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Week 1: Introduction to Data Analysis and Reporting 

Day 01 – INTRODUCTION 

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of 
discovering useful information, informing conclusions, and supporting decision-making. Data analysis 
has multiple facets and approaches, encompassing diverse techniques under a variety of names, and 
is used in different business, science, and social science domains. In today's business world, data 
analysis plays a role in making decisions more scientific and helping businesses operate more 
effectively. 

Basics of data analysis and reporting 

A data analysis report is a type of business report in which you present quantitative and qualitative 

data to evaluate your strategies and performance. Based on this data, you give recommendations 

for further steps and business decisions while using the data as evidence that backs up your 

evaluation. 

Today, data analysis is one of the most important elements of business intelligence strategies as 

companies have realized the potential of having data-driven insights at hand to help them make 

data-driven decisions. 

What Is Data Science? 

 

The “data science” is fundamentally an interdisciplinary subject. Data science comprises three distinct 
and overlapping areas: the skills of a statistician who knows how to model and summarize datasets 
(which are growing ever larger); the skills of a computer scientist who can 
design and use algorithms to efficiently store, process, and visualize this data; and the domain 
expertise—what we might think of as “classical” training in a subject—necessary both to formulate 
the right questions and to put their answers in context. 
Defining data science 
If science is a systematic method by which people study and explain domainspecific phenomena that 
occur in the natural world, you can think of data science as the scientific domain that’s dedicated to 
knowledge discovery via data analysis. With respect to data science, the term domain-specific refers 
to the industry sector or subject matter domain that data science methods are being used to explore. 
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Data scientists use mathematical techniques and algorithmic approaches to derive solutions to 
complex business and scientific problems. Data science practitioners use its predictive methods to 
derive insights that are otherwise unattainable. In business and in science, data science methods can 
provide more robust decisionmaking capabilities: 
Using data science skills, you can do cool things like the following: 
»»Use machine learning to optimize energy usage and lower corporate carbon footprints. 
»»Optimize tactical strategies to achieve goals in business and science. 
»»Predict for unknown contaminant levels from sparse environmental datasets. 
»»Design automated theft- and fraud-prevention systems to detect anomalies and trigger alarms 
based on algorithmic results. 
»»Craft site-recommendation engines for use in land acquisitions and real estate development. 
»»Implement and interpret predictive analytics and forecasting techniques for net increases in 
business value. 
 

Why Python? 

Python has emerged over the last couple of decades as a first-class tool for scientific computing tasks, 
including analyzing and visualizing large datasets. This may have surprised early proponents of the 
Python language: the language itself was not explicitly designed with data analysis or scientific 
computing in mind. 
The usefulness of Python for data science stems primarily from the large and active ecosystem of third-
party packages: NumPy for manipulation of homogeneous array-based data, Pandas for manipulation 
of heterogeneous and labeled data, SciPy for common scientific computing tasks, Matplotlib for 
publication-quality visualizations, IPython for interactive execution and sharing of code, Scikit-Learn 
for machine learning, and many more.  
 

What is Artificial Intelligence? 
Artificial intelligence is the simulation of human intelligence processes by machines, especially 

computer systems. Specific applications of AI include expert systems, natural language processing, 

speech recognition and machine vision. 

What is Data Science & Machine Learning? 
Data science is a field that studies data and how to extract meaning from it, whereas machine 

learning is a field devoted to understanding and building methods that utilize data to improve 
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performance or inform predictions. Machine learning is a branch of artificial intelligence

 

Different phases of a typical Analytics/Data Science projects and role of Python 

Data Analytics Life Cycle Phases 

• Phase 1: Data Discovery and Formation. 

• Phase 2: Data Preparation and Processing. 

• Phase 3: Design a Model. 

• Phase 4: Model Building. 

• Phase 5: Result Communication and Publication. 

• Phase 6: Measuring Effectiveness. 

 

Regression vs. Classification 

Regression 

In statistical modeling, regression analysis is a set of statistical processes for estimating the 

relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a 

'label' in machine learning parlance) and one or more independent variables (often called 'predictors', 

'covariates', 'explanatory variables' or 'features'). The most common form of regression analysis is 

linear regression, in which one finds the line (or a more complex linear combination) that most closely 

fits the data according to a specific mathematical criterion. For example, the method of ordinary least 

squares computes the unique line (or hyperplane) that minimizes the sum of squared differences 

between the true data and that line (or hyperplane). For specific mathematical reasons (see linear 

regression), this allows the researcher to estimate the conditional expectation (or population average 

value) of the dependent variable when the independent variables take on a given set of values. Less 

common forms of regression use slightly different procedures to estimate alternative location 

parameters (e.g., quantile regression or Necessary Condition Analysis) or estimate the conditional 

expectation across a broader collection of non-linear models (e.g., nonparametric regression). 

 

Regression analysis is primarily used for two conceptually distinct purposes. First, regression analysis 

is widely used for prediction and forecasting, where its use has substantial overlap with the field of 
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machine learning. Second, in some situations regression analysis can be used to infer causal 

relationships between the independent and dependent variables. Importantly, regressions by 

themselves only reveal relationships between a dependent variable and a collection of independent 

variables in a fixed dataset. To use regressions for prediction or to infer causal relationships, 

respectively, a researcher must carefully justify why existing relationships have predictive power for a 

new context or why a relationship between two variables has a causal interpretation. The latter is 

especially important when researchers hope to estimate causal relationships using observational data. 

Classification 

Classification is a process related to categorization, the process in which ideas and objects are 

recognized, differentiated and understood. Classification is the grouping of related facts into classes. 

It may also refer to a process which brings together like things and separates unlike things. 

 

Day 02 -PYTHON ESSENTIALS 

Installing Python and the suite of libraries that enable scientific computing is straightforward. This 

section will outline some of the considerations to keep in mind when setting up your computer. 

Though there are various ways to install Python, the one I would suggest for use in data science is the 

Anaconda distribution, which works similarly whether you use Windows, Linux, or Mac OS X. The 

Anaconda distribution comes in two flavors: 

Miniconda gives you the Python interpreter itself, along with a command-line tool called 

conda that operates as a cross-platform package manager geared toward Python packages, 

similar in spirit to the apt or yum tools that Linux users might be familiar with. 

Anaconda includes both Python and conda, and additionally bundles a suite of other 

preinstalled packages geared toward scientific computing. Because of the size of this bundle, 

expect the installation to consume several gigabytes of disk space. 

 

Introduction to the installation of Anaconda 

Anaconda is a reasonably sophisticated installer. It supports installation from local and remote sources 

such as CDs and DVDs, images stored on a hard drive, NFS, HTTP, and FTP. Installation can be scripted 

with kickstart to provide a fully unattended installation that can be duplicated on scores of machines. 

It can also be run over VNC on headless machines. A variety of advanced storage devices including 

LVM, RAID, iSCSI, and multipath are supported from the partitioning program. Anaconda provides 

advanced debugging features such as remote logging, access to the python interactive debugger, and 

remote saving of exception dumps. 

Introduction to Python Editors & IDE's (Anaconda, pycharm, Jupyter etc…) 

Most data scientists and software developers prefer Python because of the various functionalities 

provided by Python and the best among those is its open-source feature. Anyone all over the globe 

can create their own package and make it public for others to use, hence improving the python 

backend daily.  

 

There are various IDEs in the market to select from such as Spyder, Atom, Pycharm, Pydev etc. Data 

scientists prefer Spyder among all the different IDEs available and the driving fact behind this is that 

Spyder was built specifically for data science. Its interface allows the user to scroll through various 

data variables and also ready to use online help option. The output of the code can be viewed in the 
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python console on the same screen. You can work on different scripts at a moment and then try them 

out one by one in the same console or different as per your choice all the variables used will be stored 

in the variable explorer tab. It also provides an option to view graphs and visualizations in the plot 

window. You can also cover the basics concepts by taking up free Syder python and also check 

out Python Libraries for Machine Learning from Great Learning Academy. 

Understand Jupyter notebook & Customize Settings 

The notebook extends the console-based approach to interactive computing in a qualitatively new 

direction, providing a web-based application suitable for capturing the whole computation process: 

developing, documenting, and executing code, as well as communicating the results. The Jupyter 

notebook combines two components: 

 

Overview of Python- Starting with Python 

The Python interpreter can run Python programs that are saved in files or interactively execute Python 

statements that are typed at the keyboard. Python comes with a program named IDLE that simplifies 

the process of writing, executing, and testing programs. 

 

Installing Python 

Before you can try any of the programs shown in this book, or write any programs of your own, you 
need to make sure that Python is installed on your computer and properly configured. If you are 
working in a computer lab, this has probably been done already. If you are using your own computer, 
you can follow the instructions in Appendix A to download and install Python. 

The Python Interpreter 

You learned earlier that Python is an interpreted language. When you install the Python language on 
your computer, one of the items that is installed is the Python interpreter. The Python interpreter is a 
program that can read Python programming statements and execute them. (Sometimes, we will refer 
to the Python interpreter simply as the interpreter.) You can use the interpreter in two modes: 
interactive mode and script mode. In interactive mode, the interpreter waits for you to type Python 
statements on the keyboard. Once you type a statemen t, the interpreter executes it and then waits 
for you to type another statement. In script mode, the interpreter reads the contents of a file that 
contains Python statements. Such a file is known as a Python program or a Python script. The 
interpreter executes each statement in the Python program as it reads it. 

Interactive Mode 

Once Python has been installed and set up on your system, you start the interpreter in interactive 
mode by going to the operating system’s command line and typing the following command: 

python 
If you are using Windows, you can alternatively type Python in the Windows search box. In the search 
results, you will see a program named something like Python 3.11. (The “ 3.11” is the version of Python 
that is installed. At the time this is being written, Python 3.11 is the latest version.) Clicking this item 
will start the Python interpreter in interactive mode. 
When the Python interpreter is running in interactive mode, it is commonly called the Python shell. 
 
The >>> that you see is a prompt that indicates the interpreter is waiting for you to type  a Python 
statement. Let’s try it out. One of the simplest things that you can do in Python is print a message on 
the screen. For example, the following statement prints the message Python programming is fun! on 
the screen:  

print('Python programming is fun!') 
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 You can think of this as a command that you are sending to the Python interpreter. If you type 
the statement exactly as it is shown, the message Python programming is fun! Is printed on the screen. 
Here is an example of how you type this statement at the interpreter’s 
prompt: 

>>> print('Python programming is fun!')  Press Enter 
After typing the statement, you press the Enter key, and the Python interpreter executes the 
statement, as shown here: 
>>> print('Python programming is fun!') Enter 
Python programming is fun! 
 
 

Launching the Jupyter Notebook 

The Jupyter notebook is a browser-based graphical interface to the IPython shell, and builds 

on it a rich set of dynamic display capabilities. As well as executing Python/ IPython 

statements, the notebook allows the user to include formatted text, static and dynamic 

visualizations, mathematical equations, JavaScript widgets, and much more. Furthermore, 

these documents can be saved in a way that lets other people open them and execute the 

code on their own systems. 

Though the IPython notebook is viewed and edited through your web browser win‐ 

dow, it must connect to a running Python process in order to execute code. To start 

this process (known as a “kernel”), run the following command in your system shell: 

$ jupyter notebook 

This command will launch a local web server that will be visible to your browser. It 

immediately spits out a log showing what it is doing; that log will look something like this: 

 

Upon issuing the command, your default browser should automatically open and navigate 

to the listed local URL; the exact address will depend on your system. If the browser does 

not open automatically, you can open a window and manually open this address 

(http://localhost:8888/ in this example). 

 

Help and Documentation in IPython 

If you read no other section in this chapter, read this one: I find the tools discussed here to 
be the most transformative contributions of IPython to my daily workflow. 

When a technologically minded person is asked to help a friend, family member, or colleague 

with a computer problem, most of the time it’s less a matter of knowing the answer as much 

as knowing how to quickly find an unknown answer. In data science it’s the same: searchable 

web resources such as online documentation, mailing-list threads, and Stack Overflow 

answers contain a wealth of information, even (espe‐ cially?) if it is a topic you’ve found 

yourself searching before. Being an effective prac‐ titioner of data science is less about 

memorizing the tool or command you should use for every possible situation, and more 

about learning to effectively find the informa‐ tion you don’t know, whether through a web 

search engine or another means. 

One of the most useful functions of IPython/Jupyter is to shorten the gap between the user 

and the type of documentation and search that will help them do their work effectively. 

While web searches still play a role in answering complicated questions, an amazing amount 

of information can be found through IPython alone. Some examples of the questions IPython 
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can help answer in a few keystrokes: 

• How do I call this function? What arguments and options does it have? 

• What does the source code of this Python object look like? 

• What is in this package I imported? What attributes or methods does this object have? 

Here we’ll discuss IPython’s tools to quickly access this information, namely the ? character 
to explore documentation, the ?? characters to explore source code, and the Tab key for 
autocompletion. 

Accessing Documentation with ? 

The Python language and its data science ecosystem are built with the user in mind, 

and one big part of that is access to documentation. Every Python object contains 

the 

reference to a string, known as a docstring, which in most cases will contain a concise 

summary of the object and how to use it. Python has a built-in help() function that can access 

this information and print the results. For example, to see the documenta‐ tion of the built-

in len function, you can do the following: 

In [1]: help(len) 

Help on built-in function len in module builtins: 

 
len(...) 

len(object) -> integer 

 
Return the number of items of a sequence or mapping. 

Depending on your interpreter, this information may be displayed as inline text, or 

in some separate pop-up window. 

Because finding help on an object is so common and useful, IPython introduces the ? 
character as a shorthand for accessing this documentation and other relevant information: 

In [2]: len? 

Type:
 builtin_function_or_meth
od String form: <built-in function len> 
Namespace: Python builtin 

Docstring: 

len(object) -> integer 

 
Return the number of items of a sequence or mapping. 

Accessing Source Code with ?? 

Because the Python language is so easily readable, you can usually gain another level of 

insight by reading the source code of the object you’re curious about. IPython pro‐ vides a 

shortcut to the source code with the double question mark (??): 

In [8]: square?? Type:
 function 
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String form: <function square at 
0x103713cb0> Definition: square(a) 

Source: 

def square(a): 

"Return the square of a" 

return a ** 2 

For simple functions like this, the double question mark can give quick insight 

into the under-the-hood details. 

If you play with this much, you’ll notice that sometimes the ?? suffix doesn’t display any 
source code: this is generally because the object in question is not implemented in Python, 

but in C or some other compiled extension language. If this is the case, the ?? suffix gives the 
same output as the ? suffix. You’ll find this particularly with many of Python’s built-in objects and 
types, for example len from above: 

In [9]: len?? 

Type:
 builtin_function_or_meth
od String form: <built-in function len> 
Namespace: Python builtin 

Docstring: 

len(object) -> integer 

 
Return the number of items of a sequence or mapping. 

Using ? and/or ?? gives a powerful and quick interface for finding information about 
what any Python function or module does. 

Exploring Modules with Tab Completion 

IPython’s other useful interface is the use of the Tab key for autocompletion and exploration 

of the contents of objects, modules, and namespaces. In the examples that follow, we’ll use 

<TAB> to indicate when the Tab key should be pressed. 

Tab completion of object contents 

Every Python object has various attributes and methods associated with it. Like with the help 

function discussed before, Python has a built-in dir function that returns a list of these, but 

the tab-completion interface is much easier to use in practice. To see a list of all available 

attributes of an object, you can type the name of the object fol‐ lowed by a period (.) 

character and the Tab key: 

In [10]: L.<TAB> 
L.appen
d 

L.copy L.extend L.insert L.remove L.sort 

L.clear L.coun
t 

L.index L.pop L.reverse 

To narrow down the list, you can type the first character or several characters of 

the name, and the Tab key will find the matching attributes and methods: 

In [10]: L.c<TAB> 

L.clear L.copy L.count 
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In [10]: L.co<TAB> 

L.copy L.count 

If there is only a single option, pressing the Tab key will complete the line for you. 

For example, the following will instantly be replaced with L.count: 

In [10]: L.cou<TAB> 

Though Python has no strictly enforced distinction between public/external attributes and 

private/internal attributes, by convention a preceding underscore is used to denote such 

methods. For clarity, these private methods and special methods are omitted from the list 

by default, but it’s possible to list them by explicitly typing the underscore: 

In [10]: L._<TAB>L.     add L. class    

L.     gt L. hash   L. reduce    

L. reduce_ex    

For brevity, we’ve only shown the first couple lines of the output. Most of these are 

Python’s special double-underscore methods (often nicknamed “dunder” methods). 

Tab completion when importing 

Tab completion is also useful when importing objects from packages. Here we’ll use 

it to find all possible imports in the itertools package that start with co: 

In [10]: from itertools import co<TAB> 
combinations
 compres
s combinations_with_replacement 
count 

Similarly, you can use tab completion to see which imports are available on your sys‐ tem 

(this will change depending on which third-party scripts and modules are visible to your 

Python session): 

In [10]: import <TAB> 

Display all 399 possibilities? (y or n) 
Crypto 
Cython 

dis 
distutils 

py_compi
le 
pyclbr 

... ... ... 
difflib pwd zmq 

 
In [10]: import h<TAB> 

hashlib hmac http 

heapq html husl 

(Note that for brevity, I did not print here all 399 importable packages and modules 

on my system.) 

Beyond tab completion: Wildcard matching 

Tab completion is useful if you know the first few characters of the object or attribute you’re 

looking for, but is little help if you’d like to match characters at the middle or end of the 

word. For this use case, IPython provides a means of wildcard matching for names using 

the * character. 

For example, we can use this to list every object in the namespace that ends with 
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Warning: 

In [10]: *Warning? 

BytesWarning RuntimeWarning 

DeprecationWarning SyntaxWarning 

FutureWarning UnicodeWarning 

ImportWarning UserWarning 
PendingDeprecationWarning Warning 
ResourceWarning 

Notice that the * character matches any string, including the empty string. 

Similarly, suppose we are looking for a string method that contains the word find 
somewhere in its name. We can search for it this way: 

Keyboard Shortcuts in the IPython Shell 

If you spend any amount of time on the computer, you’ve probably found a use for keyboard 

shortcuts in your workflow. Most familiar perhaps are Cmd-C and Cmd-V (or Ctrl-C and Ctrl-

V) for copying and pasting in a wide variety of programs and sys‐ tems. Power users tend to 

go even further: popular text editors like Emacs, Vim, and others provide users an incredible 

range of operations through intricate combina‐ tions of keystrokes. 

The IPython shell doesn’t go this far, but does provide a number of keyboard short‐ cuts for 

fast navigation while you’re typing commands. These shortcuts are not in fact provided by 

IPython itself, but through its dependency on the GNU Readline library: thus, some of the 

following shortcuts may differ depending on your system configu‐ ration. Also, while some 

of these shortcuts do work in the browser-based notebook, this section is primarily about 

shortcuts in the IPython shell. 

Once you get accustomed to these, they can be very useful for quickly performing 

certain commands without moving your hands from the “home” keyboard 

position. If you’re an Emacs user or if you have experience with Linux-style shells, 

the follow‐ ing will be very familiar. We’ll group these shortcuts into a few 

categories: navigation shortcuts, text entry shortcuts, command history shortcuts, and 

miscellaneous shortcuts. 

