 100)

plt.show()

All the lag values lying outside the shaded blue region are assumed to have a correlation.

Time Series — Moving Average

For a stationary time series, a moving average model sees the value of a variable at time ‘t’ as
a linear function of residual errors from ‘q’ time steps preceding it. The residual error is
calculated by comparing the value at the time ‘t’ to moving average of the values preceding.
Mathematically it can be written as:

Ve =CH+P1Ye1 +P2Ve2t .- F+DpYep + €

Where ‘q’ is the moving-average trend parameter

€: is white noise, and et—1, et—2 ... et—qare the error terms at previous time periods.
Value of ‘q’ can be calibrated using various methods. One way of finding the apt value of ‘q’
is plotting the partial auto-correlation plot. A partial auto-correlation plot shows the relation of
a variable with itself at prior time steps with indirect correlations removed, unlike auto-
correlation plot which shows direct as well as indirect correlations, let’s see how it looks like
for ‘temperature’ variable of our data.

Showing PACP
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(train, lags = 100)

plt.show()
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A partial auto-correlation is read in the same way as a correlogram.

Time Series — ARIMA

We have already understood that for a stationary time series a variable at time ‘t’ is a linear function
of prior observations or residual errors. Hence it is time for us to combine the two and have an Auto-
regressive moving average (ARMA) model.

However, at times the time series is not stationary, i.e the statistical properties of a series like mean,
variance changes over time. And the statistical models we have studied so far assume the time series
to be stationary, therefore, we can include a pre-processing step of differencing the time series to
make it stationary. Now, it is important for us to find out whether the time series we are dealing with
is stationary or not.

Various methods to find the stationarity of a time series are looking for seasonality or trend in the
plot of time series, checking the difference in mean and variance for various time periods, Augmented
Dickey-Fuller (ADF) test, KPSS test, Hurst’s exponent etc. Let us see whether the ‘temperature’
variable of our dataset is a stationary time series or not using ADF test.

from statsmodels.tsa.stattools import adfuller
result = adfuller(train)
print('ADF Statistic: %f' % result[0])
print(‘'p-value: %f' % result[1])
print('Critical Values:")
for key, value In result[4].items()

print(\t%s: %.3f' % (key, value))
Now that we have run the ADF test, let us interpret the result. First we will compare the ADF
Statistic with the critical values, a lower critical value tells us the series is most likely non-
stationary. Next, we see the p-value. A p-value greater than 0.05 also suggests that the time
series is non-stationary. Alternatively, p-value less than or equal to 0.05, or ADF Statistic less
than critical values suggest the time series is stationary.
Hence, the time series we are dealing with is already stationary. In case of stationary time
series, we set the ‘d’ parameter as 0. We can also confirm the stationarity of time series using
Hurst exponent.
import hurst
H, c,data = hurst.compute_Hc(train)

print("H = {:.4f}, ¢ = {:.4f}".format(H,c))

The value of HO.5 shows persistent behavior or a trending series. H=0.5 shows random
walk/Brownian motion. The value of H< 0.5, confirming that our series is stationary.
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For non-stationary time series, we set ‘d’ parameter as 1. Also, the value of the autoregressive
trend parameter ‘p’ and the moving average trend parameter ‘q’, is calculated on the stationary
time series i.e by plotting ACP and PACP after differencing the time series. ARIMA Model,
which is characterized by 3 parameter, (p,d,q) are now clear to us, so let us model our time
series and predict the future values of temperature.

from statsmodels.tsa.arima_model import ARIMA

model = ARIMA(train.values, order=(5, 0, 2))

model_fit = model.fit(disp=False)

predictions = model_fit.predict(len(test))

test = pandas.DataFrame(test)

test_['predictions’] = predictions[0:1871]

plt.plot(df['T")

plt.plot(test_.predictions)

plt.show()

error = sqrt(metrics.mean_squared_error(test.values,predictions[0:1871]))

print (‘'Test RMSE for ARIMA: ', error)

Time Series — Variations of ARIMA

In the previous chapter, we have now seen how ARIMA model works, and its limitations that
it cannot handle seasonal data or multivariate time series and hence, new models were
introduced to include these features.

A glimpse of these new models is given here:

Vector Auto-Regression (VAR)

It is a generalized version of auto regression model for multivariate stationary time series.

It is characterized by ‘p’ parameter.