Navigation Shortcuts 

While the use of the left and right arrow keys to move backward and forward in the line is 

quite obvious, there are other options that don’t require moving your hands from the 

“home” keyboard position: 

 
Ctrl-a Move cursor to the beginning of the line 

Ctrl-e Move cursor to the end of the line 

Ctrl-b (or the left arrow key)  Move cursor back one character 

Ctrl-f (or the right arrow key) Move cursor forward one character 

Text Entry Shortcuts 

While everyone is familiar with using the Backspace key to delete the previous char‐ acter, 

Keystroke Action 
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reaching for the key often requires some minor finger gymnastics, and it only deletes a single 

character at a time. In IPython there are several shortcuts for remov‐ ing some portion of 

the text you’re typing. The most immediately useful of these are the commands to delete 

entire lines of text. You’ll know these have become second nature if you find yourself using 

a combination of Ctrl-b and Ctrl-d instead of reach‐ ing for the Backspace key to delete the 

previous character! 

 
  Keystroke Action  

Backspace key Delete previous character in line 

Ctrl-d Delete next character in line 

Ctrl-k Cut text from cursor to end of line 

Ctrl-u Cut text from beginning fo line to cursor 

Ctrl-y Yank (i.e., paste) text that was previously cut 

Ctrl-t Transpose (i.e., switch) previous two characters 

 
Command History Shortcuts 

Perhaps the most impactful shortcuts discussed here are the ones IPython provides for 

navigating the command history. This command history goes beyond your cur‐ rent IPython 

session: your entire command history is stored in a SQLite database in your IPython profile 

directory. The most straightforward way to access these is with the up and down arrow keys 

to step through the history, but other options exist as well: 

 
  Keystroke Action  

Ctrl-p (or the up arrow key) Access previous command in history 

Ctrl-n (or the down arrow key) Access next command in history 

Ctrl-r Reverse-search through command history 

 
The reverse-search can be particularly useful. Recall that in the previous section we defined 

a function called square. Let’s reverse-search our Python history from a new IPython shell 

and find this definition again. When you press Ctrl-r in the IPython terminal, you’ll see the 

following prompt: 

In [1]: 

(reverse-i-search)`': 

If you start typing characters at this prompt, IPython will auto-fill the most recent command, 

if any, that matches those characters: 

In [1]: 

(reverse-i-search)`sqa': square?? 

At any point, you can add more characters to refine the search, or press Ctrl-r again to 

search further for another command that matches the query. If you followed along in the 

previous section, pressing Ctrl-r twice more gives: 
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In [1]: 

(reverse-i-search)`sqa': def square(a): 

"""Return the square of a""" 

return a ** 2 

Once you have found the command you’re looking for, press Return and the search will end. 

We can then use the retrieved command, and carry on with our session: 

In [1]: def square(a): 

"""Return the square of a""" 

return a ** 2 

 
In [2]: square(2) 

Out[2]: 4 

Note that you can also use Ctrl-p/Ctrl-n or the up/down arrow keys to search through 

history, but only by matching characters at the beginning of the line. That is, if you type def 

and then press Ctrl-p, it would find the most recent command (if any) in your history that 

begins with the characters def. 

Miscellaneous Shortcuts 

Finally, there are a few miscellaneous shortcuts that don’t fit into any of the preceding 

categories, but are nevertheless useful to know: 

 
  Keystroke Action  

Ctrl-l Clear terminal screen 

Ctrl-c Interrupt current Python command 

Ctrl-d Exit IPython session 

 
 

The Ctrl-c shortcut in particular can be useful when you inadvertently start a very 
long-running job. 

While some of the shortcuts discussed here may seem a bit tedious at first, they quickly 

become automatic with practice. Once you develop that muscle memory, I suspect you will 

even find yourself wishing they were available in other contexts. 

IPython Magic Commands 

The previous two sections showed how IPython lets you use and explore Python effi‐ ciently 

and interactively. Here we’ll begin discussing some of the enhancements that 

IPython adds on top of the normal Python syntax. These are known in IPython as magic 

commands, and are prefixed by the % character. These magic commands are designed to 

succinctly solve various common problems in standard data analysis. Magic commands come 

in two flavors: line magics, which are denoted by a single % prefix and operate on a single 

line of input, and cell magics, which are denoted by a double %% prefix and operate on 

multiple lines of input. We’ll demonstrate and dis‐ cuss a few brief examples here, and come 

back to more focused discussion of several useful magic commands later in the chapter. 
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Pasting Code Blocks: %paste and %cpaste 

When you’re working in the IPython interpreter, one common gotcha is that pasting 

multiline code blocks can lead to unexpected errors, especially when indentation and 

interpreter markers are involved. A common case is that you find some example code on a 

website and want to paste it into your interpreter. Consider the following simple function: 

>>> def donothing(x): 

... return x 

The code is formatted as it would appear in the Python interpreter, and if you copy and paste 

this directly into IPython you get an error: 

In [2]: >>> def donothing(x): 

...: ... return x 

...: 

File "<ipython-input-20-5a66c8964687>", line 2 

... return x 

^ 

SyntaxError: invalid syntax 

The interpreter is confused by the additional prompt characters in the direct paste.      

But never fear—IPython’s %paste magic function is designed to handle this exact 

type of multiline, marked-up input: 

In [3]: %paste 

>>> def donothing(x): 

... return x 

 
## -- End pasted text -- 

The %paste command both enters and executes the code, so now the function is ready 
to be used: 

In [4]: donothing(10) 

Out[4]: 10 

A command with a similar intent is %cpaste, which opens up an interactive multiline prompt 
in which you can paste one or more chunks of code to be executed in a batch: 
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In [5]: %cpaste 

Pasting code; enter '--' alone on the line to stop or use Ctrl-D. 

:>>> def donothing(x): 

:... return x 

:-- 

These magic commands, like others we will see, make available functionality that 

would be difficult or impossible in a standard Python interpreter. 

Running External Code: %run 

As you begin developing more extensive code, you will likely find yourself working in both 

IPython for interactive exploration and a text editor to store code you want to reuse. Rather 

than running this code in a new window, running it within your IPython session can be 

convenient. This can be done with the %run magic. 

For example, imagine you’ve created a myscript.py file with the following contents: 

#------------------------------------- 

# file: myscript.py 

 
def square(x): 

"""square a number""" 

return x ** 2 

 
for N in range(1, 4): 

print(N, "squared is", square(N)) 

You can execute this from your IPython session as follows: 

In [6]: %run myscript.py 
1 squared is 1 

2 squared is 4 
3 squared is 9 

Note also that after you’ve run this script, any functions defined within it are available for use 

in your IPython session: 

In [7]: square(5) 

Out[7]: 25 

There are several options to fine-tune how your code is run; you can see the docu‐ mentation 

in the normal way, by typing %run? in the IPython interpreter. 

Timing Code Execution: %timeit 

Another example of a useful magic function is %timeit, which will automatically 
determine the execution time of the single-line Python statement that follows it. 
For example, we may want to check the performance of a list comprehension: 

In [8]: %timeit L = [n ** 2 for n in range(1000)] 1000 
loops, best of 3: 325 µs per loop 

The benefit of %timeit is that for short commands it will automatically perform mul‐ tiple 



 

Page 28 of 580  

runs in order to attain more robust results. For multiline statements, adding a second % sign 

will turn this into a cell magic that can handle multiple lines of input. For example, here’s the 
equivalent construction with a for loop: 

In [9]: %%timeit 

...: L = [] 

...: for n in range(1000): 

...: L.append(n ** 2) 

...: 

1000 loops, best of 3: 373 µs per loop 

We can immediately see that list comprehensions are about 10% faster than the equivalent 

for loop construction in this case. We’ll explore %timeit and other approaches to timing and 

profiling code in “Profiling and Timing Code” on page 25. 

Help on Magic Functions: ?, %magic, and %lsmagic 

Like normal Python functions, IPython magic functions have docstrings, and this useful 

documentation can be accessed in the standard manner. So, for example, to read the 

documentation of the %timeit magic, simply type this: 

In [10]: %timeit? 

Documentation for other functions can be accessed similarly. To access a general description 

of available magic functions, including some examples, you can type this: 

In [11]: %magic 

For a quick and simple list of all available magic functions, type this: 

In [12]: %lsmagic 

 

Profiling and Timing Code 

In the process of developing code and creating data processing pipelines, there are often 

trade-offs you can make between various implementations. Early in developing your 

algorithm, it can be counterproductive to worry about such things. As Donald Knuth 

famously quipped, “We should forget about small efficiencies, say about 97% of the time: 

premature optimization is the root of all evil.” 

But once you have your code working, it can be useful to dig into its efficiency a bit. 

Sometimes it’s useful to check the execution time of a given command or set of com‐ mands; 

other times it’s useful to dig into a multiline process and determine where the bottleneck lies 

in some complicated series of operations. IPython provides access to a wide array of 

functionality for this kind of timing and profiling of code. Here we’ll discuss the following 

IPython magic commands: 

%time   Time the execution of a single statement 

%timeit  Time repeated execution of a single statement for more accuracy 

%prun  Run code with the profiler 

%lprun Run code with the line-by-line profiler 
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%memit Measure the memory use of a single statement 

%mprun Run code with the line-by-line memory profiler 

The last four commands are not bundled with IPython—you’ll need to install the line_profiler 

and memory_profiler extensions, which we will discuss in the fol‐ lowing sections. 

Timing Code Snippets: %timeit and %time 

We saw the %timeit line magic and %%timeit cell magic in the introduction to magic functions 
in “IPython Magic Commands” ; %%timeit can be used to time the repeated execution of 
snippets of code: 

In[1]: %timeit sum(range(100)) 

100000 loops, best of 3: 1.54 µs per loop 

Note that because this operation is so fast, %timeit automatically does a large number of 
repetitions. For slower commands, %timeit will automatically adjust and perform fewer 
repetitions: 

In[2]: %%timeit 

total = 0 

for i in range(1000): 

for j in range(1000): total 
+= i * (-1) ** j 

1 loops, best of 3: 407 ms per loop 

Sometimes repeating an operation is not the best option. For example, if we have a list that 

we’d like to sort, we might be misled by a repeated operation. Sorting a pre- sorted list is 

much faster than sorting an unsorted list, so the repetition will skew the result: 

In[3]: import random 

L = [random.random() for i in range(100000)] 

%timeit L.sort() 

100 loops, best of 3: 1.9 ms per loop 

For this, the %time magic function may be a better choice. It also is a good choice for longer-
running commands, when short, system-related delays are unlikely to affect the result. Let’s 
time the sorting of an unsorted and a presorted list: 

In[4]: import random 

L = [random.random() for i in range(100000)] 

print("sorting an unsorted list:") 

%time L.sort() 

sorting an unsorted list: 

CPU times: user 40.6 ms, sys: 896 µs, total: 41.5 ms 
Wall time: 41.5 ms 

In[5]: print("sorting an already sorted list:") 

%time L.sort() 

sorting an already sorted list: 
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CPU times: user 8.18 ms, sys: 10 µs, total: 8.19 ms 
Wall time: 8.24 ms 

Notice how much faster the presorted list is to sort, but notice also how much longer the 

timing takes with %time versus %timeit, even for the presorted list! This is a result of the 

fact that %timeit does some clever things under the hood to prevent sys‐ tem calls from 

interfering with the timing. For example, it prevents cleanup of unused Python objects 

(known as garbage collection) that might otherwise affect the timing. For this reason, 

%timeit results are usually noticeably faster than %time results. 

For %time as with %timeit, using the double-percent-sign cell-magic syntax allows timing of 
multiline scripts: 

In[6]: %%time 

total = 0 

for i in range(1000): 

for j in range(1000): total 
+= i * (-1) ** j 

CPU times: user 504 ms, sys: 979 µs, total: 505 ms 
Wall time: 505 ms 

For more information on %time and %timeit, as well as their available options, use the 

IPython help functionality (i.e., type %time? at the IPython prompt). 

Profiling Full Scripts: %prun 

A program is made of many single statements, and sometimes timing these state‐ ments in 

context is more important than timing them on their own. Python contains a built-in code 

profiler (which you can read about in the Python documentation), but IPython offers a much 

more convenient way to use this profiler, in the form of the magic function %prun. 

By way of example, we’ll define a simple function that does some calculations: 

In[7]: def sum_of_lists(N): 

total = 0 

for i in range(5): 

L = [j ^ (j >> i) for j in range(N)] total 
+= sum(L) 

return total 

Now we can call %prun with a function call to see the profiled results: 

In[8]: %prun sum_of_lists(1000000) 

In the notebook, the output is printed to the pager, and looks something like this: 

14 function calls in 0.714 seconds 

Ordered by: internal time 

ncalls tottime percall cumti
me 

percall filename:lineno(function) 

5 0.599 0.120 0.599 0.120 <ipython-input-
19>:4(<listcomp>) 

5 0.064 0.013 0.064 0.013 {built-in method sum} 
1 0.036 0.036 0.699 0.699 <ipython-input-
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19>:1(sum_of_lists) 
1 0.014 0.014 0.714 0.714 <string>:1(<module>) 
1 0.000 0.000 0.714 0.714 {built-in method exec} 

The result is a table that indicates, in order of total time on each function call, where the 

execution is spending the most time. In this case, the bulk of execution time is in the list 

comprehension inside sum_of_lists. From here, we could start thinking about what 

changes we might make to improve the performance in the algorithm. 

 

Day 03 – Designing a Program 

Programs must be carefully designed before they are written. During the design process, programmers 
use tools such as pseudocode and flowcharts 
to create models of programs 
 

Input, Processing, and Output 

Input is data that the program receives. When a program receives data, 
it usually processes it by performing some operation with it. The result 
of the operation is sent out of the program as output. 
 

Python Objects and  data types 

The following items are all considered objects in the Python programming 
language: 
»»Numbers 
»»Strings 
»»Lists 
»»Tuples 
»»Sets 
»»Dictionaries 
»»Functions 
»»Classes 
Additionally, all these items (except for the last two in the list) function as basic data types in plain 
ol’ Python, which is Python with no external extensions added to it. (I introduce you to the external 
Python libraries NumPy, SciPy, Pandas, MatPlotLib, and Scikit-learn in the later section “Checking out 
some useful Python libraries.” When you add these libraries, additional data types become available 
to you.) 
In Python, functions do basically the same thing as they do in plain math — they accept data inputs, 
process them, and output the result. Output results depend wholly on the task the function was 
programmed to do. Classes, on the other hand, are prototypes of objects that are designed to 
output additional objects. 
If your goal is to write fast, reusable, easy-to-modify code in Python, you must 
use functions and classes. Doing so helps to keep your code efficient and 
organized. 
Sorting out the various Python data types 
If you do much work with Python, you need to know how to work with different 
data types. The main data types in Python and the general forms they take are 
described in this list: 
»»Numbers: Plain old numbers, obviously 
»»Strings: ‘. . .’ or “. . .” 
»»Lists: [. . .] or [. . ., . . ., . . . ] 
»»Tuples: (. . .) or (. . ., . . ., . . .) 
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Numbers in Python 
The Numbers data type represents numeric values that you can use to handle all 
types of mathematical operations. Numbers come in the following types: 
»»Integer: A whole-number format 
»»Long: A whole-number format with an unlimited digit size 
»»Float: A real-number format, written with a decimal point 
»»Complex: An imaginary-number format, represented by the square root of –1 

Strings and String Literals 

Programs almost always work with data of some type. For example, Program 2-1 uses the 
following three pieces of data: 
'Kate Austen' 
'123 Full Circle Drive 
'Asheville, NC 28899' 
These pieces of data are sequences of characters. In programming terms, a sequence of characters 
that is used as data is called a string. When a string appears in the actual code of a program, 
it is called a string literal. In Python code, string literals must be enclosed in quote marks. 
As mentioned earlier, the quote marks simply mark where the string data begins and ends. 
In Python, you can enclose string literals in a set of single-quote marks (') or a set of 
double- 
quote marks ("). 

Comments 

CONCEPT: Comments are notes of explanation that document lines or sections of a 
program. Comments are part of the program, but the Python interpreter 
ignores them. They are intended for people who may be reading the 
source code. 

Variables 

CONCEPT: A variable is a name that represents a value stored in the computer’s 
memory. 

Variable Naming Rules 

Although you are allowed to make up your own names for variables, you must follow these 
rules: 
• You cannot use one of Python’s key words as a variable name. (See Table 1-2 for a 
list of the key words.) 
• A variable name cannot contain spaces. 
• The first character must be one of the letters a through z, A through Z, or an underscore 
character (_). 
• After the first character you may use the letters a through z or A through Z, the digits 
0 through 9, or underscores. 
• Uppercase and lowercase characters are distinct. This means the variable name 
ItemsOrdered is not the same as itemsordered. 

 

NOTE: This style of naming is called camelCase because the uppercase characters 
that appear in a name may suggest a camel’s humps. 

Variable Name Legal or Illegal? 
Table 1:Sample variable names 

Variable Name  Legal or Illegal?  Reason 
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units_per_day Legal  

dayOfWeek Legal  

3dGraph Illegal. Variable names cannot begin with a digit. 

June1997 Legal  

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores. 

 
 

Numeric Data Types and Literals 

Python 
uses data types to categorize values in memory. When an integer is stored in memory, it is 
classified as an int, and when a real number is stored in memory, it is classified as a float. 
room = 503 
dollars = 2.75 
 

Storing Strings with the str Data Type 

 
In addition to the int and float data types, Python also has a data type named str, which 
is used for storing strings in memory. The code in Program 2-11 shows how strings can be 
assigned to variables. 
 

Reading Input from the Keyboard 

CONCEPT: Programs commonly need to read input typed by the user on the keyboard. 
We will use the Python functions to do this. 
 

Performing Calculations 

CONCEPT: Python has numerous operators that can be used to perform mathematical 
calculations. 
 

Python math operators 

Symbol Operation  Description 

+ Addition Adds 

− Subtraction Subtracts 

* Multiplication Multiplies 

/ Division Divides 

a floating-point number 

// Integer division 

a whole number 

% Remainder Divides 

** Exponent Raises 

 
 
 

Escape Character  

Escape 
Character 

Effect 

\n  Causes output to be advanced to the next line. 

\t  Causes output to skip over to the next horizontal tab position. 

\'  Causes a single quote mark to be printed. 

\"  Causes a double quote mark to be printed. 
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\\  Causes a backslash character to be printed. 

 

Day 04-Core built-in data structures – Lists, Tuples, Dictionaries, Sets 

 

A sequence is an object that holds multiple items of data, stored one after the other. You can perform 
operations on a sequence to examine and manipulate the items stored in it. 
 
A sequence is an object that contains multiple items of data. The items that are in a sequence 
are stored one after the other. Python provides various ways to perform operations on the 
items that are stored in a sequence. 

Introduction to Lists 

A list is an object that contains multiple data items. Lists are mutable, which means that their contents 
can be changed during a program’s execution. Lists are dynamic data structures, meaning that items 
may be added to them or removed from them. You can use indexing, slicing, and various methods to 
work with lists in a program. 
even_numbers = [2, 4, 6, 8, 10] 

Country = [“Pakistan”, “ Iran”, “China”, “Iraq”] 

Lists Are Mutable 

Lists in Python are mutable, which means their elements can be changed. Consequently, an 
expression in the form list[index] can appear on the left side of an assignment operator. 
numbers = [1, 2, 3, 4, 5] 
numbers[0] = 99 

It will replace the first element with 99.  

List Slicing 

A slicing expression selects a range of elements from a sequence. 

Copying Lists 

To make a copy of a list, you must copy the list’s elements. 

list1 = [1, 2, 3, 4] 
# Assign the list to the list2 variable. 
list2 = list1 

After this code executes, both variables list1 and list2 will reference the same list in 
Memory 

One way to do this is with a loop that copies each element of the list. 
Here is an example: 
# Create a list with values. 
list1 = [1, 2, 3, 4] 
# Create an empty list. 
list2 = [] 
# Copy the elements of list1 to list2. 
for item in list1: 
list2.append(item) 
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Tuples 

A tuple is an immutable sequence, which means that its contents cannot be changed. 
 
A tuple is a sequence, very much like a list. The primary difference between tuples and lists 
is that tuples are immutable. That means once a tuple is created, it cannot be changed. 
When you create a tuple, you enclose its elements in a set of parentheses, as shown in the 
following interactive session: 
>>> my_tuple = (1, 2, 3, 4, 5) 

In fact, tuples support all the same operations as lists, except those that change the contents 
of the list. Tuples support the following: 
• Subscript indexing (for retrieving element values only) 
• Methods such as index 
• Built-in functions such as len, min, and max 
• Slicing expressions 
• The in operator 
• The + and * operators 
Tuples do not support methods such as append, remove, insert, reverse, and sort. 

Dictionaries 

A dictionary is an object that stores a collection of data. Each element in a dictionary has two parts: a 

key and a value. You use a key to locate a specific value. 

Creating a Dictionary 

You can create a dictionary by enclosing the elements inside a set of curly braces ( {} ). An element 

consists of a key, followed by a colon, followed by a value. The elements are separated by commas. 

The following statement shows an example: 

phonebook = {'Chris':'555−1111', 'Katie':'555−2222', 'Joanne':'555−3333'} 

This statement creates a dictionary and assigns it to the phonebook variable. The dictionary contains 

the following three elements: 

• The first element is 'Chris':'555−1111'. In this element, the key is 'Chris' and the value is 

'555−1111'. 

• The second element is 'Katie':'555−2222'. In this element, the key is 'Katie' and the value 

is '555−2222'. 

• The third element is 'Joanne':'555−3333'. In this element, the key is 'Joanne' and the value 

is '555−3333'. 

Retrieving a Value from a Dictionary 

The elements in a dictionary are not stored in any particular order. For example, look at the 

following interactive session in which a dictionary is created and its elements are displayed: 

>>> phonebook = {'Chris':'555−1111', 'Katie':'555−2222', 'Joanne':'555−3333'} Enter 

>>> phonebook Enter 

{'Chris': '555−1111', 'Joanne': '555−3333', 'Katie': '555−2222'} 

>>> 

Notice the order in which the elements are displayed is different than the order in which they were 

created. This illustrates how dictionaries are not sequences, like lists, tuples, and strings. As a result, 
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you cannot use a numeric index to retrieve a value by its position from a dictionary. Instead, you use 

a key to retrieve a value. 

To retrieve a value from a dictionary, you simply write an expression in the following general format: 

dictionary_name[key] 

In the general format, dictionary_name is the variable that references the dictionary, and key is a 

key. If the key exists in the dictionary, the expression returns the value that is associated with the 

key. If the key does not exist, a KeyError exception is raised. The following interactive session 

demonstrates: 

 

Using the in and not in Operators to Test for a Value in a Dictionary 

As previously demonstrated, a KeyError exception is raised if you try to retrieve a value from a 

dictionary using a nonexistent key. To prevent such an exception, you can use the in operator to 

determine whether a key exists before you try to use it to retrieve a value. The following interactive 

session demonstrates: 

1 >>> phonebook = {'Chris':'555−1111', 'Katie':'555−2222', 'Joanne':'555−3333'} Enter 
2 >>> if 'Chris' in phonebook: Enter 
3 print(phonebook['Chris']) Enter Enter 
4 
5 555−1111 
6 >>> 

Adding Elements to an Existing Dictionary 

Dictionaries are mutable objects. You can add new key-value pairs to a dictionary 

with an assignment statement in the following general format: 

dictionary_name[key] = value 

Deleting Elements 

You can delete an existing key-value pair from a dictionary with the del statement. 
Here is the general format: 

del dictionary_name[key] 

Some Dictionary Methods 

Dictionary objects have several methods. In this section, we look at some of the 

more useful ones, which are summarized in Table 9−1. 

 
 

Some of the dictionary methods 

Method Description 
 

Clear      Clears the contents of a dictionary. 

get Gets the value associated with a specified key. If the key is not 
found, the method does not raise an exception. Instead, it returns a 
default value. 

items Returns all the keys in a dictionary and their associated values as 
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a sequence of tuples. 

keys Returns all the keys in a dictionary as a sequence of tuples. 

pop Returns the value associated with a specified key and removes 

that key-value pair from the dictionary. If the key is not found, 
the method returns a default value. 

popitem Returns a randomly selected key-value pair as a tuple from the 
dictionary and removes that key-value pair from the dictionary. 

values     Returns all the values in the dictionary as a sequence of tuples. 

 

The get Method 

You can use  the get method  as an  alternative to  the [] operator  for getting  a value  
from a dictionary. The get method does not raise an exception if the specified key is 
not found. Here is the method’s general format: 

dictionary.get(key, default) 

Sets 

A set contains a collection of unique values and works like a mathematical set. 

A set is an object that stores a collection of data in the same way as mathematical sets. Here are 

some important things to know about sets: 

• All the elements in a set must be unique. No two elements can have the same value. 

• Sets are unordered, which means that the elements in a set are not stored in any par- 

ticular order. 

• The elements that are stored in a set can be of different data types. 

Creating a Set 

To create a set, you have to call the built-in set function. Here is an example of 
how you create an empty set: 

myset = set() 

myset = set('abc') 

Finding the Union of Sets 

The union of two sets is a set that contains all the elements of both sets.  

set1.union(set2) 

Finding the Intersection of Sets 

The intersection of two sets is a set that contains only the elements that are found in both sets.  

set1.intersection(set2) 

other functions 

set1.difference(set2) and equivalent set1 − set2 

set1.symmetric_difference(set2)  and equivalent set1 ˆ set2 

set2.issubset(set1) and equivalen set2 <= set1 
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set1.issuperset(set2) and equivalen set1 >= set2 

Lab activity -Sets 
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The 

lines starting with # sign are comments in Python and are used to elaborate the code.   

1 # This program demonstrates various set operations. 
2 baseball = set(['Jodi', 'Carmen', 'Aida', 'Alicia']) 
3 basketball = set(['Eva', 'Carmen', 'Alicia', 'Sarah']) 4 
5 # Display members of the baseball set. 
6 print('The following students are on the baseball team:') 
7 for name in baseball: 
8 print(name) 9 
10 # Display members of the basketball set. 
11 print() 
12 print('The following students are on the basketball team:') 
13 for name in basketball: 
14 print(name) 15 
16 # Demonstrate intersection 
17 print() 
18 print('The following students play both baseball and basketball:') 
19 for name in baseball.intersection(basketball): 
20 print(name) 21 
22 # Demonstrate union 
23 print() 
24 print('The following students play either baseball or basketball:') 
25 for name in baseball.union(basketball): 
26 print(name) 27 
28 # Demonstrate difference of baseball and basketball 
29 print() 
30 print('The following students play baseball, but not basketball:') 
31 for name in baseball.difference(basketball): 
32 print(name) 33 
34 # Demonstrate difference of basketball and baseball 
35 print() 
36 print('The following students play basketball, but not baseball:') 
37 for name in basketball.difference(baseball): 
38 print(name) 39 
40 # Demonstrate symmetric difference 
41 print() 
42 print('The following students play one sport, but not both:') 
43 for name in baseball.symmetric_difference(basketball): 
44 print(name) 

Day-05: Decision Structures and Boolean Logic 

The if Statement 

CONCEPT: The if statement is used to create a decision structure, which allows a program to have 

more than one path of execution. The if statement causes one or more statements to execute only 

when a Boolean expression is true. 
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A control structure is a logical design that controls the order in which a set of statements execute. So 

far in this book, we have used only the simplest type of control structure: the sequence structure. A 

sequence structure is a set of statements that execute in the order in which they appear.  

if condition: 

statement  

statement  

etc. 

Code snippet  

# This program gets three test scores and displays 

# their average. It congratulates the user if the 
 # average is a high score.The HIGH_SCORE named constant holds the value that is 

 # considered a high score. 

 HIGH_SCORE = 95 

test1 = int(input('Enter the score for test 1: ' )) 

test2 = int(input('Enter the score for test 2: ' )) 

test3 = int(input('Enter the score for test 3: ' ))  

# Calculate the average test score. 

average = (test1 + test2 + test3) / 3  

# Print the average. 

print('The average score is', average)  

# If the average is a high score, 

# congratulate the user. 

if average >= HIGH_SCORE: 

print('Congratulations!') 

print('That is a great average!') 

Boolean Expressions and Relational Operators 

As previously mentioned, the if statement tests an expression to determine whether it 

is true or false. The expressions that are tested by the if statement are called Boolean 

expres- sions, named in honor of the English mathematician George Boole. In the 

1800s, Boole invented a system of mathematics in which the abstract concepts of true 

and false can be used in computations. 

Typically, the Boolean expression that is tested by an if statement is formed with a 

relational operator. A relational operator determines whether a specific relationship 

exists between two values. For example, the greater than operator (>) determines 

whether one value is greater than another. The equal to the operator (==) determines 

whether two values are  equal. 

The if-else Statement 

CONCEPT: An if-else statement will execute one block of statements if its condition is true, or 

another block if its condition is false. 

The previous section introduced the single alternative decision structure (the if statement), which has 

one alternative path of execution. Now, we will look at the dual alternative deci- sion structure, which 
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has two possible paths of execution—one path is taken if a condition is true, and the other path is 

taken if the condition is false. 

Indentation in the if-else Statement 

When you write an if-else statement, follow these guidelines for indentation: 

• Make sure the if clause and the else clause are aligned. 

• The if clause and the else clause are each followed by a block of statements. Make sure the 

statements in the blocks are consistently indented. 

Nested Decision Structures and the 

if-elif-else Statement 

CONCEPT: To test more than one condition, a decision structure can be nested  inside another 

decision structure. 

Logical Operators 

CONCEPT: The logical “and” operator and the logical “or” operator allow you to connect multiple 

Boolean expressions to create a compound expression. The logical “not” operator reverses the truth 

of a Boolean expression.  

Boolean Variables 

CONCEPT:  A Boolean variable can reference one of two values: True or False. 

Boolean variables are commonly used as flags, which indicate whether specific conditions exist. 

Repetition Structures 

CONCEPT: A repetition structure causes a statement or set of statements to execute repeatedly. 

Condition-Controlled and Count-Controlled Loops 

We will look at two broad categories of loops: condition-controlled and count-controlled. A condition-

controlled loop uses a true/false condition to control the number of times that it repeats. A count-

controlled loop repeats a specific number of times. In Python, you use the while statement to write a 

condition-controlled loop, and you use the for statement to write a count-controlled loop. In this 

chapter, we will demonstrate how to write both types of loops. 

The while Loop: A Condition-Controlled Loop 

A condition-controlled loop causes a statement or set of statements to repeat as long as a condition is 

true. In Python, you use the while state- ment to write a condition-controlled loop. 

The while loop gets its name from the way it works: while a condition is true, do some task. The loop 

has two parts: (1) a condition that is tested for a true or false value, and (2) a statement or set of 

statements that is repeated as long as the condition is true.  

Syntax: 

while condition:  

statement  

statement  

etc. 
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The while Loop Is a Pretest Loop 

The while loop is known as a pretest loop, which means it tests its condition before per- forming an 

iteration. Because the test is done at the beginning of the loop, you usually have to perform some 

steps prior to the loop to make sure that the loop executes at least once. For example,  

while keep_going == 'y': 

Infinite Loops 

An infinite loop continues to repeat until the program is interrupted. Infinite loops usually occur when 

the programmer forgets to write code inside the loop, making the test condition false. In most 

circumstances, you should avoid writing infinite loops. 

The for Loop: A Count-Controlled Loop 

 A count-controlled loop iterates a specific number of times. In Python, you use the for the statement 

to write a count-controlled loop. 

As mentioned at the beginning of this chapter, a count-controlled loop iterates a specific number of 

times. Count-controlled loops are commonly used in programs. For example, suppose a business is 

open six days per week, and you are going to write a program that calculates the total sales for a week. 

You will need a loop that iterates exactly six times. Each time the loop iterates, it will prompt the user 

to enter the sales for one day. 

You use the for statement to write a count-controlled loop. In Python, the for statement is designed 

to work with a sequence of data items. When the statement executes, it iterates once for each item 

in the sequence. Here is the general format: 

for variable in [value1, value2, etc.]: statement 

statement etc. 

We will refer to the first line as the for clause. In the for clause, variable is the name of a variable. 

Inside the brackets a sequence of values appears, with a comma separating each value. (In Python, a 

comma-separated sequence of data items that are enclosed in a set of brackets is called a list. 

Beginning at the next line is a block of statements that is executed each time the loop iterates. 

The for statement executes in the following manner: The variable is assigned the first value in the list, 

then the statements that appear in the block are executed. Then, variable is assigned the next value 

in the list, and the statements in the block are executed again. This continues until variable has been 

assigned the last value in the list. 

 for x in range(5): 
print('Hello world') 

for num in range(1, 10, 2):  

print(num) 

Calculating a Running Total 

A running total is a sum of numbers accumulating with each loop iteration. The variable used to keep 

the running total is called an accumulator. 

Many programming tasks require you to calculate the total of a series of numbers. For example, 

suppose you are writing a program that calculates a business’s total sales for a week. The program 

would read the sales for each day as input and calculate the total of those numbers. 
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Programs that calculate the total of a series of numbers typically use two elements: 

• A loop that reads each number in the series. 

• A variable that accumulates the total of the numbers as they are read. 

The variable that is used to accumulate the total of the numbers is called an accumulator. It is often 

said that the loop keeps a running total because it accumulates the total as it reads each number in 

the series. 

 

Statement  What It Does  Value of x after the Statement 

x = x + 4 Add 4 to x  10 

x = x − 3 Subtracts 3 from x  3 

x = x * 10 Multiplies x by 10  60 

x = x / 2 Divides x by 2  3 

x = x % 4 Assigns the remainder of x / 4 to x 2 

 

Sentinels 

 A sentinel is a special value that marks the end of a sequence of values. 

• Simply ask the user, at the end of each loop iteration, if there is another value to process. If 

the sequence of values is long, however, asking this question at the end of each loop iteration might 

make the program cumbersome for the user. 

• Ask the user at the beginning of the program how many items are in the sequence. This might 

also inconvenience the user, however. If the sequence is very long, and the user does not know the 

number of items it contains, it will require the user to count them. 

When processing a long sequence of values with a loop, perhaps a better technique is to use a 

sentinel. A sentinel is a special value that marks the end of a sequence of items. When a program 

reads the sentinel value, it knows it has reached the end of the sequence, so the loop terminates. 

Nested Loops 

CONCEPT: A loop that is inside another loop is called a nested loop. 
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Example: 

for hours in range(24): 

for minutes in range(60): 

for seconds in range(60): 

print(hours, ':', minutes, ':', seconds) 

Lab Activity: Nested Loops 

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The 

lines starting with # sign are comments in Python and are used to elaborate the code.   

1 # This program averages test scores. It asks the user for the 

2 # number of students and the number of test scores per student. 3 

4 # Get the number of students. 

5 num_students = int(input('How many students do you have? ')) 6 

7 # Get the number of test scores per student. 

8 num_test_scores = int(input('How many test scores per student? ')) 9 

10 # Determine each student's average test score. 

11 for student in range(num_students): 

12  # Initialize an accumulator for test scores. 

13  total = 0.0 

14  # Get a student's test scores. 

15  print('Student number', student + 1) 

16  print('–––––––––––––––––') 

17  for test_num in range(num_test_scores): 

18  print('Test number', test_num + 1, end='') 

19  score = float(input(': ')) 

20  # Add the score to the accumulator. 

21  total += score 

22 23 # Calculate the average test score for this student. 

24 average = total / num_test_scores 25 

26 # Display the average. 

27 print('The average for student number', student + 1, 

28 'is:', average) 

print() 
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Week 2 -Data Manipulation and Cleaning 

Day 01- Functions, Packages 

A function is a group of statements that exist within a program for the 
purpose of performing a specific task. 

Benefits of Modularizing a Program with Functions 

A program benefits in the following ways when it is broken down into functions: 

Simpler Code 

A program’s code tends to be simpler and easier to understand when it is broken down 
into functions. Several small functions are much easier to read than one long sequence of 
statements. 

Code Reuse 

Functions also reduce the duplication of code within a program. If a specific operation is performed in 
several places in a program, a function can be written once to perform thatoperation, then be 
executed any time it is needed. This benefit of using functions is known as code reuse because you are 
writing the code to perform a task once, then reusing it each time you need to perform the task. 

Better Testing 

When each task within a program is contained in its own function, testing and debugging 
becomes simpler. Programmers can test each function in a program individually, to determine 
whether it correctly performs its operation. This makes it easier to isolate and fix errors. 

Faster Development 

Suppose a programmer or a team of programmers is developing multiple programs. They 
discover that each of the programs perform several common tasks, such as asking for a username 
and a password, displaying the current time, and so on. It doesn’t make sense to write 
the code for these tasks multiple times. Instead, functions can be written for the commonly 
needed tasks, and those functions can be incorporated into each program that needs them. 

Easier Facilitation of Teamwork 

Functions also make it easier for programmers to work in teams. When a program is developed 
as a set of functions that each performs an individual task, then different programmers 
can be assigned the job of writing different functions. 

Void Functions and Value-Returning Functions 

You will learn to write two types of functions: void functions and value- returning functions. When you 

call a void function, it simply executes the statements it contains and then terminates. When you call 

a value-returning function, it executes the statements that it contains, then returns a value back to 

the statement that called it. The input function is an example of a value-returning function. When you 

call the input func- tion, it gets the data that the user types on the keyboard and returns that data as 

a string. The int and float functions are also examples of value-returning functions. You pass an 

argument to the int function, and it returns that argument’s value converted to an integer. Likewise, you 

pass an argument to the float function, and it returns that argument’s value converted to a floating-point 

number. 

The first type of function that you will learn to write is the void function. 

Defining and Calling a Void Function 

The code for a function is known as a function definition. To execute 
the function, you write a statement that calls it. 

Function Names 

Before we discuss the process of creating and using functions, we should mention a few 
things about function names. Just as you name the variables that you use in a program, you 
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also name the functions. A function’s name should be descriptive enough so anyone reading 
your code can reasonably guess what the function does. 
Python requires that you follow the same rules that you follow when naming variables, 
which we recap here: 
• You cannot use one of Python’s key words as a function name. (See Table 1-2 for a 
list of the key words.) 
• A function name cannot contain spaces. 
• The first character must be one of the letters a through z, A through Z, or an underscore 
character (_). 
• After the first character you may use the letters a through z or A through Z, the digits 
0 through 9, or underscores. 
• Uppercase and lowercase characters are distinct. 
Because functions perform actions, most programmers prefer to use verbs in function names. 
For example, a function that calculates gross pay might be named calculate_gross_pay. 
This name would make it evident to anyone reading the code that the function calculates 
something. What does it calculate? The gross pay, of course. Other examples of good function 
names would be get_hours, get_pay_rate, calculate_overtime, print_check, 
and so on. Each function name describes what the function does. 

Defining and Calling a Function 

To create a function, you write its definition. Here is the general format of a function definition 
in Python: 
def function_name(): 
statement 
statement 
etc. 