Vector Moving Average (VMA)

It is a generalized version of moving average model for multivariate stationary time series.

It is characterized by ‘q’ parameter.

Vector Auto Regression Moving Average (VARMA)
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It is the combination of VAR and VMA and a generalized version of ARMA model for
multivariate stationary time series. It is characterized by ‘p’ and ‘q’ parameters. Much like,
ARMA is capable of acting like an AR model by setting ‘q’ parameter as 0 and as a MA
model by setting ‘p’ parameter as 0, VARMA is also capable of acting like an VAR model by
setting ‘q’ parameter as 0 and as a VMA model by setting ‘p’ parameter as 0.

from statsmodels.tsa.statespace.varmax import VARMAX

model = VARMAX(train_multi, order = (2,1))

model_fit = model.fit()

plt.plot(train_multi['T"])

plt.plot(test_multi['T"])

plt.plot(predictions_multi.iloc[:,0:1], '--")

plt.show()

plt.plot(train_multi['C6H6(GT)])

plt.plot(test_ multi['C6H6(GT)'])

plt.plot(predictions_multi.iloc[:,1:2], '--)

plt.show()

The above code shows how VARMA model can be used to model multivariate time series,
although this model may not be best suited on our data.

VARMA with Exogenous Variables (VARMAX)

It is an extension of VARMA model where extra variables called covariates are used to
model the primary variable we are interested it.

Seasonal Auto Regressive Integrated Moving Average (SARIMA)

This is the extension of ARIMA model to deal with seasonal data. It divides the data into
seasonal and non-seasonal components and models them in a similar fashion. It is
characterized by 7 parameters, for non-seasonal part (p,d,q) parameters same as for ARIMA
model and for seasonal part (P,D,Q,m) parameters where ‘m’ is the number of seasonal
periods and P,D,Q are similar to parameters of ARIMA model. These parameters can be
calibrated using grid search or genetic algorithm.
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SARIMA with Exogenous Variables (SARIMAX)

This is the extension of SARIMA model to include exogenous variables which help us to
model the variable we are interested in.

It may be useful to do a co-relation analysis on variables before putting them as exogenous

variables.
from scipy.stats.stats import pearsonr

x=train_multi['T"].values

y=train_multi['C6H6(GT)"].values

corr, p = pearsonr(x,y)

print (‘Corelation Coefficient =', corr,"\nP-Value =',p)

Pearson’s Correlation shows a linear relation between 2 variables, to interpret the results, we
first look at the p-value, if it is less that 0.05 then the value of coefficient is significant, else the
value of coefficient is not significant. For significant p-value, a positive value of correlation
coefficient indicates positive correlation, and a negative value indicates a negative correlation.
Hence, for our data, ‘temperature’ and ‘C6H6’ seem to have a highly positive correlation.
Therefore, we will be modelling temperature and will give ‘C6H6’ as exogenous variable to

SARIMAX model.

from statsmodels.tsa.statespace.sarimax import SARIMAX

model = SARIMAX(X, exog = vy, order = (2, 0, 2), seasonal order = (2, 0, 1,
4),enforce_stationarity=False,

enforce_invertibility = False)

model_fit = model.fit(disp = False)

y =test multi[C6H6(GT)"].values
predicted = model_fit.predict(exog=y )

test_ multi_ = pandas.DataFrame(test)

test_ multi_['predictions’] = predicted[0:1871]
plt.plot(train_multi['T'])
plt.plot(test_multi_[T'])

plt.plot(test_multi_.predictions, '--)
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The predictions here seem to take larger variations now as opposed to univariate ARIMA
modelling. Needless to say, SARIMAX can be used as an ARX, MAX, ARMAX or ARIMAX
model by setting only the corresponding parameters to non-zero values.

Fractional Auto Regressive Integrated Moving Average (FARIMA) At times, it may happen
that our series is not stationary, yet differencing with ‘d’ parameter taking the value 1 may
over-difference it. So, we need to difference the time series using a fractional value.

In the world of data science there is no one superior model, the model that works on your data
depends greatly on your dataset. Knowledge of various models allows us to choose one that
work on our data and experimenting with that model to achieve the best results. And results
should be seen as plot as well as error metrics, at times a small error may also be bad, hence,
plotting and visualizing the results is essential.

Day-02:Time Series — Exponential Smoothing

Simple Exponential Smoothing Exponential Smoothing is a technigue for smoothing univariate time-
series by assigning exponentially decreasing weights to data over a time period. Mathematically, the
value of variable at time ‘t+1’ given value at time t, y_(t+1|t) is defined as:

Ves1t = @Y + a(l—a)y,—y +a(l - a)*yp+...+y

where, 0< a <1 is the smoothing parameter, and y1,...,yt are previous values of network traffic at
times 1, 2, 3, ... ,t. This is a simple method to model a time series with no clear trend or seasonality.
But exponential smoothing can also be used for time series with trend and seasonality. Triple
Exponential Smoothing Triple Exponential Smoothing (TES) or Holt's Winter method, applies
exponential smoothing three times - level smoothing It , trend smoothing bt , and seasonal
smoothing st , with @, f * and y as smoothing parameters with ‘m’ as the frequency of the
seasonality, i.e. the number of seasons in a year. According to the nature of the seasonal component,
TES has two categories: ® Holt-Winter's Additive Method: When the seasonality is additive in nature. o
Holt-Winter’s Multiplicative Method: When the seasonality is multiplicative in nature. For non-
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seasonal time series, we only have trend smoothing and level smoothing, which is called Holt’s Linear
Trend Method. Let’s try applying triple exponential smoothing on our data.

from statsmodels.tsa.holtwinters import ExponentialSmoothing
model = ExponentialSmoothing(train.values )

model_fit = model.fit()

predictions_ = model_fit.predict(len(test))

plt.plot(test.values)

plt.plot(predictions_[1:1871])
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Here, we have trained the model once with training set and then we keep on making predictions.
A more realistic approach is to re-train the model after one or more time step(s). As we get the
prediction for time ‘t+1° from training data ‘til time ‘t’, the next prediction for time ‘t+2’ can
be made using the training data ‘til time ‘t+1° as the actual value at ‘t+1” will be known then.
This methodology of making predictions for one or more future steps and then re-training the
model is called rolling forecast or walk forward validation.

Time Series — Walk Forward Validation

In time series modelling, the predictions over time become less and less accurate and hence it
is a more realistic approach to re-train the model with actual data as it gets available for further
predictions. Since training of statistical models are not time consuming, walk-forward
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validation is the most preferred solution to get most accurate results. Let us apply one step walk
forward validation on our data and compare it with the results we got earlier.

import numpy
prediction =[]
data = train.values
for t in test.values:
model = (ExponentialSmoothing(data).fit())
y = model.predict()
prediction.append(y[0])
data = numpy.append(data, t)
test = pandas.DataFrame(test)
test_['predictionswf'] = prediction
plt.plot(test_['T'])
plt.plot(test_.predictionswf, '--")

plt.show()
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error = sqrt(metrics.mean_squared_error(test.values,prediction))

print (‘Test RMSE for Triple Exponential Smoothing with Walk-Forward Validation: ', error)
We can see that our model performs significantly better now. In fact, the trend is followed so
closely that on the plot predictions are overlapping with the actual values. You can try applying
walk-forward validation on ARIMA models too.

Day-03:Time Series — LSTM Model

Now, we are familiar with statistical modelling on time series, but machine learning is all

the rage right now, so it is essential to be familiar with some machine learning models as

well. We shall start with the most popular model in time series domain — Long Short-term

Memory model.

LSTM is a class of recurrent neural network. So before we can jump to LSTM, it is essential

to understand neural networks and recurrent neural networks.

Neural Networks

An artificial neural network is a layered structure of connected neurons, inspired by

biological neural networks. It is not one algorithm but combinations of various algorithms
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which allows us to do complex operations on data.

Recurrent Neural Networks

It is a class of neural networks tailored to deal with temporal data. The neurons of RNN

have a cell state/memory, and input is processed according to this internal state, which is

achieved with the help of loops with in the neural network. There are recurring module(s)

of ‘tanh’ layers in RNNs that allow them to retain information. However, not for a long

time, which is why we need LSTM models.

LSTM

It is special kind of recurrent neural network that is capable of learning long term

dependencies in data. This is achieved because the recurring module of the model has a

combination of four layers interacting with each other.