The first line is known as the function header. It marks the beginning of the function definition. 
The function header begins with the keyword def, followed by the name of the 
function, followed by a set of parentheses, followed by a colon. 
Beginning at the following line is a set of statements known as a block. A block is simply a set 
of statements that belong together as a group. These statements are performed any time the 
function is executed. Notice in the general format that all of the statements in the block are 
indented. This indentation is required, because the Python interpreter uses it to tell where 
the block begins and ends. 
Let’s look at an example of a function. Keep in mind that this is not a complete program. 
We will show the entire program in a moment. 
def message(): 
print('I am Arthur,') 
print('King of the Britons.') 
This code defines a function named message. The message function contains a block with 
two statements. Executing the function will cause these statements to execute. 

Calling a Function 

A function definition specifies what a function does, but it does not cause the function to 
execute. To execute a function, you must call it. This is how we would call the message 
function: 
message() 

Local Variables 

A local variable is created inside a function and cannot be accessed by statements that are outside the 
function. Different functions can have local variables with the same names because the functions 
cannot see each other's local variables. 
Anytime you assign a value to a variable inside a function, you create a local variable. A 
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local variable belongs to the function in which it is created, and only statements inside that 
function can access the variable. (The term local is meant to indicate that the variable can 
be used only locally, within the function in which it is created.) 

Scope and Local Variables 

A variable’s scope is the part of a program in which the variable may be accessed. A variable 
is visible only to statements in the variable’s scope. A local variable’s scope is the 
function in which the variable is created. 

 

Passing Arguments to Functions 

An argument is any piece of data that is passed into a function when the function is called. A parameter 
is a variable that receives an argument that is passed into a function. 
 
Sometimes it is useful not only to call a function, but also to send one or more pieces of 
data into the function. Pieces of data that are sent into a function are known as arguments. 
The function can use its arguments in calculations or other operations. 

Keyword Arguments 

Python language allows you to write an argument in the following format, to specify which parameter 
variable the argument should be passed to: 
parameter_name=value 

Global Variables and Global Constants 

A global variable is accessible to all the functions in a program file. 

When a variable is created by an assignment statement that is written outside all the functions in a 
program file, the variable is global. A global variable can be accessed by any statement in the program 
file, including the statements in any function. 
 

Global Constants 

A global constant is a global name that references a value that cannot be changed. Because a global 
constant’s value cannot be changed during the program’s execution, you do not have to worry about 
many of the potential hazards that are associated with the use of global variables. 
 
Although the Python language does not allow you to create true global constants, you can simulate 
them with global variables. If you do not declare a global variable with the global key word inside a 
function, then you cannot change the variable’s assignment inside that function. For example global 
constant declaration as below  
CONTRIBUTION_RATE = 0.05 

 

Introduction to Value-Returning Functions: Generating Random Numbers 

A value-returning function is a function that returns a value back to the part of the program that called 
it. Python, as well as most other programming languages, provides a library of prewritten functions 
that perform commonly needed tasks. These libraries typically contain a function that generates 
random numbers. 
 
A value-returning function is a special type of function. It is like a void function in the following ways. 
• It is a group of statements that perform a specific task. 
• When you want to execute the function, you call it. 
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Standard Library Functions and the import Statement 

Python, as well as most programming languages, comes with a standard library of functions 
that have already been written for you. These functions, known as library functions, make a 
programmer’s job easier because they perform many of the tasks that programmers commonly need 
to perform. For example, 
 
import math 
This statement causes the interpreter to load the contents of the math module into memory 
and makes all the functions in the math module available to the program. 

The following statement shows an example of how you might call the randint function from Math 
libarary: 
number = random.randint (1, 100) 

Writing Your Own Value-Returning Functions 

A value-returning function has a return statement that returns a value back to the part of the program 
that called it. 
You write a value-returning function in the same way that you write a void function, with 
one exception: a value-returning function must have a return statement. Here is the general 
format of a value-returning function definition in Python: 

def function_name(): 
statement 
statement 
etc. 
return expression 

Returning Multiple Values 

def get_name(): 
# Get the user's first and last names. 
first = input('Enter your first name: ') 
last = input('Enter your last name: ') 
# Return both names. 
return first, last 

When you call this function in an assignment statement, you need to use two variables on 
the left side of the = operator. Here is an example: 
first_name, last_name = get_name() 

Symbol Operation Description 

+ Addition Adds two numbers 

− Subtraction Subtracts one number from another 

* Multiplication Multiplies one number by another 

/ Division Divides one number by another and gives the result 
as a floating-point number 

// Integer division Divides one number by another and gives the result 
as a whole number 

% Remainder Divides one number by another and gives the 
remainder 

** Exponent Raises a number to a power 
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Day-02: String, built-in String methods, String Manipulation, and regular expressions 

 

Basic String Operations 

CONCEPT: Python provides several ways to access the individual characters in a string. Strings also 
have methods that allow you to perform operations on them. 

Indexing 

Another way that you can access the individual characters in a string is with an index. Each 
character in a string has an index that specifies its position in the string. Indexing starts 
at 0, so the index of the first character is 0, the index of the second character is 1, and so 
forth. 

Strings Are Immutable 

In Python, strings are immutable, which means once they are created, they cannot be 
changed. Some operations, such as concatenation, give the impression that they modify 
strings, but in reality, they do not. 

String Slicing 

CONCEPT: You can use slicing expressions to select a range of characters from a string 
When you take a slice from a string, you get a span of characters from within the string. 
String slices are also called substrings. 

To get a slice of a string, you write an expression in the following general format: 
string[start : end] 

Testing, Searching, and Manipulating Strings 

CONCEPT: Python provides operators and methods for testing strings, searching the 
contents of strings, and getting modified copies of strings. 

 

Testing Strings with ‘in’ and ‘not in’ 

In Python, you can use the in operator to determine whether one string is contained in another string. 
Here is the general format of an expression using the in operator with two strings:  
string1 in string2 
string1 and string2 can be either string literals or variables referencing strings. The expression returns 
true if  string1 is found in string2. For example, look at the following code: 
text = 'Four score and seven years ago' 
if 'seven' in text: 
print('The string "seven" was found.') 
else: 
print('The string "seven" was not found.') 
This code determines whether the string 'Four score and seven years ago' contains the string 'seven'. 
If we run this code, it will display: 
The string "seven" was found. 
You can use the not in operator to determine whether one string is not contained in another string. 
Here is an example: 
names = 'Bill Joanne Susan Chris Juan Katie' 
if 'Pierre' not in names: 
print('Pierre was not found.') 
else: 
print('Pierre was found.') 
If we run this code, it will display: 
Pierre was not found. 
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String Methods 

Recall from Chapter 6 that a method is a function that belongs to an object and performs 
some operation on that object. Strings in Python have numerous methods.1 In this section, 
we will discuss several string methods for performing the following types of operations: 
• Testing the values of strings 
• Performing various modifications 
• Searching for substrings and replacing sequences of characters 

String Modification Methods 

 

Lab Activtity- Python essentials 

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The 

lines starting with # sign are comments in Python and are used to elaborate the code.   

x = 1 
y = 2 
x + y 
y 
def add_numbers(x, y): 
    return x + y 
add_numbers(1, 2) 
# `add_numbers` updated to take an optional 3rd parameter. Using `print` allows printing of multiple 
expressions within a single cell. 
def add_numbers(x, y, z=None): 
    if (z == None): 
        return x + y 
    else: 
        return x + y + z 
print(add_numbers(1, 2)) 
print(add_numbers(1, 2, 3)) 
 
def add_numbers(x, y, z=None, flag=False): 

• Returns a copy of the string with all alphabetic letters converted to lower- case. Any 
character that is already lowercase, or is not an alphabetic letter, is unchanged.lower() 

•  Returns a copy of the string with all leading whitespace characters removed. Leading 
whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the beginning 
of the string.

lstrip()
• The char argument is a string containing a character. Returns a copy of the string with all 

instances of char that appear at the beginning of the string removed.lstrip(char)
• Returns a copy of the string with all trailing whitespace characters removed. Trailing 

whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the end of the 
string.

rstrip() 
• The char argument is a string containing a character. The method returns a copy of the 

string with all instances of char that appear at the end of the string removed.rstrip(char)

• Returns a copy of the string with all leading and trailing whitespace characters removed.strip() 
• Returns a copy of the string with all instances of char that appear at the beginning and the 

end of the string removed.strip(char)
• Returns a copy of the string with all alphabetic letters converted to uppercase. Any 

character that is already uppercase, or is not an alphabetic letter, is unchanged.upper() 
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    if (flag): 
        print('Flag is true!') 
    if (z == None): 
        return x + y 
    else: 
        return x + y + z 
 
 
print(add_numbers(1, 2, flag=True)) 
def add_numbers(x, y): 
    return x + y 
 
 
a = add_numbers 
a(1, 2) 
 
type('This is a string') 
 
type(None) 
 
type(1) 
 
type(1.0) 
 
type(add_numbers) 
x = (1, 'a', 2, 'b') 
type(x) 
# Lists are a mutable data structure. 
x = [1, 'a', 2, 'b'] 
type(x) 
 
x.append(3.3) 
print(x) 
 
 
# This is an example of how to loop through each item in the list. 
 
for item in x: 
    print(item) 
# Or using the indexing operator: 
i = 0 
while (i != len(x)): 
    print(x[i]) 
    i = i + 1 
# Use `+` to concatenate lists. 
[1, 2] + [3, 4] 
# Use `*` to repeat lists. 
 
[1] * 3 
# Use the `in` operator to check if something is inside a list. 
1 in [1, 2, 3] 
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# Now let's look at strings. Use bracket notation to slice a string. 
 
x = 'This is a string' 
print(x[0])  #first character 
print(x[0:1])  #first character, but we have explicitly set the end character 
print(x[0:2])  #first two characters 
x[-1] 
 
 
# This will return the slice starting from the 4th element from the end and stopping before the 2nd 
element from the end. 
x[-4:-2] 
 
 
# This is a slice from the beginning of the string and stopping before the 3rd element. 
x[:3] 
# And this is a slice starting from the 4th element of the string and going all the way to the end. 
x[3:] 
firstname = 'Christopher' 
lastname = 'Brooks' 
print(firstname + ' ' + lastname) 
print(firstname * 3) 
print('Chris' in firstname) 
firstname = 'Christopher Arthur Hansen Brooks'.split(' ')[0]  # [0] selects the first element of the list 
lastname = 'Christopher Arthur Hansen Brooks'.split(' ')[-1]  # [-1] selects the last element of the list 
print(firstname) 
print(lastname) 
# Make sure you convert objects to strings before concatenating. 
'Chris' + 2 
'Chris' + str(2) 
# Dictionaries associate keys with values. 
x = {'Christopher Brooks': 'brooksch@umich.edu', 'Bill Gates': 'billg@microsoft.com'} 
x['Christopher Brooks']  # Retrieve a value by using the indexing operator 
x['Kevyn Collins-Thompson'] = None 
x['Kevyn Collins-Thompson'] 
# Iterate over all of the keys: 
for name in x: 
    print(x[name]) 
# Iterate over all of the values: 
for email in x.values(): 
    print(email) 
# Iterate over all of the items in the list: 
for name, email in x.items(): 
    print(name) 
    print(email) 
# You can unpack a sequence into different variables: 
x = ('Christopher', 'Brooks', 'brooksch@umich.edu') 
fname, lname, email = x 
fname 
lname 
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# Make sure the number of values you are unpacking matches the number of variables being 
assigned. 
x = ('Christopher', 'Brooks', 'brooksch@umich.edu', 'Ann Arbor') 
fname, lname, email = x 
 
 
# # The Python Programming Language: More on Strings 
print('Chris' + 2) 
print('Chris' + str(2)) 
# Python has a built in method for convenient string formatting. 
# In[33]: 
sales_record = { 
    'price': 3.24, 
    'num_items': 4, 
    'person': 'Chris'} 
 
sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}' 
 
print(sales_statement.format(sales_record['person'], 
                             sales_record['num_items'], 
                             sales_record['price'], 
                             sales_record['num_items'] * sales_record['price'])) 
 
 
import datetime as dt 
import time as tm 
 
# `time` returns the current time in seconds since the Epoch. (January 1st, 1970) 
tm.time() 
# Convert the timestamp to datetime. 
# In[47]: 
dtnow = dt.datetime.fromtimestamp(tm.time()) 
dtnow 
# Handy datetime attributes: 
# In[48]: 
dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second  # get year, 
month, day, etc.from a datetime 
# `timedelta` is a duration expressing the difference between two dates. 
# In[49]: 
delta = dt.timedelta(days=100)  # create a timedelta of 100 days 
delta 
# `date.today` returns the current local date. 
# In[50]: 
today = dt.date.today() 
# In[51]: 
today - delta  # the date 100 days ago 
# In[52]: 
today > today - delta  # compare dates 
# # The Python Programming Language: Objects and map() 
# An example of a class in python: 
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# In[54]: 
class Person: 
    department = 'School of Information'  #a class variable 
 
    def set_name(self, new_name):  #a method 
        self.name = new_name 
 
    def set_location(self, new_location): 
        self.location = new_location 
person = Person() 
person.set_name('Christopher Brooks') 
person.set_location('Ann Arbor, MI, USA') 
print('{} live in {} and works in the department {}'.format(person.name, person.location, 
person.department)) 
# Here's an example of mapping the `min` function between two lists. 
store1 = [10.00, 11.00, 12.34, 2.34] 
store2 = [9.00, 11.10, 12.34, 2.01] 
cheapest = map(min, store1, store2) 
cheapest 
# Now let's iterate through the map object to see the values. 
for item in cheapest: 
    print(item) 
 
# # The Python Programming Language: Lambda and List Comprehensions 
# Here's an example of lambda that takes in three parameters and adds the first two. 
my_function = lambda a, b, c: a + b 
# In[60]: 
my_function(1, 2, 3) 
# Let's iterate from 0 to 999 and return the even numbers. 
my_list = [] 
for number in range(0, 1000): 
    if number % 2 == 0: 
        my_list.append(number) 
my_list 
 
my_list = [number for number in range(0, 1000) if number % 2 == 0] 
my_list 
 

 

 

Day 03- EXPORTING DATA USING PYTHON MODULES (numpy) 

Data manipulation in Python is nearly synonymous with NumPy array manipulation: even 
newer tools like Pandas are built around the NumPy array. This sec‐ tion will present several 

examples using NumPy array manipulation to access data and subarrays, and to split, 

reshape, and join the arrays. While the types of operations shown here may seem a bit dry 

and pedantic, they comprise the building blocks of many other examples used throughout 

the book. Get to know them well! 

We’ll cover a few categories of basic array manipulations here: 
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Attributes of arrays 

Determining the size, shape, memory consumption, and data types of arrays 

Indexing of arrays 

Getting and setting the value of individual array elements 

Slicing of arrays 

Getting and setting smaller subarrays within a larger array 

Reshaping of arrays 

Changing the shape of a given array 

Joining and splitting of arrays 

Combining multiple arrays into one, and splitting one array into many 

 

 

NumPy Array Attributes 

First let’s discuss some useful array attributes. We’ll start by defining three random arrays: 

a one-dimensional, two-dimensional, and three-dimensional array. We’ll use NumPy’s 

random number generator, which we will seed with a set value in order to ensure that the 

same random arrays are generated each time this code is run: 

In[1]: import numpy as np 

np.random.seed(0) # seed for reproducibility 

 
x1 = np.random.randint(10, size=6) # One-dimensional array 

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array 

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array 

Each array has attributes ndim (the number of dimensions), shape (the size of each 

dimension), and size (the total size of the array): 

In[2]: print("x3 ndim: ", x3.ndim) 
print("x3 shape:", x3.shape) 
print("x3 size: ", x3.size) 

x3 ndim: 3 

x3 shape: (3, 4, 5) 

x3 size: 60 

Another useful attribute is the dtype, the data type of the array: 

In[3]: print("dtype:", x3.dtype) 

dtype: int64 

Other attributes include itemsize, which lists the size (in bytes) of each array ele‐ ment, and 

nbytes, which lists the total size (in bytes) of the array: 

In[4]: print("itemsize:", x3.itemsize, "bytes") 
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print("nbytes:", x3.nbytes, "bytes") 

itemsize: 8 bytes 

nbytes: 480 bytes 

In general, we expect that nbytes is equal to itemsize times size. 

Array Indexing: Accessing Single Elements 

If you are familiar with Python’s standard list indexing, indexing in NumPy will feel quite 

familiar. In a one-dimensional array, you can access the ith value (counting from zero) by 

specifying the desired index in square brackets, just as with Python lists: 

In[5]: x1 

Out[5]: array([5, 0, 3, 3, 7, 9]) 

In[6]: x1[0] 

Out[6]: 5 

In[7]: x1[4] 

Out[7]: 7 

To index from the end of the array, you can use negative indices: 

In[8]: x1[-1] 

Out[8]: 9 

In[9]: x1[-2] 

Out[9]: 7 

In a multidimensional array, you access items using a comma-separated tuple of 

indices: 

In[10]: x2 

Out[10]: array([[3, 5, 2, 4], 

[7, 6, 8, 8], 

[1, 6, 7, 7]]) 

In[11]: x2[0, 0] 

Out[11]: 3 

In[12]: x2[2, 0] 

Out[12]: 1 

In[13]: x2[2, -1] 

Out[13]: 7 

You can also modify values using any of the above index notation: 

In[14]: x2[0, 0] = 12 

x2 
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Out[14]: array([[12, 5, 2, 4], 
[ 7, 6, 8, 8], 
[ 1, 6, 7, 7]]) 

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type. This means, for 
example, that if you attempt to insert a floating-point value to an integer array, the value will 

be silently truncated. Don’t be caught unaware by this behavior! 

In[15]: x1[0] = 3.14159 # this will be truncated! 

x1 

Out[15]: array([3, 0, 3, 3, 7, 9]) 

 
Array Slicing: Accessing Subarrays 

Just as we can use square brackets to access individual array elements, we can also use them 

to access subarrays with the slice notation, marked by the colon (:) character. The NumPy 

slicing syntax follows that of the standard Python list; to access a slice of an array x, use this: 

x[start:stop:step] 

If any of these are unspecified, they default to the values start=0, stop=size of dimension, 
step=1. We’ll take a look at accessing subarrays in one dimension and in multiple dimensions. 

One-dimensional subarrays 

In[16]: x = np.arange(10) 

x 

Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

In[17]: x[:5] # first five elements 

Out[17]: array([0, 1, 2, 3, 4]) 

In[18]: x[5:] # elements after index 5 

Out[18]: array([5, 6, 7, 8, 9]) 

In[19]: x[4:7] # middle subarray 

Out[19]: array([4, 5, 6]) 

In[20]: x[::2] # every other element 

Out[20]: array([0, 2, 4, 6, 8]) 

In[21]: x[1::2] # every other element, starting at index 1 

Out[21]: array([1, 3, 5, 7, 9]) 

A potentially confusing case is when the step value is negative. In this case, the 
defaults for start and stop are swapped. This becomes a convenient way to reverse 
an array: 

In[22]: x[::-1] # all elements, reversed 

Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) 
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In[23]: x[5::-2] # reversed every other from index 5 

Out[23]: array([5, 3, 1]) 

 

Multidimensional subarrays 

Multidimensional slices work in the same way, with multiple slices separated by 

com‐ mas. For example: 

In[24]: x2 

 
Out[24]: array([[12, 5, 2, 4], 
[ 7, 6, 8, 8], 
[ 1, 6, 7, 7]]) 

In[25]: x2[:2, :3]  # two rows, three columns 

Out[25]: array([[12, 5, 2], 

[ 7, 6, 8]]) 

In[26]: x2[:3, ::2] # all rows, every other column 

 
Out[26]: array([[12, 2], 
[ 7, 8], 
[ 1, 7]]) 

Finally, subarray dimensions can even be reversed together: 

In[27]: x2[::-1, ::-1] 

 
Out[27]: array([[ 7, 7, 6, 1], 
[ 8, 8, 6, 7], 
[ 4, 2, 5, 12]]) 

 
Accessing array rows and columns. One commonly needed routine is accessing single rows or 

columns of an array. You can do this by combining indexing and slicing, using an empty slice 

marked by a single colon (:): 

In[28]: print(x2[:, 0]) # first column of x2 

[12 7 1] 

In[29]: print(x2[0, :]) # first row of x2 

[12 5 2 4] 

In the case of row access, the empty slice can be omitted for a more compact syntax: 

In[30]: print(x2[0]) # equivalent to x2[0, :] 

[12 5 2 4] 

 
Subarrays as no-copy views 

One important—and extremely useful—thing to know about array slices is that they return 

views rather than copies of the array data. This is one area in which NumPy array slicing 
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differs from Python list slicing: in lists, slices will be copies. Consider our two-dimensional 

array from before: 

In[31]: print(x2) 

 
[[12 5 2 4] 
[ 7 6 8 8] 
[ 1 6 7 7]] 

Let’s extract a 2×2 subarray from this: 

In[32]: x2_sub = x2[:2, :2] 

print(x2_sub) 

[[12 5] 

[ 7 6]] 

Now if we modify this subarray, we’ll see that the original array is changed! Observe: 

In[33]: x2_sub[0, 0] = 99 

print(x2_sub) 

[[99 5] 

[ 7 6]] 

In[34]: print(x2) 

 
[[99 5 2 4] 
[ 7 6 8 8] 
[ 1 6 7 7]] 

This default behavior is actually quite useful: it means that when we work with large 

datasets, we can access and process pieces of these datasets without the need to 

copy the underlying data buffer. 

Creating copies of arrays 

Despite the nice features of array views, it is sometimes useful to instead explicitly copy the 

data within an array or a subarray. This can be most easily done with the copy() method: 

In[35]: x2_sub_copy = x2[:2, :2].copy() 

print(x2_sub_copy) 

[[99 5] 

[ 7 6]] 

If we now modify this subarray, the original array is not touched: 

In[36]: x2_sub_copy[0, 0] = 42 

print(x2_sub_copy) 

[[42 5] 

[ 7 6]] 

In[37]: print(x2) 

 
[[99 5 2 4] 
[ 7 6 8 8] 
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[ 1 6 7 7]] 
 

Reshaping of Arrays 

Another useful type of operation is reshaping of arrays. The most flexible way of 

doing this is with the reshape() method. For example, if you want to put the num‐ 

bers 1 through 9 in a 3×3 grid, you can do the following: 

In[38]: grid = np.arange(1, 10).reshape((3, 3)) 

print(grid) 

[[1 2 3] 

[4 5 6] 

[7 8 9]] 

Note that for this to work, the size of the initial array must match the size of the reshaped 

array. Where possible, the reshape method will use a no-copy view of the initial array, but 

with noncontiguous memory buffers this is not always the case. 

Another common reshaping pattern is the conversion of a one-dimensional array into a 

two-dimensional row or column matrix. You can do this with the reshape method, or more 
easily by making use of the newaxis keyword within a slice opera‐ tion: 

In[39]: x = np.array([1, 2, 3]) 

 
# row vector via reshape 

x.reshape((1, 3)) 

Out[39]: array([[1, 2, 3]]) 

In[40]: # row vector via newaxis 

x[np.newaxis, :] 

Out[40]: array([[1, 2, 3]]) 

In[41]: # column vector via reshape 

x.reshape((3, 1)) 

Out[41]: array([[1], 

[2], 

[3]]) 

In[42]: # column vector via newaxis 

x[:, np.newaxis] 

Out[42]: array([[1], 

[2], 

[3]]) 

We will see this type of transformation often throughout the remainder of the book. 

Array Concatenation and Splitting 

All of the preceding routines worked on single arrays. It’s also possible to combine multiple 

arrays into one, and to conversely split a single array into multiple arrays. We’ll take a look 
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at those operations here. 

Concatenation of arrays 

Concatenation, or joining of two arrays in NumPy, is primarily accomplished 

through the routines np.concatenate, np.vstack, and np.hstack. np.concatenate 

takes a tuple or list of arrays as its first argument, as we can see here: 

In[43]: x = np.array([1, 2, 3]) 

y = np.array([3, 2, 1]) 
np.concatenate([x, y]) 

Out[43]: array([1, 2, 3, 3, 2, 1]) 

You can also concatenate more than two arrays at once: 

In[44]: z = [99, 99, 99] 

print(np.concatenate([x, y, z])) [ 

1 2 3 3 2 1 99 99 99] 

np.concatenate can also be used for two-dimensional arrays: 

In[45]: grid = np.array([[1, 2, 3], 

[4, 5, 6]]) 

In[46]: # concatenate along the first axis 

np.concatenate([grid, grid]) 

Out[46]: array([[1, 2, 3], 

[4, 5, 6], 

[1, 2, 3], 

[4, 5, 6]]) 

In[47]: # concatenate along the second axis (zero-indexed) 

np.concatenate([grid, grid], axis=1) 

Out[47]: array([[1, 2, 3, 1, 2, 3], 

[4, 5, 6, 4, 5, 6]]) 

For working with arrays of mixed dimensions, it can be clearer to use the np.vstack 
(vertical stack) and np.hstack (horizontal stack) functions: 

In[48]: x = np.array([1, 2, 3]) 

grid = np.array([[9, 8, 7], 

[6, 5, 4]]) 

 
# vertically stack the arrays 

np.vstack([x, grid]) 

Out[48]: array([[1, 2, 3], 

[9, 8, 7], 

[6, 5, 4]]) 



 

Page 61 of 580  

In[49]: #  horizontally  stack  the  arrays 

y = np.array([[99], 

[99]]) 

np.hstack([grid, y]) 

Out[49]: array([[ 9, 8, 7, 99], 

[ 6, 5, 4, 99]]) 

Similarly, np.dstack will stack arrays along the third axis. 

Splitting of arrays 

The opposite of concatenation is splitting, which is implemented by the functions np.split, 

np.hsplit, and np.vsplit. For each of these, we can pass a list of indices giving the split points: 

In[50]: x = [1, 2, 3, 99, 99, 3, 2, 1] 

x1, x2, x3 = np.split(x, [3, 5]) 

print(x1, x2, x3) 

[1 2 3] [99 99] [3 2 1] 

Notice that N split points lead to N + 1 subarrays. The related functions np.hsplit 

and np.vsplit are similar: 

In[51]: grid = np.arange(16).reshape((4, 4)) 
grid 

 
Out[51]: array([[ 0, 1, 2, 3], 
[ 4, 5, 6, 7], 
[ 8, 9, 10, 11], 
[12, 13, 14, 15]]) 

In[52]: upper, lower = np.vsplit(grid, [2]) 

print(upper) 
print(lower) 

[[0 1 2 3] 

[4 5 6 7]] 

[[ 8 9 10 11] 

[12 13 14 15]] 

In[53]: left, right = np.hsplit(grid, [2]) 

print(left) 
print(right) 

 
[[ 0 1] 
[ 4 5] 
[ 8 9] 
[12 13]] 

[[ 2 3] 

[ 6 7] 
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[10 11] 

[14 15]] 

Similarly, np.dsplit will split arrays along the third axis. 

Computation on NumPy Arrays: Universal Functions 

Up until now, we have been discussing some of the basic nuts and bolts of NumPy; in the next 

few sections, we will dive into the reasons that NumPy is so important in the Python data 

science world. Namely, it provides an easy and flexible interface to opti‐ mized computation 

with arrays of data. 

Computation on NumPy arrays can be very fast, or it can be very slow. The key to making 

it fast is to use vectorized operations, generally implemented through Num‐ Py’s universal 

functions (ufuncs). This section motivates the need for NumPy’s ufuncs, which can be used to 

make repeated calculations on array elements much more effi‐ cient. It then introduces 

many of the most common and useful arithmetic ufuncs available in the NumPy package. 

Array arithmetic 

NumPy’s ufuncs feel very natural to use because they make use of Python’s native 

arithmetic operators. The standard addition, subtraction, multiplication, and 

division can all be used: 

In[7]: x = np.arange(4) 

print("x =", x) 
print("x + 5 =", x + 5) 
print("x - 5 =", x - 5) 
print("x * 2 =", x * 2) 

print("x / 2 =", x / 2) 

print("x // 2 =", x // 2) # floor division 

x = [0 1 2 3] 

x + 5 = [5 6 7 8] 

x - 5 = [-5 -4 -3 -2] 

x * 2 = [0 2 4 6] 

x / 2 = [ 0. 0.5 1. 1.5] 

x // 2 = [0 0 1 1] 

There is also a unary ufunc for negation, a ** operator for exponentiation, and a % 
operator for modulus: 

In[8]: print("-x = ", -x) 
print("x ** 2 = ", x ** 2) 
print("x % 2 = ", x % 2) 

-x = [ 0 -1 -2 -3] 

x ** 2 = [0 1 4 9] 

x % 2 = [0 1 0 1] 

In addition, these can be strung together however you wish, and the standard 

order of operations is respected: 

In[9]: -(0.5*x + 1) ** 2 
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Out[9]: array([-1. , -2.25, -4. , -6.25]) 

All of these arithmetic operations are simply convenient wrappers around specific functions 

built into NumPy; for example, the + operator is a wrapper for the add function: 

In[10]: np.add(x, 2) 

Out[10]: array([2, 3, 4, 5]) 

 

Table . Arithmetic operators implemented in NumPy 

+ np.add Addition (e.g., 1 + 1 = 2) 

- np.subtract Subtraction (e.g., 3 - 2 = 1) 

- np.negative Unary negation (e.g., -2) 

* np.multiply Multiplication (e.g., 2 * 3 = 6) 

/ np.divide Division (e.g., 3 / 2 = 1.5) 

// np.floor_divide Floor division (e.g., 3 // 2 = 1) 

** np.power Exponentiation (e.g., 2 ** 3 = 8) 

% np.mod Modulus/remainder (e.g., 9 % 4 = 1) 

Absolute value 

Just as NumPy understands Python’s built-in arithmetic operators, it also understands 

Python’s built-in absolute value function: 

In[11]: x = np.array([-2, -1, 0, 1, 2]) 

abs(x) 

Out[11]: array([2, 1, 0, 1, 2]) 

The corresponding NumPy ufunc is np.absolute, which is also available under the 
alias np.abs: 

In[12]: np.absolute(x) 

Out[12]: array([2, 1, 0, 1, 2]) 

In[13]: np.abs(x) 

Out[13]: array([2, 1, 0, 1, 2]) 

This ufunc can also handle complex data, in which the absolute value returns the magnitude: 

In[14]: x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j]) 
np.abs(x) 

Out[14]: array([ 5., 5., 2., 1.]) 

 

Trigonometric functions 

NumPy provides a large number of useful ufuncs, and some of the most useful for 

Operator Equivalent ufunc Description 
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the data scientist are the trigonometric functions. We’ll start by defining an array 

of angles: 

In[15]: theta = np.linspace(0, np.pi, 3) 

Now we can compute some trigonometric functions on these values: 

In[16]: print("theta = ", theta) 
print("sin(theta) = ", np.sin(theta)) 
print("cos(theta) = ", np.cos(theta)) 
print("tan(theta) = ", np.tan(theta)) 

theta = [ 0. 1.57079633 3.14159265] 
sin(theta) = [ 0.00000000e+

00 
1.00000000e
+00 

1.22464680e-
16] 

cos(theta) = [ 1.00000000e+
00 

6.12323400e
-17 

-
1.00000000e+0
0] 

tan(theta) = [ 0.00000000e+
00 

1.63312394e
+16 

-1.22464680e-
16] 

The values are computed to within machine precision, which is why values that 
should be zero do not always hit exactly zero. Inverse trigonometric functions are 

also   available: 

In[17]: x = [-1, 0, 1] 

print("x = ", x) 

print("arcsin(x) = ", np.arcsin(x)) 

print("arccos(x) = ", np.arccos(x)) 

print("arctan(x) = ", np.arctan(x)) 

 
x = [-1, 0, 1]  
arcsin(x) = [-

1.57079633 
0. 1.5707963

3] 
arccos(x) = [ 

3.14159265 
1.570796
33 

0. ] 

arctan(x) = [-
0.78539816 

0. 0.7853981
6] 

 
Exponents and logarithms 

Another common type of operation available in a NumPy ufunc are the exponentials: 

In[18]: x = [1, 2, 3] 

print("x =", x) 

print("e^x =", np.exp(x)) 

print("2^x =", np.exp2(x)) 

print("3^x =", np.power(3, x)) 

 
x = [1, 2, 3]  
e^x = [ 2.71828183 7.389056

1 
20.0855369
2] 

2^x = [ 2. 4. 8.]   
3^x = [ 3 9 27]   
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The inverse of the exponentials, the logarithms, are also available. The basic np.log 
gives the natural logarithm; if you prefer to compute the base-2 logarithm or the 
base-10 logarithm, these are available as well: 

In[19]: x = [1, 2, 4, 10] 

print("x =", x) 

print("ln(x) =", np.log(x)) 

print("log2(x) =", np.log2(x)) 

print("log10(x) =", np.log10(x)) 

 
x = [1, 2, 4, 10]  
ln(x) = [ 0. 0.693147

18 
1.386294
36 

2.3025850
9] 

log2(x) = [ 0. 1. 2. 3.3219280
9] 

log10(x) = [ 0. 0.30103 0.602059
99 

1. ] 

There are also some specialized versions that are useful for maintaining precision 
with very small input: 

In[20]: x = [0, 0.001, 0.01, 0.1] 

print("exp(x) - 1 =", np.expm1(x)) 

print("log(1 + x) =", np.log1p(x)) 

 
exp(x) - 1 = [ 0. 0.0010005 0.01005017 

0.10517092] 
log(1 + x) = [ 0. 0.0009995 0.00995033 

0.09531018] 

When x is very small, these functions give more precise values than if the raw np.log 
or np.exp were used. 

 

Specialized ufuncs 

NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise 

arithmetic, comparison operators, conversions from radians to degrees, rounding 

and remainders, and much more. A look through the NumPy documentation 

reveals a lot of interesting functionality. 

Another excellent source for more specialized and obscure ufuncs is the submodule 

scipy.special. If you want to compute some obscure mathematical function on your data, 

chances are it is implemented in scipy.special. There are far too many functions to list them 

all, but the following snippet shows a couple that might come up in a statistics context: 

In[21]: from scipy import special 

In[22]: # Gamma functions (generalized factorials) and related functions 

x = [1, 5, 10] 

print("gamma(x) =", special.gamma(x)) 
print("ln|gamma(x)| =", 
special.gammaln(x)) print("beta(x, 2)
 =", special.beta(x, 2)) 
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gamma(x) = [ 1.00000000e+00 2.40000000e+01
 3.62880000e+05] ln|gamma(x)| = [ 0. 3.17805383 
12.80182748] 

beta(x, 2) = [ 0.5 0.03333333 0.00909091] 

In[23]: # Error  function  (integral of  
Gaussian) # its complement, and its 
inverse 

x = np.array([0, 0.3, 0.7, 1.0]) 

print("erf(x) =", special.erf(x)) 

print("erfc(x) =", special.erfc(x)) 

print("erfinv(x) =", special.erfinv(x)) 

erf(x) = [ 0. 0.32862676 0.67780119 0.84270079] 

erfc(x) = [ 1. 0.67137324 0.32219881 0.15729921] 

erfinv(x) = [ 0. 0.27246271 0.73286908 inf] 

There are many, many more ufuncs available in both NumPy and scipy.special. 
Because the documentation of these packages is available online, a web search 
along the lines of “gamma function python” will generally find the relevant 
information. 

Advanced Ufunc Features 

Many NumPy users make use of ufuncs without ever learning their full set of features. We’ll 

outline a few specialized features of ufuncs here. 

Specifying output 

For large calculations, it is sometimes useful to be able to specify the array where the result 
of the calculation will be stored. Rather than creating a temporary array, you can use this to 
write computation results directly to the memory location where you’d like them to be. 
For all ufuncs, you can do this using the out argument of the function: 

In[24]: x = np.arange(5) 

y = np.empty(5) 
np.multiply(x, 10, out=y) 
print(y) 

[ 0. 10. 20. 30. 40.] 

This can even be used with array views. For example, we can write the results of a 

computation to every other element of a specified array: 

In[25]: y = np.zeros(10) 

np.power(2, x, out=y[::2]) 

print(y) 

[ 1. 0. 2. 0. 4. 0. 8. 0. 16. 0.] 

If we had instead written y[::2] = 2 ** x, this would have resulted in the creation of a 
temporary array to hold the results of 2 ** x, followed by a second operation copying those 

values into the y array. This doesn’t make much of a difference for such a small computation, 
but for very large arrays the memory savings from careful use of the out argument can be 
significant. 
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Aggregates 

For binary ufuncs, there are some interesting aggregates that can be computed directly 

from the object. For example, if we’d like to reduce an array with a particular operation, we 

can use the reduce method of any ufunc. A reduce repeatedly applies a given operation to 

the elements of an array until only a single result remains. 

For example, calling reduce on the add ufunc returns the sum of all elements in 
the array: 

In[26]: x = np.arange(1, 6) 
np.add.reduce(x) 

Out[26]: 15 

Similarly, calling reduce on the multiply ufunc results in the product of all array 
elements: 

In[27]: np.multiply.reduce(x) 

Out[27]: 120 

If we’d like to store all the intermediate results of the computation, we can instead use 
accumulate: 

In[28]: np.add.accumulate(x) 

Out[28]: array([ 1, 3, 6, 10, 15]) 

Aggregations: Min, Max, and Everything in Between 

Often when you are faced with a large amount of data, a first step is to compute sum‐ mary 

statistics for the data in question. Perhaps the most common summary statistics are the 

mean and standard deviation, which allow you to summarize the “typical” val‐ ues in a 

dataset, but other aggregates are useful as well (the sum, product, median, minimum and 

maximum, quantiles, etc.). 

NumPy has fast built-in aggregation functions for working on arrays; we’ll discuss and 

demonstrate some of them here. 

Summing the Values in an Array 

As a quick example, consider computing the sum of all values in an array. Python 

itself can do this using the built-in sum function: 

In[1]: import numpy as np 

In[2]: L = 
np.random.random(100) 
sum(L) 

Out[2]: 55.61209116604941 

The syntax is quite similar to that of NumPy’s sum function, and the result is the 
same in the simplest case: 

In[3]: np.sum(L) 

Out[3]: 55.612091166049424 

However, because it executes the operation in compiled code, NumPy’s version of the 
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operation is computed much more quickly: 

In[4]: big_array = np.random.rand(1000000) 

%timeit sum(big_array) 

%timeit np.sum(big_array) 

10 loops, best of 3: 104 ms per loop 
1000 loops, best of 3: 442 µs per loop 

Be careful, though: the sum function and the np.sum function are not identical, which can 
sometimes lead to confusion! In particular, their optional arguments have differ‐ ent 
meanings, and np.sum is aware of multiple array dimensions, as we will see in the following 
section. 