An LSTM module has a cell state and three gates which provides them with the power to
selectively learn, unlearn or retain information from each of the units. The cell state in LSTM
helps the information to flow through the units without being altered by allowing only a few
linear interactions. Each unit has an input, output and a forget gate which can add or remove
the information to the cell state. The forget gate decides which information from the previous
cell state should be forgotten for which it uses a sigmoid function. The input gate controls the
information flow to the current cell state using a point-wise multiplication operation of
‘sigmoid’ and ‘tanh’ respectively. Finally, the output gate decides which information should
be passed on to the next hidden state. Now that we have understood the internal working of
LSTM model, let us implement it. To understand the implementation of LSTM, we will start
with a simple example — a straight line. Let us see, if LSTM can learn the relationship of a
straight line and predict it. First let us create the dataset depicting a straight line.

X = numpy.arange (1,500,1)

y=04*x+30

plt.plot(x,y)

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):]

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):]

train = numpy.array(list(zip(trainx,trainy)))

test = numpy.array(list(zip(trainx,trainy)))
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def create_dataset(n_X, look_back):
dataX, dataY =], []
for i in range(len(n_X)-look_back):
a =n_X[i:(i+look_back), ]
dataX.append(a)
dataY.append(n_X[i + look_back, ])
return numpy.array(dataX), numpy.array(dataY)
look back =1
trainx,trainy = create_dataset(train, look_back)
testx,testy = create_dataset(test, look_back)
trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2))

testx = numpy.reshape(testx, (testx.shape[0], 1, 2))

Now we will train our model

Small batches of training data are shown to network, one run of when entire training data is
shown to the model in batches and error is calculated is called an epoch. The epochs are to be
run ‘til the time the error is reducing.

Note: First Install Keras and Tensorflow libaries

Ipip install keras

lanaconda create -n tensorflow python=3.11

lactivate tensorflow

Ipip install --ignore-installed --upgrade tensorflow

from keras.models import Sequential

from keras.layers import LSTM, Dense

model = Sequential()

model.add(LSTM(256, return_sequences=True, input_shape=(trainx.shape[1], 2)))
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model.add(LSTM(128,input_shape=(trainx.shape[1], 2)))

model.add(Dense(2))

model.compile(loss="'mean_squared_error', optimizer = ‘adam’)

model.fit(trainx, trainy, epochs=2000, batch_size=10, verbose=2, shuffle=False)
model.save_weights('LSTMBasic1.h5')

Now, we should try and model a sine or cosine wave in a similar fashion. You can run the

code given below and play with the model parameters to see how the results change.

model.load_weights('LSTMBasic1.h5")

predict = model.predict(testx)

Now let’s see what our predictions look like.

X = numpy.arange (1,500,1)

y = numpy.sin(x)

plt.plot(x,y)

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):]
trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):]
train = numpy.array(list(zip(trainx,trainy)))

test = numpy.array(list(zip(trainx,trainy)))

look back =1

trainx,trainy = create_dataset(train, look_back)
testx,testy = create_dataset(test, look back)

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2))
testx = numpy.reshape(testx, (testx.shape[0], 1, 2))
model = Sequential()

model.add(LSTM(512, return_sequences = True, input_shape = (trainx.shape[1],

2)))
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model.add(LSTM(256,input_shape = (trainx.shape[1], 2)))
model.add(Dense(2))

model.compile(loss = 'mean_squared_error', optimizer = ‘adam’)
model.fit(trainx, trainy, epochs = 2000, batch_size = 10, verbose = 2, shuffle
= False)

model.save_weights('LSTMBasic2.h5")
model.load_weights('LSTMBasic2.h5")

predict = model.predict(testx)

plt.plot(trainx.reshape(398,2)[:,0:1], trainx.reshape(398,2)[:,1:2])

plt.plot(predict[:,0:1], predict|[:,1:2])

Day-04: Time Series — Error Metrics

It is important for us to quantify the performance of a model to use it as a feedback and
comparison. In this tutorial we have used one of the most popular error metric root mean
squared error. There are various other error metrics available. This chapter discusses them
in brief.

Mean Square Error

It is the average of square of difference between the predicted values and true values.
Sklearn provides it as a function. It has the same units as the true and predicted values

squared and is always positive.

IO,
MSE == (v~ ¥0)
t=1
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Where y’t is the predicted value,
yt is the actual value, and
n is the total number of values in test set.
It is clear from the equation that MSE is more penalizing for larger errors, or the outliers.
Root Mean Square Error
It is the square root of the mean square error. It is also always positive and is in the range

of the data.

Root Mean Square Error

It is the square root of the mean square error. It is also always positive and is in the range of
the data.

n
1
RMSE = |~ (% = %)’
t=1

Where, y’t is predicted value
Yt is actual value, and
n is total number of values in test set.

It is in the power of unity and hence is more interpretable as compared to MSE. RMSE is
also more penalizing for larger errors. We have used RMSE metric in our tutorial.

Mean Absolute Error
It is the average of absolute difference between predicted values and true values. It has the
same units as predicted and true value and is always positive.

t=n

1
MAE == "|y; — i
t=1
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Where, y’t is predicted value,
ye is actual value and n is total number of values in test set.

However, the disadvantage of using this error is that the positive error and negative errors
can offset each other. Hence mean absolute percentage error is used.

Mean Absolute Percentage Error

It is the percentage of average of absolute difference between predicted values and
true values, divided by the true value.

n
1 r
MAPE = —Z e . Vil « 100 %
t
=1

Where y't is predicted value
yt is actual value, and
n is total number of values in test set.

Day-05: Time Series — Applications

We discussed time series analysis in this tutorial, which has given us the understanding that time series
models first recognize the trend and seasonality from the existing observations and then forecast a
value based on this trend and seasonality. Such analysis is useful in various fields such as:

o Financial Analysis: It includes sales forecasting, inventory analysis, stock market analysis, price
estimation.

o Weather Analysis: It includes temperature estimation, climate change, seasonal shift
recognition, weather forecasting.

o Network Data Analysis: It includes network usage prediction, anomaly or intrusion detection,
predictive maintenance.

e Healthcare Analysis: It includes census prediction, insurance benefits prediction, patient
monitoring.

Time Series — Further Scope

Machine learning deals with various kinds of problems. In fact, almost all fields have a scope to be
automatized or improved with the help of machine learning. A few such problems on which a great deal of
work is being done are given below.

Time Series Data

This is the data which changes according to time, and hence time plays a crucial role in it,
which we largely discussed in this tutorial.
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Non-Time Series Data
It is the data independent of time, and a major percentage of ML problems are on non time series
data. For simplicity, we shall categorize it further as:

e Numerical Data: Computers, unlike humans, only understand numbers, so all kinds of data
ultimately is converted to numerical data for machine learning, for example, image data is
converted to (r,b,g) values, characters are converted to ASCII codes or words are indexed to
numbers, speech data is converted to mfcc files containing numerical data.

e Image Data: Computer vision has revolutionized the world of computers, it has

e various applications in the field of medicine, satellite imaging etc.

e Text Data: Natural Language Processing (NLP) is used for text classification, paraphrase
detection and language summarization. This is what makes Google and Facebook smart.

e Speech Data: Speech Processing involves speech recognition and sentimental understanding.
It plays a crucial role in imparting to computers human-like qualities.

Now, Stdents are required to explore the projects related to time series analysis and forecasting and
presents their proposal for further discussion and refinement.
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Week 10 & 11: Data Analysis Projects

In these two weeks there will be discussion and working on Advanced Data Analysis
Techniques and working on project in group of (2-3) students. Topics listed below will be
discussed based on the profile of the students, learning and coverage. The following topics will
be discussed, and notes will be shared with students in soft format. The projects will be
developed using google labs for collaborative working of groups.

Advanced Analytics is the autonomous or semi-autonomous examination of data or content using
sophisticated techniques and tools, typically beyond those of traditional business intelligence (Bl), to
discover deeper insights, make predictions, or generate recommendations.

Advanced analytic techniques include data/text mining, machine learning, pattern matching,

forecasting, visualization, semantic analysis, sentiment analysis, network and cluster analysis,
multivariate statistics, graph analysis, simulation, complex event processing, and neural networks.
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List of resources & Acknoledgements:

Starting Out with Python[4th Globa IED] by Tony Gaddis

Python for Data Analysis by Wes McKinney

Python Data Science Handbook, Essential Tools for Working with Data by Beijing Boston
Data Science by Lillian Pierson 3rd Edition

Python Data Visualization Cookbook by lgor Milovanovic¢

Natural Language Processing with Python by Steven Bird, Ewan Klein, and Edward Loper
https://realpython.com/python-data-visualization-bokeh/
https://github.com/osanchez2323/Portfolio/blob/master/NBA%20Draft%20Analysis/

. https://docs.bokeh.org/en/latest/

10. https://pandas.pydata.org/

11. https://matplotlib.org/

12. https://dash.plotly.com/
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