Minimum and Maximum 

Similarly, Python has built-in min and max functions, used to find the minimum 
value and maximum value of any given array: 

In[5]: min(big_array), max(big_array) 

Out[5]: (1.1717128136634614e-06, 0.9999976784968716) 

NumPy’s corresponding functions have similar syntax, and again operate much 

more quickly: 

In[6]: np.min(big_array), np.max(big_array) 

Out[6]: (1.1717128136634614e-06, 0.9999976784968716) 

In[7]: %timeit min(big_array) 

%timeit np.min(big_array) 

10 loops, best of 3: 82.3 ms per loop 
1000 loops, best of 3: 497 µs per loop 

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods 
of the array object itself: 

In[8]: print(big_array.min(), big_array.max(), big_array.sum()) 

1.17171281366e-06 0.999997678497 499911.628197 

Whenever possible, make sure that you are using the NumPy version of these 

aggre‐ gates when operating on NumPy arrays! 

Multidimensional aggregates 

One common type of aggregation operation is an aggregate along a row or column. 

Say you have some data stored in a two-dimensional array: 

In[9]: M = np.random.random((3, 4)) 

print(M) 

 
[[ 0.8967576 0.037837

39 
0.759525
19 

0.0668282
7] 

[ 0.8354065 0.991968
18 

0.195447
69 

0.4344708
4] 

[ 
0.66859307 

0.150387
21 

0.379114
23 

0.6687194 
]] 
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By default, each NumPy aggregation function will return the aggregate over the entire array: 

In[10]: M.sum() 

Out[10]: 6.0850555667307118 

Aggregation functions take an additional argument specifying the axis along which the 

aggregate is computed. For example, we can find the minimum value within each column by 

specifying axis=0: 

In[11]: M.min(axis=0) 

Out[11]: array([ 0.66859307, 0.03783739, 0.19544769, 0.06682827]) 

The function returns four values, corresponding to the four columns of numbers. Similarly, 

we can find the maximum value within each row: 

In[12]: M.max(axis=1) 

Out[12]: array([ 0.8967576 , 0.99196818, 0.6687194 ]) 

The way the axis is specified here can be confusing to users coming from other lan‐ guages. 

The axis keyword specifies the dimension of the array that will be collapsed, rather than the 

dimension that will be returned. So specifying axis=0 means that the first axis will be 

collapsed: for two-dimensional arrays, this means that values within each column will be 

aggregated. 

 

 
Table. Aggregation functions available in NumPy 

np.sum np.nansum Compute sum of elements 

np.prod np.nanprod Compute product of elements 

np.mean np.nanmean Compute median of elements 

np.std np.nanstd Compute standard deviation 

np.var np.nanvar Compute variance 

np.min np.nanmin Find minimum value 

np.max np.nanmax Find maximum value 

np.argmin np.nanargmin Find index of minimum value 

np.argmax np.nanargmax Find index of maximum value 

np.median np.nanmedian Compute median of elements 

np.percentile np.nanpercentile Compute rank-based statistics of elements 

np.any N/A Evaluate whether any elements are true 

np.all N/A Evaluate whether all elements are true 

 
We will see these aggregates often throughout the rest of the book. 

Function Name NaN-safe Version Description 
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Example: What Is the Average Height of US Presidents? 

Aggregates available in NumPy can be extremely useful for summarizing a set of val‐ ues. As 

a simple example, let’s consider the heights of all US presidents. This data is available in the 

file president_heights.csv, which is a simple comma-separated list of labels and values: 

In[13]: !head -4 

data/president_heights.csv 

order,name,height(cm) 

1,George Washington,189 

2,John Adams,170 
3,Thomas 
Jefferson,189 

We’ll use the Pandas package, which we’ll explore more fully in Chapter 3, to read the file and 

extract this information (note that the heights are measured in centimeters): 

In[14]: import pandas as pd 

data = 
pd.read_csv('data/president_heights.csv') 
heights = np.array(data['height(cm)']) 
print(heights) 

[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173 

174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183 

177 185 188 188 182 185] 

Now that we have this data array, we can compute a variety of summary statistics: 

In[15]: print("Mean height: ", heights.mean()) 
print("Standard deviation:", heights.std()) 
print("Minimum height: ", heights.min()) 
print("Maximum height: ", heights.max()) 

Mean height: 179.738095238 

Standard deviation: 6.93184344275 

Minimum height: 163 

Maximum height: 193 

Note that in each case, the aggregation operation reduced the entire array to a 

single summarizing value, which gives us information about the distribution of 

values. We may also wish to compute quantiles: 

In[16]: print("25th percentile: ", np.percentile(heights, 25)) 
print("Median: ", np.median(heights)) 
print("75th percentile: ", np.percentile(heights, 75)) 

 
25th percentile: 174.2

5 
Median: 182.0 
75th percentile: 183.0 

We see that the median height of US presidents is 182 cm, or just shy of six feet. 

Of course, sometimes it’s more useful to see a visual representation of this data, which we 
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can accomplish using tools in Matplotlib (we’ll discuss Matplotlib more fully in Chapter 4). 

For example, this code generates the chart shown in Figure 2-3: 

In[17]: %matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn; seaborn.set() # set plot style 

In[18]: plt.hist(heights) 

plt.title('Height Distribution of US Presidents') 
plt.xlabel('height (cm)') 

plt.ylabel('number'); 

 

Figure 1:Histogram of presidential heights 

Computation on Arrays: Broadcasting 

We saw in the previous section how NumPy’s universal functions can be used to vec‐ torize 

operations and thereby remove slow Python loops. Another means of vectoriz‐ ing 

operations is to use NumPy’s broadcasting functionality. Broadcasting is simply a set of rules 

for applying binary ufuncs (addition, subtraction, multiplication, etc.) on arrays of different 

sizes. 

Introducing Broadcasting 

Recall that for arrays of the same size, binary operations are performed on an 

element-by-element basis: 

In[1]: import numpy as np 

In[2]: a = np.array([0, 1, 2]) 

b = np.array([5, 5, 5]) a + 
b 

Out[2]: array([5, 6, 7]) 

Broadcasting allows these types of binary operations to be performed on arrays of dif‐ ferent 

sizes—for example, we can just as easily add a scalar (think of it as a zero- dimensional array) 

to an array: 

In[3]: a + 5 
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Out[3]: array([5, 6, 7]) 

We can think of this as an operation that stretches or duplicates the value 5 into 
the array [5, 5, 5], and adds the results. The advantage of NumPy’s broadcasting is 
that this duplication of values does not actually take place, but it is a useful mental 
model as we think about broadcasting. 

We can similarly extend this to arrays of higher dimension. Observe the result when we add 

a one-dimensional array to a two-dimensional array: 

In[4]: M = np.ones((3, 3)) M 

 
Out[4]: array([[ 1., 1., 1.], 

[ 1., 1., 1.], 
[ 1., 1., 1.]]) 

In[5]: M + a   

Out[5]: array([[ 1., 2., 3.], 
[ 1., 2., 3.], 
[ 1., 2., 3.]]) 

Here the one-dimensional array a is stretched, or broadcast, across the second dimension in 

order to match the shape of M. 

While these examples are relatively easy to understand, more complicated cases can involve 

broadcasting of both arrays. Consider the following example: 

In[6]: a = np.arange(3) 

b = np.arange(3)[:, np.newaxis] 

 
print(a) 
print(b) 

[0 1 2] 

[[0] 

[1] 

[2]] 

In[7]: a + b 

Out[7]: array([[0, 1, 2], 

[1, 2, 3], 

[2, 3, 4]]) 

Just as before we stretched or broadcasted one value to match the shape of the other, here we’ve 

stretched both a and b to match a common shape, and the result is a two- dimensional array! 

Example: Selecting Random Points 

One common use of fancy indexing is the selection of subsets of rows from a matrix. For 
example, we might have an N by D matrix representing N points in D dimen‐ sions, such as 

the following points drawn from a two-dimensional normal distribu‐ tion: 

In[13]: mean = [0, 0] 

cov = [[1, 2], 
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[2, 5]] 

X = rand.multivariate_normal(mean, cov, 
100) X.shape 

Out[13]: (100, 2) 

Using the plotting tools we will discuss in Chapter 4, we can visualize these points 

as a scatter plot (Figure 2-7): 

In[14]: %matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn; seaborn.set() # for plot styling 

 
plt.scatter(X[:, 0], X[:, 1]); 

Let’s use fancy indexing to select 20 random points. We’ll do this by first choosing 

20 random indices with no repeats, and use these indices to select a portion of the 

origi‐ nal array: 

In[15]: indices = np.random.choice(X.shape[0], 20, 
replace=False) indices 

Out[15]: array([93, 45, 73, 81, 50, 10, 98, 94, 4, 64, 65, 89, 47, 84, 82, 

80, 25, 90, 63, 20]) 

In[16]: selection = X[indices] # fancy indexing here 

selection.shape 

Out[16]: (20, 2) 

Now to see which points were selected, let’s over-plot large circles at the locations of the 

selected points 

In[17]: plt.scatter(X[:, 0], X[:, 1], alpha=0.3) 
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plt.scatter(selection[:, 0], selection[:, 1], 
facecolor='none', s=200); 

Figure . Random selection among points 

This sort of strategy is often used to quickly partition datasets, as is often needed in train/test 

splitting for validation of statistical models and in sampling approaches to answering 

statistical questions. 

Modifying Values with Fancy Indexing 

Just as fancy indexing can be used to access parts of an array, it can also be used to modify 
parts of an array. For example, imagine we have an array of indices and we’d like to set the 

corresponding items in an array to some value: 

In[18]: x = np.arange(10) 

i = np.array([2, 1, 8, 4]) 

x[i] = 99 

print(x) 

[ 0 99 99 3 99 5 6 7 99 9] 

We can use any assignment-type operator for this. For example: 

In[19]: x[i] -= 10 

print(x) 

[ 0 89 89 3 89 5 6 7 89 9] 

Notice, though, that repeated indices with these operations can cause some poten‐ 

tially unexpected results. Consider the following: 

In[20]: x = np.zeros(10) 

x[[0, 0]] = [4, 6] 

print(x) 

[ 6. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

Where did the 4 go? The result of this operation is to first assign x[0] = 4, followed 
by x[0] = 6. The result, of course, is that x[0] contains the value 6. 

Fair enough, but consider this operation: 

In[21]: i = [2, 3, 3, 4, 4, 4] 
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x[i] += 1 

x 

Out[21]: array([ 6., 0., 1., 1., 1., 0., 0., 0., 0., 0.]) 

You might expect that x[3] would contain the value 2, and x[4] would contain the value 3, as 
this is how many times each index is repeated. Why is this not the case? Conceptually, this 
is because x[i] += 1 is meant as a shorthand of x[i] = x[i] + 1. x[i] + 1 is evaluated, and then the 
result is assigned to the indices in x. With this in mind, it is not the augmentation that 

happens multiple times, but the assignment, which leads to the rather nonintuitive results. 

So what if you want the other behavior where the operation is repeated? For this, 

you can use the at() method of ufuncs (available since NumPy 1.8), and do the 

following: 

In[22]: x = np.zeros(10) 

np.add.at(x, i, 1) 

print(x) 

[ 0. 0. 1. 2. 3. 0. 0. 0. 0. 0.] 

The at() method does an in-place application of the given operator at the specified indices 
(here, i) with the specified value (here, 1). Another method that is similar in spirit is the 
reduceat() method of ufuncs, which you can read about in the NumPy documentation. 

Example: Binning Data 

You can use these ideas to efficiently bin data to create a histogram by hand. For 

example, imagine we have 1,000 values and would like to quickly find where they 

fall within an array of bins. We could compute it using ufunc.at like this: 

In[23]: np.random.seed(42) 

x = np.random.randn(100) 

 
# compute a histogram by 
hand bins = np.linspace(-5, 5, 
20) counts = 
np.zeros_like(bins) 

 
# find the appropriate bin for each x 

i = np.searchsorted(bins, x) 

 
# add 1 to each of these bins 

np.add.at(counts, i, 1) 

The counts now reflect the number of points within each bin—in other words, a 

his‐ togram  

In[24]: # plot the results 
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plt.plot(bins, counts, linestyle='steps'); 

Figure. A histogram computed by hand 

Of course, it would be silly to have to do this each time you want to plot a histogram. This is 

why Matplotlib provides the plt.hist() routine, which does the same in a single line: 

plt.hist(x, bins, histtype='step'); 

This function will create a nearly identical plot to the one seen here. To compute 

the binning, Matplotlib uses the np.histogram function, which does a very similar 

com‐ putation to what we did before. Let’s compare the two here: 

In[25]: print("NumPy routine:") 

%timeit counts, edges = np.histogram(x, bins) 

print("Custom routine:") 

%timeit np.add.at(counts, np.searchsorted(bins, x), 1) 

NumPy routine: 

10000 loops, best of 3: 97.6 µs per loop 
Custom routine: 

10000 loops, best of 3: 19.5 µs per loop 

Our own one-line algorithm is several times faster than the optimized algorithm in NumPy! 

How can this be? If you dig into the np.histogram source code (you can do  this in IPython by 

typing np.histogram??), you’ll see that it’s quite a bit more involved than the simple search-

and-count that we’ve done; this is because NumPy’s algorithm is more flexible, and 

particularly is designed for better performance when the number of data points becomes 

large: 

In[26]: x = np.random.randn(1000000) 

print("NumPy routine:") 

%timeit counts, edges = np.histogram(x, bins) 

 
print("Custom routine:") 

%timeit np.add.at(counts, np.searchsorted(bins, x), 1) 

NumPy routine: 
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10 loops, best of 3: 68.7 ms per loop 
Custom routine: 

10 loops, best of 3: 135 ms per loop 

 

Sorting Arrays 

Up to this point we have been concerned mainly with tools to access and operate on array 

data with NumPy. This section covers algorithms related to sorting values in NumPy arrays. 

These algorithms are a favorite topic in introductory computer sci‐ ence courses: if you’ve 

ever taken one, you probably have had dreams (or, depending on your temperament, 

nightmares) about insertion sorts, selection sorts, merge sorts, quick sorts, bubble sorts, and 

many, many more. All are means of accomplishing a similar task: sorting the values in a list 

or array. 

For example, a simple selection sort repeatedly finds the minimum value from a list, and 

makes swaps until the list is sorted. We can code this in just a few lines of Python: 

In[1]: import numpy as np 

 
def selection_sort(x): 

for i in range(len(x)): 

swap = i + np.argmin(x[i:]) (x[i], 
x[swap]) = (x[swap], x[i]) 

return x 

In[2]: x = np.array([2, 1, 4, 3, 5]) 
selection_sort(x) 

Out[2]: array([1, 2, 3, 4, 5]) 

Fortunately, Python contains built-in sorting algorithms that are much more efficient than 

either of the simplistic algorithms just shown. We’ll start by looking at the Python built-ins, 

and then take a look at the routines included in NumPy and opti‐ mized for NumPy arrays. 

Fast Sorting in NumPy: np.sort and np.argsort 

Although Python has built-in sort and sorted functions to work with lists, we won’t 
discuss them here because NumPy’s np.sort function turns out to be much more 

efficient and useful for our purposes. By default np.sort uses an  N log N , quick‐ sort algorithm, 
though mergesort and heapsort are also available. For most applica‐ tions, the default 
quicksort is more than sufficient. 

To return a sorted version of the array without modifying the input, you can use 

np.sort: 

In[5]: x = np.array([2, 1, 4, 3, 5]) 
np.sort(x) 

Out[5]: array([1, 2, 3, 4, 5]) 

If you prefer to sort the array in-place, you can instead use the sort method of arrays: 

In[6]: x.sort() 
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print(x) 

[1 2 3 4 5] 

A related function is argsort, which instead returns the indices of the sorted 
elements: 

In[7]: x = np.array([2, 1, 4, 3, 5]) i = 
np.argsort(x) 

print(i) 

[1 0 3 2 4] 

The first element of this result gives the index of the smallest element, the second 

value gives the index of the second smallest, and so on. These indices can then be 

used (via fancy indexing) to construct the sorted array if desired: 

In[8]: x[i] 

Out[8]: array([1, 2, 3, 4, 5]) 

 

Sorting along rows or columns 

A useful feature of NumPy’s sorting algorithms is the ability to sort along specific rows or 

columns of a multidimensional array using the axis argument. For example: 

In[9]: rand = 
np.random.RandomState(42) X = 
rand.randint(0, 10, (4, 6)) 
print(X) 

[[6 3 7 4 6 9] 

[2 6 7 4 3 7] 

[7 2 5 4 1 7] 

[5 1 4 0 9 5]] 

In[10]: # sort each column of X 

np.sort(X, axis=0) 

Out[10]: array([[2, 1, 4, 0, 1, 5], 

[5, 2, 5, 4, 3, 7], 

[6, 3, 7, 4, 6, 7], 

[7, 6, 7, 4, 9, 9]]) 

In[11]: # sort each row of X 

np.sort(X, axis=1) 

Out[11]: array([[3, 4, 6, 6, 7, 9], 

[2, 3, 4, 6, 7, 7], 

[1, 2, 4, 5, 7, 7], 

[0, 1, 4, 5, 5, 9]]) 

Keep in mind that this treats each row or column as an independent array, and any 
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relationships between the row or column values will be lost! 

Partial Sorts: Partitioning 

Sometimes we’re not interested in sorting the entire array, but simply want to find the K 
smallest values in the array. NumPy provides this in the np.partition function. np.partition 

takes an array and a number K; the result is a new array with the small‐ est K values to the 

left of the partition, and the remaining values to the right, in arbi‐ trary order: 

In[12]: x = np.array([7, 2, 3, 1, 6, 5, 4]) 

np.partition(x, 3) 

Out[12]: array([2, 1, 3, 4, 6, 5, 7]) 

Note that the first three values in the resulting array are the three smallest in the array, 

and the remaining array positions contain the remaining values. Within the two partitions, 

the elements have arbitrary order. 

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional 

array: 

In[13]: np.partition(X, 2, axis=1) 

Out[13]: array([[3, 4, 6, 7, 6, 9], 

[2, 3, 4, 7, 6, 7], 

[1, 2, 4, 5, 7, 7], 

[0, 1, 4, 5, 9, 5]]) 

The result is an array where the first two slots in each row contain the smallest 

values from that row, with the remaining values filling the remaining slots. 

Finally, just as there is a np.argsort that computes indices of the sort, there is a 
np.argpartition that computes indices of the partition. We’ll see this in action in the 
following section. 

Example: k-Nearest Neighbors 

Let’s quickly see how we might use this argsort function along multiple axes to find 
the nearest neighbors of each point in a set. We’ll start by creating a random set of 
10 points on a two-dimensional plane. Using the standard convention, we’ll 
arrange these in a 10×2 array: 

In[14]: X = rand.rand(10, 2) 

To get an idea of how these points look, let’s quickly scatter plot them: 

In[15]: %matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn; seaborn.set() # Plot styling 
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plt.scatter(X[:, 0], X[:, 1], s=100); 

Figure . Visualization of points in the k-neighbors example 

Now we’ll compute the distance between each pair of points. Recall that the squared- 

distance between two points is the sum of the squared differences in each dimension; using 

the efficient broadcasting  routines provided by NumPy, we can compute the matrix of 

square distances in a sin‐ gle line of code: 

In[16]: dist_sq = np.sum((X[:,np.newaxis,:] - X[np.newaxis,:,:]) ** 2, axis=-1) 

This operation has a lot packed into it, and it might be a bit confusing if you’re unfa‐ miliar 

with NumPy’s broadcasting rules. When you come across code like this, it can be useful to 

break it down into its component steps: 

In[17]: # for each pair of points, compute differences in their 
coordinates differences = X[:, np.newaxis, :] - 
X[np.newaxis, :, :] differences.shape 

Out[17]: (10, 10, 2) 

In[18]: # square the coordinate differences 
sq_differences = differences ** 2 
sq_differences.shape 

Out[18]: (10, 10, 2) 

In[19]: # sum the coordinate differences to get the squared distance 

dist_sq = sq_differences.sum(-1) 
dist_sq.shape 

Out[19]: (10, 10) 

Just to double-check what we are doing, we should see that the diagonal of this matrix (i.e., 

the set of distances between each point and itself) is all zero: 

In[20]: dist_sq.diagonal() 

Out[20]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) 

It checks out! With the pairwise square-distances converted, we can now use np.arg sort to 
sort along each row. The leftmost columns will then give the indices of the nearest neighbors: 

In[21]: nearest = np.argsort(dist_sq, axis=1) 
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print(nearest) 

 
[[0 3 9 7 1 4 2 5 6 8] 
[1 4 7 9 3 6 8 5 0 2] 
[2 1 4 6 3 0 8 9 7 5] 
[3 9 7 0 1 4 5 8 6 2] 
[4 1 8 5 6 7 9 3 0 2] 
[5 8 6 4 1 7 9 3 2 0] 
[6 8 5 4 1 7 9 3 2 0] 
[7 9 3 1 4 0 5 8 6 2] 
[8 5 6 4 1 7 9 3 2 0] 
[9 7 3 0 1 4 5 8 6 2]] 

Notice that the first column gives the numbers 0 through 9 in order: this is due to 

the fact that each point’s closest neighbor is itself, as we would expect. 

By using a full sort here, we’ve actually done more work than we need to in this case. If we’re 

simply interested in the nearest k neighbors, all we need is to partition each row so that the 

smallest k + 1 squared distances come first, with larger distances fill‐ ing the remaining 

positions of the array. We can do this with the np.argpartition function: 

In[22]: K = 2 

nearest_partition = np.argpartition(dist_sq, K + 1, axis=1) 

In order to visualize this network of neighbors, let’s quickly plot the points along with lines 

representing the connections from each point to its two nearest neighbors : 

In[23]: plt.scatter(X[:, 0], X[:, 1], s=100) 

 
# draw lines from each point to its two nearest neighbors 

K = 2 

 
for i in range(X.shape[0]): 

for j in nearest_partition[i, :K+1]: 

# plot a line from X[i] to X[j] 

# use some zip magic to make it happen: 

plt.plot(*zip(X[j], X[i]), color='black') 

Figure : Visualization of the neighbors of each point 
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Lab activity  : Reading and Writing CSV files 

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The 

lines starting with # sign are comments in Python and are used to elaborate the code.   

# # Reading and Writing CSV files 
# Let's import our datafile mpg.csv, which contains fuel economy data for 234 cars. 
#  
# * mpg : miles per gallon 
# * class : car classification 
# * cty : city mpg 
# * cyl : # of cylinders 
# * displ : engine displacement in liters 
# * drv : f = front-wheel drive, r = rear wheel drive, 4 = 4wd 
# * fl : fuel (e = ethanol E85, d = diesel, r = regular, p = premium, c = CNG) 
# * hwy : highway mpg 
# * manufacturer : automobile manufacturer 
# * model : model of car 
# * trans : type of transmission 
# * year : model year 
import csv 
get_ipython().run_line_magic('precision', '2') 
 
with open('datasets/mpg.csv') as csvfile: 
    mpg = list(csv.DictReader(csvfile)) 
 
mpg[:3]  # The first three dictionaries in our list. 
 
 
# `csv.Dictreader` has read in each row of our csv file as a dictionary. `len` shows that our list is 
comprised of 234 dictionaries. 
len(mpg) 
 
# `keys` gives us the column names of our csv. 
 
mpg[0].keys() 
 
# This is how to find the average cty fuel economy across all cars. All values in the dictionaries are 
strings, so we need to convert to float. 
# In[38]: 
sum(float(d['cty']) for d in mpg) / len(mpg) 
# Similarly this is how to find the average hwy fuel economy across all cars. 
# In[39]: 
sum(float(d['hwy']) for d in mpg) / len(mpg) 
# Use `set` to return the unique values for the number of cylinders the cars in our dataset have. 
cylinders = set(d['cyl'] for d in mpg) 
cylinders 
# Here's a more complex example where we are grouping the cars by number of cylinder, and finding 
the average cty mpg for each group. 
CtyMpgByCyl = [] 
 
for c in cylinders:  # iterate over all the cylinder levels 
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    summpg = 0 
    cyltypecount = 0 
    for d in mpg:  # iterate over all dictionaries 
        if d['cyl'] == c:  # if the cylinder level type matches, 
            summpg += float(d['cty'])  # add the cty mpg 
            cyltypecount += 1  # increment the count 
    CtyMpgByCyl.append((c, summpg / cyltypecount))  # append the tuple ('cylinder', 'avg mpg') 
 
CtyMpgByCyl.sort(key=lambda x: x[0]) 
CtyMpgByCyl 
# Use `set` to return the unique values for the class types in our dataset. 
vehicleclass = set(d['class'] for d in mpg)  # what are the class types 
vehicleclass 
# And here's an example of how to find the average hwy mpg for each class of vehicle in our dataset. 
HwyMpgByClass = [] 
 
for t in vehicleclass:  # iterate over all the vehicle classes 
    summpg = 0 
    vclasscount = 0 
    for d in mpg:  # iterate over all dictionaries 
        if d['class'] == t:  # if the cylinder amount type matches, 
            summpg += float(d['hwy'])  # add the hwy mpg 
            vclasscount += 1  # increment the count 
    HwyMpgByClass.append((t, summpg / vclasscount))  # append the tuple ('class', 'avg mpg') 
 
HwyMpgByClass.sort(key=lambda x: x[1]) 
HwyMpgByClass 
# # The Python Programming Language: Dates and Times 

Day 04- Data Manipulation with Pandas 

Pandas Introduction 

This week we're going to deepen our investigation to how Python can be used to manipulate, clean, 
and query data by looking at the Pandas data tool kit. Pandas was created by Wes McKinney in 2008, 
and is an open source project under a very permissive license. As an open source project it's got a 
strong community, with over one hundred software developers all committing code to help make it 
better. Before pandas existed we had only a hodge podge of tools to use, such as numpy, the python 
core libraries, and some python statistical tools. But pandas has quickly become the defacto library 
for representing relational data for data scientists. 

I want to take a moment here to introduce the question answersing site Stack Overflow. Stack 
Overflow is used broadly within the software development community to post questions about 
programming, programming languages, and programming toolkits. What's special about Stack 
Overflow is that it's heavily curated by the community. And the Pandas community, in particular, uses 
it as their number one resource for helping new members. It's quite possible if you post a question to 
Stack Overflow, and tag it as being Pandas and Python related, that a core Pandas developer will 
actually respond to your question. In addition to posting questions, Stack Overflow is a great place to 
go to see what issues people are having and how they can be solved. You can learn a lot from browsing 
Stacks at Stack Overflow and with pandas, this is where the developer community is. 
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A second resource you might want to consider are books. In 2012 Wes McKinney wrote the definitive 
Pandas reference book called Python for Data Analysis and published by O'Reilly, and it's recently been 
update to a second edition. I consider this the go to book for understanding how Pandas works. I also 
appreciate the more brief book "Learning the Pandas Library" by Matt Harrison. It's not a 
comprehensive book on data analysis and statistics. But if you just want to learn the basics of Pandas 
and want to do so quickly, I think it's a well laid out volume and it can be had for a good price. 

The field of data science is rapidly changing. There's new toolkits and method being created everyday. 
It can be tough to stay on top of it all. Marco Rodriguez and Tim Golden maintain a wonderful blog 
aggregator site called Planet Python. You can visit the webpage at planetpython.org, subscribe with 
an RSS reader, or get the latest articles from the @PlanetPython Twitter feed. There's lots of regular 
Python data science contributors, and I highly recommend it if you follow RSS feeds. 

Here's my last plug on how to deepen your learning. Kyle Polich runs an excellent podcast called Data 
Skeptic. It isn't Python based per se, but it's well produced and it has a wonderful mixture of interviews 
with experts in the field as well as short educational lessons. Much of the word he describes is specific 
to machine learning methods. But if that's something you are planning to explore through this 
specialization this course is in, I would really encourage you to subscribe to his podcast. 

That's it for a little bit of an introduction to this week of the course. Next we're going to dive right into 
Pandas library and talk about the series data structure. 

Pandas is a newer package built on top of NumPy, and provides an efficient implementation 

of a DataFrame. DataFrames are essentially multidimen‐ sional arrays with attached row and 

column labels, and often with heterogeneous types and/or missing data. As well as offering 

a convenient storage interface for labeled data, Pandas implements a number of powerful 

data operations familiar to users of both database frameworks and spreadsheet programs. 

As we saw, NumPy’s ndarray data structure provides essential features for the type of clean, 
well-organized data typically seen in numerical computing tasks. While it serves this purpose 

very well, its limitations become clear when we need more flexi‐ bility (attaching labels to 
data, working with missing data, etc.) and when attempting operations that do not map well 

to element-wise broadcasting (groupings, pivots, etc.), each of which is an important piece 

of analyzing the less structured data avail‐ able in many forms in the world around us. 

Pandas, and in particular its Series and DataFrame objects, builds on the NumPy array 
structure and provides efficient access to these sorts of “data munging” tasks that occupy 
much of a data scientist’s time. 

In this chapter, we will focus on the mechanics of using Series, DataFrame, and 
related structures effectively. We will use examples drawn from real datasets 
where appropriate, but these examples are not necessarily the focus. 

Installing and Using Pandas 

Installing Pandas on your system requires NumPy to be installed, and if you’re 

build‐ ing the library from source, requires the appropriate tools to compile 

the C and 

 

Cython sources on which Pandas is built. Details on this installation can be found in the 

Pandas documentation. If you followed the advice outlined in the preface and used the 

Anaconda stack, you already have Pandas installed. 

Once Pandas is installed, you can import it and check the version: 
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In[1]: import pandas 

pandas. version 

Out[1]: '0.18.1' 

Just as we generally import NumPy under the alias np, we will import Pandas under the alias 
pd: 

In[2]: import pandas as pd 

Introducing Pandas Objects 

At the very basic level, Pandas objects can be thought of as enhanced versions of NumPy 

structured arrays in which the rows and columns are identified with labels rather than simple 

integer indices. As we will see during the course of this chapter, Pandas provides a host of 

useful tools, methods, and functionality on top of the basic data structures, but nearly 

everything that follows will require an understanding of what these structures are. Thus, 

before we go any further, let’s introduce these three fundamental Pandas data structures: 

the Series, DataFrame, and Index. 

We will start our code sessions with the standard NumPy and Pandas imports: 

In[1]: import numpy as np 
import pandas as pd 

The Pandas Series Object 

A Pandas Series is a one-dimensional array of indexed data. It can be created from a list or 
array as follows: 

In[2]: data = pd.Series([0.25, 0.5, 0.75, 1.0]) 

data 

 
Out[2]: 0 0.25 
1 0.50 
2 0.75 
3 1.00 

dtype: float64 

As we see in the preceding output, the Series wraps both a sequence of values and a 

sequence of indices, which we can access with the values and index attributes. The values 

are simply a familiar NumPy array: 

In[3]: data.values 

Out[3]: array([ 0.25, 0.5 , 0.75, 1. ]) 

The index is an array-like object of type pd.Index, which we’ll discuss in more detail 
momentarily: 

In[4]: data.index 

Out[4]: RangeIndex(start=0, stop=4, step=1) 

Like with a NumPy array, data can be accessed by the associated index via the 

familiar Python square-bracket notation: 

In[5]: data[1] 
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Out[5]: 0.5 

In[6]: data[1:3] 

Out[6]: 1 0.50 

2 0.75 

dtype: float64 

As we will see, though, the Pandas Series is much more general and flexible than the 
one-dimensional NumPy array that it emulates. 

Series as generalized NumPy array 

From what we’ve seen so far, it may look like the Series object is basically inter‐ changeable 
with a one-dimensional NumPy array. The essential difference is the pres‐ ence of the index: 
while the NumPy array has an implicitly defined integer index used to access the values, the 
Pandas Series has an explicitly defined index associated with the values. 

This explicit index definition gives the Series object additional capabilities. For example, the 
index need not be an integer, but can consist of values of any desired type. For example, if 
we wish, we can use strings as an index: 

In[7]: data = pd.Series([0.25, 0.5, 0.75, 1.0], 

index=['a', 'b', 'c', 'd']) 

data 

 
Out[7]: a 0.25 
b 0.50 
c 0.75 
d 1.00 

dtype: float64 

And the item access works as expected: 

In[8]: data['b'] 

Out[8]: 0.5 

We can even use noncontiguous or nonsequential indices: 

In[9]: data = pd.Series([0.25, 0.5, 0.75, 1.0], 

index=[2, 5, 3, 7]) 

data 

 
Out[9]: 2 0.25 
5 0.50 
3 0.75 
7 1.00 

dtype: float64 

In[10]: data[5] 

Out[10]: 0.5 
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Series as specialized dictionary 

In this way, you can think of a Pandas Series a bit like a specialization of a Python dictionary. 

A dictionary is a structure that maps arbitrary keys to a set of arbitrary values, and a Series 
is a structure that maps typed keys to a set of typed values. This typing is important: just as 
the type-specific compiled code behind a NumPy array makes it more efficient than a Python 
list for certain operations, the type information of a Pandas Series makes it much more 

efficient than Python dictionaries for certain operations. 

We can make the Series-as-dictionary analogy even more clear by constructing a 
Series object directly from a Python dictionary: 

In[11]: population_dict = {'California': 38332521, 

'Texas': 26448193, 

'New York': 19651127, 

'Florida': 19552860, 

'Illinois': 12882135} 
population = pd.Series(population_dict) 
population 

 
Out[11]: California 383325

21 
Florida 195528

60 
Illinois 128821

35 
New York 196511

27 
Texa
s 

264481
93 

dtype: int64  

By default, a Series will be created where the index is drawn from the sorted keys. From 
here, typical dictionary-style item access can be performed: 

In[12]: population['California'] 

Out[12]: 38332521 

Unlike a dictionary, though, the Series also supports array-style operations such 
as slicing: 

In[13]: population['California':'Illinois'] 

 
Out[13]: California 383325

21 
Florida 195528

60 
Illinois 128821

35 
dtype: int64  

Constructing Series objects 

We’ve already seen a few ways of constructing a Pandas Series from scratch; all of them are 
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some version of the following: 

>>> pd.Series(data, index=index) 

where index is an optional argument, and data can be one of many entities. 

For example, data can be a list or NumPy array, in which case index defaults to an integer 
sequence: 

In[14]: pd.Series([2, 4, 6]) 

Out[14]: 0 2 

1 4 

2 6 

dtype: int64 

data can be a scalar, which is repeated to fill the specified index: 

In[15]: pd.Series(5, index=[100, 200, 300]) 

Out[15]: 100 5 

200 5 

300 5 

dtype: int64 

data can be a dictionary, in which index defaults to the sorted dictionary keys: 

In[16]: pd.Series({2:'a', 1:'b', 3:'c'}) 

Out[16]: 1 b 

2 a 
3 c 
dtype: object 

In each case, the index can be explicitly set if a different result is preferred: 

In[17]: pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2]) 

Out[17]: 3 c 

2 a 
dtype: object 

Notice that in this case, the Series is populated only with the explicitly identified keys. 

The Pandas DataFrame Object 

The next fundamental structure in Pandas is the DataFrame. Like the Series object discussed 
in the previous section, the DataFrame can be thought of either as a gener‐ alization of a 
NumPy array, or as a specialization of a Python dictionary. We’ll now take a look at each of 
these perspectives. 

DataFrame as a generalized NumPy array 

If a Series is an analog of a one-dimensional array with flexible indices, a DataFrame is an 
analog of a two-dimensional array with both flexible row indices and flexible column names. 

Just as you might think of a two-dimensional array as an ordered sequence of aligned one-
dimensional columns, you can think of a DataFrame as a sequence of aligned Series objects. 

Here, by “aligned” we mean that they share the same index. 

To demonstrate this, let’s first construct a new Series listing the area of each of 
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the five states discussed in the previous section: 

In[18]: 

area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297, 

'Florida': 170312, 'Illinois': 149995} 

area = pd.Series(area_dict) 
area 

 
Out[18]: California 4239

67 
Florida 1703

12 
Illinois 1499

95 
New York 1412

97 
Texa
s 

6956
62 

dtype: int64  

Now that we have this along with the population Series from before, we can use a dictionary 
to construct a single two-dimensional object containing this information: 

In[19]: states = pd.DataFrame({'population': population, 

'area': area}) 

states 

 
Out[19]
:  area populatio

n 
 California 423967 38332521 
 Florida 170312 19552860 
 Illinois 149995 12882135 
 New York 141297 19651127 
 Texas 695662 26448193 

Like the Series object, the DataFrame has an index attribute that gives access to the 

index labels: 

In[20]: states.index 

Out[20]: 

Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object') 

Additionally, the DataFrame has a columns attribute, which is an Index object holding 

the column labels: 

In[21]: states.columns 

Out[21]: Index(['area', 'population'], dtype='object') 

Thus the DataFrame can be thought of as a generalization of a two-dimensional NumPy 
array, where both the rows and columns have a generalized index for access‐ ing the data. 
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DataFrame as specialized dictionary 

Similarly, we can also think of a DataFrame as a specialization of a dictionary. Where a 
dictionary maps a key to a value, a DataFrame maps a column name to a Series of column 
data. For example, asking for the 'area' attribute returns the Series object containing the 
areas we saw earlier: 

In[22]: states['area'] Out[22]: 

California 423967 

Florida 170312 

Illinois 149995 

New York 141297 

Texas 695662 

Name: area, dtype: int64 

Notice the potential point of confusion here: in a two-dimensional NumPy array, data[0] will return 

the first row. For a DataFrame, data['col0'] will return the first column. Because of this, it is probably 

better to think about DataFrames as generalized dictionaries rather than generalized arrays, though 

both ways of looking at the situa‐ tion can be useful. 

Constructing DataFrame objects 

A Pandas DataFrame can be constructed in a variety of ways. Here we’ll give several 
examples. 

From a single Series object. A DataFrame is a collection of Series objects, and a single- column 
DataFrame can be constructed from a single Series: 

In[23]: pd.DataFrame(population, columns=['population']) 

 
Out[23]
:  populatio

n 
 California 38332521 
 Florida 19552860 
 Illinois 12882135 
 New York 19651127 
 Texas 26448193 

 
From a list of dicts. Any list of dictionaries can be made into a DataFrame. We’ll use a 

simple list comprehension to create some data: 

In[24]: data = [{'a': i, 'b': 2 * i} 

for i in  range(3)] 
pd.DataFrame(data) 

 
Out[24]
:  a b 

 0 0 0 
 1 1 2 
 2 2 4 

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN (i.e., “not a 
number”) values: 
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In[25]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}]) 

Out[25]: a b c 

0 1.0 2 NaN 

1 NaN 3 4.0 

From a dictionary of Series objects. As we saw before, a DataFrame can be constructed from a 
dictionary of Series objects as well: 

In[26]: pd.DataFrame({'population': population, 

'area': area}) 

 
Out[26]
:  area populatio

n 
 California 423967 38332521 
 Florida 170312 19552860 
 Illinois 149995 12882135 
 New York 141297 19651127 
 Texas 695662 26448193 

 
From a two-dimensional NumPy array. Given a two-dimensional array of data, we can create a 
DataFrame with any specified column and index names. If omitted, an integer index 
will be used for each: 

In[27]: pd.DataFrame(np.random.rand(3, 2), 

columns=['foo', 'bar'], 

index=['a', 'b', 'c']) 

 
Out[27]
:  foo bar 

 a 0.86525
7 

0.21316
9 

 b 0.44275
9 

0.10826
7 

 c 0.04711
0 

0.90571
8 

 

From a NumPy structured array. 

 A Pandas DataFrame operates much like a structured array, and can be created directly from 
one: 

In[28]: A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')]) A 

Out[28]: array([(0, 0.0), (0, 0.0), (0, 0.0)], 

dtype=[('A', '<i8'), ('B', '<f8')]) 

In[29]: pd.DataFrame(A) 

 
Out[29]
:  A B 

 0 0 0.0 
 1 0 0.0 
 2 0 0.0 
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The Pandas Index Object 

We have seen here that both the Series and DataFrame objects contain an explicit index that 
lets you reference and modify data. This Index object is an interesting structure in itself, and 
it can be thought of either as an immutable array or as an ordered set (technically a multiset, 
as Index objects may contain repeated values). Those views have some interesting 
consequences in the operations available on Index objects. As a simple example, let’s construct 

an Index from a list of integers: 

In[30]: ind = pd.Index([2, 3, 5, 7, 11]) ind 

Out[30]: Int64Index([2, 3, 5, 7, 11], dtype='int64') 

 
Index as immutable array 

The Index object in many ways operates like an array. For example, we can use stan‐ 
dard Python indexing notation to retrieve values or slices: 

In[31]: ind[1] 

Out[31]: 3 

In[32]: ind[::2] 

Out[32]: Int64Index([2, 5, 11], dtype='int64') 

Index objects also have many of the attributes familiar from NumPy arrays: 

In[33]: print(ind.size, ind.shape, ind.ndim, ind.dtype) 5 

(5,) 1 int64 

One difference between Index objects and NumPy arrays is that indices are 
immuta‐ ble—that is, they cannot be modified via the normal means: 

In[34]: ind[1] = 0 

--------------------------------------------------------------------------- 

 
TypeError Traceback (most recent call last) 

 
<ipython-input-34-40e631c82e8a> in <module>() 

----> 1 ind[1] = 0 

 

 
/Users/jakevdp/anaconda/lib/python3.5/site-packages/pandas/indexes/base.py ... 

1243 

1244 def   setitem (self, key, value): 

-> 1245 raise TypeError("Index does not support mutable 
operations") 1246 

1247 def   getitem (self, key): 
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TypeError: Index does not support mutable operations 

This immutability makes it safer to share indices between multiple DataFrames 
and arrays, without the potential for side effects from inadvertent index 
modification. 

Index as ordered set 

Pandas objects are designed to facilitate operations such as joins across datasets, which 

depend on many aspects of set arithmetic. The Index object follows many of 

the conventions used by Python’s built-in set data structure, so that unions, intersec‐ tions, 
differences, and other combinations can be computed in a familiar way: 

In[35]: indA = pd.Index([1, 3, 5, 7, 9]) 

indB = pd.Index([2, 3, 5, 7, 11]) In[36]: 

indA & indB # intersection 

Out[36]: Int64Index([3, 5, 7], dtype='int64') 

In[37]: indA | indB # union 

Out[37]: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64') 

In[38]: indA ^ indB # symmetric difference 

Out[38]: Int64Index([1, 2, 9, 11], dtype='int64') 

These operations may also be accessed via object methods—for example, 
indA.inter section(indB). 

Data Indexing and Selection 

We looked in detail at methods and tools to access, set, and modify val‐ ues in NumPy arrays. 

These included indexing (e.g., arr[2, 1]), slicing (e.g., arr[:, 1:5]), masking (e.g., arr[arr > 0]), 
fancy indexing (e.g., arr[0, [1, 5]]), and combinations thereof (e.g., arr[:, [1, 5]]). Here we’ll 
look at similar means of accessing and modifying values in Pandas Series and DataFrame objects. 

If you have used the NumPy patterns, the corresponding patterns in Pandas will feel very 
famil‐ iar, though there are a few quirks to be aware of. 

We’ll start with the simple case of the one-dimensional Series object, and then move on to 
the more complicated two-dimensional DataFrame object. 

Data Selection in Series 

As we saw in the previous section, a Series object acts in many ways like a one- dimensional 
NumPy array, and in many ways like a standard Python dictionary. If we keep these two 

overlapping analogies in mind, it will help us to understand the pat‐ terns of data indexing 
and selection in these arrays. 

Series as dictionary 

Like a dictionary, the Series object provides a mapping from a collection of keys to a collection 
of values: 

In[1]: import pandas as pd 

data = pd.Series([0.25, 0.5, 0.75, 1.0], 

index=['a', 'b', 'c', 'd']) 
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data 

Out[1]: a 0.25 
b 0.50 
c 0.75 
d 1.00 

dtype: float64 

In[2]: data['b'] Out[2]: 

0.5 

We can also use dictionary-like Python expressions and methods to examine the 

keys/indices and values: 

In[3]: 'a' in data 

Out[3]: True In[4]: 

data.keys() 

Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object') In[5]: 

list(data.items()) 

Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)] 

Series objects can even be modified with a dictionary-like syntax. Just as you can extend a 
dictionary by assigning to a new key, you can extend a Series by assigning to a new index 
value: 

In[6]: data['e'] = 1.25 

data 

 
Out[6]: a 0.25 
b 0.50 
c 0.75 
d 1.00 
e 1.25 

dtype: float64 

This easy mutability of the objects is a convenient feature: under the hood, Pandas is making 

decisions about memory layout and data copying that might need to take place; the user 

generally does not need to worry about these issues. 

Series as one-dimensional array 

A Series builds on this dictionary-like interface and provides array-style item selec‐ tion via 
the same basic mechanisms as NumPy arrays—that is, slices, masking, and fancy indexing. 
Examples of these are as follows: 

In[7]: # slicing by explicit index 

data['a':'c'] 

Out[7]: a 0.25 

b 0.50 

c 0.75 

dtype: float64 
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In[8]: # slicing by implicit integer index 

data[0:2] 

Out[8]: a 0.25 

b 0.50 

dtype: float64 

In[9]: # masking 

data[(data > 0.3) & (data < 0.8)] 

Out[9]: b 0.50 

c 0.75 

dtype: float64 

In[10]: # fancy indexing 

data[['a', 'e']] 

Out[10]: a 0.25 

e 1.25 

dtype: float64 

Among these, slicing may be the source of the most confusion. Notice that when you are 

slicing with an explicit index (i.e., data['a':'c']), the final index is included in the slice, while 
when you’re slicing with an implicit index (i.e., data[0:2]), the final index is excluded from the 

slice. 

Indexers: loc, iloc, and ix 

These slicing and indexing conventions can be a source of confusion. For example, if your 
Series has an explicit integer index, an indexing operation such as data[1] will use the explicit 

indices, while a slicing operation like data[1:3] will use the implicit Python-style index. 

In[11]: data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5]) data 

Out[11]: 1 a 

3 b 
5 c 

dtype: object 

In[12]: # explicit index when indexing 

data[1] 

Out[12]: 'a' 

In[13]: # implicit index when slicing 

data[1:3] 

Out[13]: 3 b 

5 c 

dtype: object 

Because of this potential confusion in the case of integer indexes, Pandas provides some 

special indexer attributes that explicitly expose certain indexing schemes. These are not 

functional methods, but attributes that expose a particular slicing interface to the data in 
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the Series. 

First, the loc attribute allows indexing and slicing that always references the explicit 
index: 

In[14]: data.loc[1] 

Out[14]: 'a' 

In[15]: data.loc[1:3] 

Out[15]: 1 a 

3 b 

dtype: object 

The iloc attribute allows indexing and slicing that always references the implicit Python-
style index: 

In[16]: data.iloc[1] 

Out[16]: 'b' 

In[17]: data.iloc[1:3] 

Out[17]: 3 b 

5 c 

dtype: object 

A third indexing attribute, ix, is a hybrid of the two, and for Series objects is equiva‐ lent to 

standard []-based indexing. The purpose of the ix indexer will become more apparent in the 
context of DataFrame objects, which we will discuss in a moment. 

One guiding principle of Python code is that “explicit is better than implicit.” The explicit 

nature of loc and iloc make them very useful in maintaining clean and read‐ able code; 

especially in the case of integer indexes, I recommend using these both to make code easier 

to read and understand, and to prevent subtle bugs due to the mixed indexing/slicing 

convention. 
 

Data Selection in DataFrame 

Recall that a DataFrame acts in many ways like a two-dimensional or structured array, and in 
other ways like a dictionary of Series structures sharing the same index. These analogies can 
be helpful to keep in mind as we explore data selection within this structure. 

DataFrame as a dictionary 

The first analogy we will consider is the DataFrame as a dictionary of related Series 
objects. Let’s return to our example of areas and populations of states: 

 

In[18]: area = pd.Series({'California': 423967, 'Texas': 695662, 

'New York': 141297, 'Florida': 170312, 

'Illinois': 149995}) 

pop = pd.Series({'California': 38332521, 'Texas': 26448193, 

'New York': 19651127, 'Florida': 19552860, 

'Illinois': 12882135}) 
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data = pd.DataFrame({'area':area, 
'pop':pop}) data 

 
Out[18]
:  area pop 

 California 42396
7 

383325
21 

 Florida 17031
2 

195528
60 

 Illinois 14999
5 

128821
35 

 New York 14129
7 

196511
27 

 Texas 69566
2 

264481
93 

The individual Series that make up the columns of the DataFrame can be accessed via 
dictionary-style indexing of the column name: 

In[19]: data['area'] 

 
Out[19]: California 423967 

Florida 170312 
Illinois 149995 
New York 141297 
Texas 695662 
Name: area, dtype: int64 

Equivalently, we can use attribute-style access with column names that are strings: 

In[20]: data.area 

 
Out[20]: California 423967 

Florida 170312 
Illinois 149995 
New York 141297 
Texas 695662 
Name: area, dtype: int64 

This attribute-style column access actually accesses the exact same object as the 

dictionary-style access: 

In[21]: data.area is data['area'] Out[21]: 

True 

Though this is a useful shorthand, keep in mind that it does not work for all cases! For 

example, if the column names are not strings, or if the column names conflict with methods 

of the DataFrame, this attribute-style access is not possible. For exam‐ ple, the DataFrame 

has a pop() method, so data.pop will point to this rather than the "pop" column: 

In[22]: data.pop is data['pop'] 

Out[22]: False 
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In particular, you should avoid the temptation to try column assignment via 

attribute (i.e., use data['pop'] = z rather than data.pop = z). 

Like with the Series objects discussed earlier, this dictionary-style syntax can also be used to 
modify the object, in this case to add a new column: 

In[23]: data['density'] = data['pop'] / data['area'] 
data 

 
Out[23]
:  area pop density 

 California 42396
7 

383325
21 

90.41392
6 

 Florida 17031
2 

195528
60 

114.8061
21 

 Illinois 14999
5 

128821
35 

85.88376
3 

 New York 14129
7 

196511
27 

139.0767
46 

 Texas 69566
2 

264481
93 

38.01874
0 

This shows a preview of the straightforward syntax of element-by-element arithmetic 
between Series objects; we’ll dig into this further in “Operating on Data in Pandas” on page 

115. 

DataFrame as two-dimensional array 

As mentioned previously, we can also view the DataFrame as an enhanced two- dimensional 
array. We can examine the raw underlying data array using the values attribute: 

In[24]: data.values 

 
Out[24]: array([[ 4.23967000e+0

5, 
3.83325210e+0
7, 

9.04139261e+0
1], 

[ 1.70312000e+0
5, 

1.95528600e+0
7, 

1.14806121e+0
2], 

[ 1.49995000e+0
5, 

1.28821350e+0
7, 

8.58837628e+0
1], 

[ 1.41297000e+0
5, 

1.96511270e+0
7, 

1.39076746e+0
2], 

[ 6.95662000e+0
5, 

2.64481930e+0
7, 

3.80187404e+0
1]]) 

With this picture in mind, we can do many familiar array-like observations on the DataFrame 

itself. For example, we can transpose the full DataFrame to swap rows and columns: 

In[25]: data.T 

Out[25]: 

 California Florida Illinois New York Texas 

area 4.239670e+
05 

1.703120e+
05 

1.499950e+
05 

1.412970e+
05 

6.956620e+
05 

pop 3.833252e+
07 

1.955286e+
07 

1.288214e+
07 

1.965113e+
07 

2.644819e+
07 

density 9.041393e+
01 

1.148061e+
02 

8.588376e+
01 

1.390767e+
02 

3.801874e+
01 

When it comes to indexing of DataFrame objects, however, it is clear that the dictionary-
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style indexing of columns precludes our ability to simply treat it as a NumPy array. In 
particular, passing a single index to an array accesses a row: 

In[26]: data.values[0] 

Out[26]: array([ 4.23967000e+05, 3.83325210e+07,

 9.04139261e+01]) 

and passing a single “index” to a DataFrame accesses a column: 

In[27]: data['area'] 

 
Out[27]: California 423967 

Florida 170312 
Illinois 149995 
New York 141297 
Texas 695662 
Name: area, dtype: int64 

Thus for array-style indexing, we need another convention. Here Pandas again uses the loc, 

iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can index the underlying 

array as if it is a simple NumPy array (using the implicit Python-style index), but the 

DataFrame index and column labels are maintained in the result: 

In[28]: data.iloc[:3, :2] 

 
Out[28]
:  area pop 

 California 42396
7 

383325
21 

 Florida 17031
2 

195528
60 

 Illinois 14999
5 

128821
35 

In[29]: data.loc[:'Illinois', :'pop'] 

 
Out[29]
:  area pop 

 California 42396
7 

383325
21 

 Florida 17031
2 

195528
60 

 Illinois 14999
5 

128821
35 

The ix indexer allows a hybrid of these two approaches: 

In[30]: data.ix[:3, :'pop'] 

 
Out[30]
:  area pop 

 California 42396
7 

383325
21 

 Florida 17031
2 

195528
60 

 Illinois 14999
5 

128821
35 
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Keep in mind that for integer indices, the ix indexer is subject to the same potential sources 

of confusion as discussed for integer-indexed Series objects. 

Any of the familiar NumPy-style data access patterns can be used within these index‐ ers. For 

example, in the loc indexer we can combine masking and fancy indexing as in the following: 

In[31]: data.loc[data.density > 100, ['pop', 'density']] 

Out[31]: pop density 

Florida 19552860 114.806121 

New York 19651127 139.076746 

Any of these indexing conventions may also be used to set or modify values; this is done in 

the standard way that you might be accustomed to from working with NumPy: 

In[32]: data.iloc[0, 2] = 90 
data 

 
Out[32]
:  area pop density 

 California 42396
7 

383325
21 

90.00000
0 

 Florida 17031
2 

195528
60 

114.8061
21 

 Illinois 14999
5 

128821
35 

85.88376
3 

 New York 14129
7 

196511
27 

139.0767
46 

 Texas 69566
2 

264481
93 

38.01874
0 

To build up your fluency in Pandas data manipulation, I suggest spending some time with a 
simple DataFrame and exploring the types of indexing, slicing, masking, and fancy indexing 

that are allowed by these various indexing approaches. 

Additional indexing conventions 

There are a couple extra indexing conventions that might seem at odds with the pre‐ ceding 

discussion, but nevertheless can be very useful in practice. First, while index‐ ing refers to 

columns, slicing refers to rows: 

In[33]: data['Florida':'Illinois'] 

Out[33]:  area pop density 
Florida 170312 19552860 
114.806121 

Illinois 149995 12882135 85.883763 

Such slices can also refer to rows by number rather than by index: 

In[34]: data[1:3] 

Out[34]:  area pop density 
Florida 170312 19552860 
114.806121 

Illinois 149995 12882135 85.883763 

Similarly, direct masking operations are also interpreted row-wise rather than 
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column-wise: 

In[35]: data[data.density > 100] 

Out[35]:  area pop density 
Florida 170312 19552860 
114.806121 

New York 141297 19651127 139.076746 

These two conventions are syntactically similar to those on a NumPy array, and 

while these may not precisely fit the mold of the Pandas conventions, they are 

nevertheless quite useful in practice. 

Operating on Data in Pandas 

One of the essential pieces of NumPy is the ability to perform quick element-wise 
operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with 

more sophisticated operations (trigonometric functions, exponential and loga‐ rithmic 

functions, etc.). Pandas inherits much of this functionality from NumPy, and the ufuncs that 

we introduced in “Computation on NumPy Arrays: Universal Func‐ tions” on page 50 are key 

to this. 

Pandas includes a couple useful twists, however: for unary operations like negation and 

trigonometric functions, these ufuncs will preserve index and column labels in the output, and 

for binary operations such as addition and multiplication, Pandas will automatically align 

indices when passing the objects to the ufunc. This means that keeping the context of data 

and combining data from different sources—both poten‐ tially error-prone tasks with raw 

NumPy arrays—become essentially foolproof ones with Pandas. We will additionally see that 

there are well-defined operations between one-dimensional Series structures and two-

dimensional DataFrame structures. 

Ufuncs: Index Preservation 

Because Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas 

Series and DataFrame objects. Let’s start by defining a simple Series and DataFrame on which 

to demonstrate this: 

In[1]: import pandas as pd 
import numpy as np 

In[2]: rng = np.random.RandomState(42) 

ser = pd.Series(rng.randint(0, 10, 4)) 
ser 

 
Out[2]: 0 6 
1 3 
2 7 
3 4 

dtype: int64 

In[3]: df = pd.DataFrame(rng.randint(0, 10, (3, 4)), 

columns=['A', 'B', 'C', 'D']) 

df 

 
Out[3]
: 

A B C D 
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 0 6 9 2 6 
 1 7 4 3 7 
 2 7 2 5 4 

If we apply a NumPy ufunc on either of these objects, the result will be another 
Pan‐ das object with the indices preserved: 

In[4]: np.exp(ser) 

Out[4]: 0 403.428793 
1 20.085537 
2 1096.63315

8 
3 54.598150 

dtype: float64 

Or, for a slightly more complex calculation: 

In[5]: np.sin(df * np.pi / 4) 

 
Out[5]
: 

A B C D 

 0 -
1.000000 

7.071068e-
01 

1.00000
0 

-
1.000000e+
00 

 1 -
0.707107 

1.224647e-
16 

0.70710
7 

-7.071068e-
01 

 2 -
0.707107 

1.000000e+
00 

-
0.70710
7 

1.224647e-
16 

Any of the ufuncs discussed in “Computation on NumPy Arrays: Universal Func‐ 
tions” on page 50 can be used in a similar manner. 

UFuncs: Index Alignment 

For binary operations on two Series or DataFrame objects, Pandas will align indices in the 
process of performing the operation. This is very convenient when you are working with 
incomplete data, as we’ll see in some of the examples that follow. 

Index alignment in Series 

As an example, suppose we are combining two different data sources, and find only the top 

three US states by area and the top three US states by population: 

In[6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 

'California': 423967}, name='area') 

population = pd.Series({'California': 38332521, 'Texas': 26448193, 

'New York': 19651127}, name='population') 

Let’s see what happens when we divide these to compute the population density: 

In[7]: population / area Out[7]: 

Alaska NaN 

California 90.413926 

New York NaN 

Texas 38.018740 

dtype: float64 



 

Page 103 of 580  

The resulting array contains the union of indices of the two input arrays, which we 

could determine using standard Python set arithmetic on these indices: 

In[8]: area.index | population.index 

Out[8]: Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object') 

Any item for which one or the other does not have an entry is marked with NaN, or “Not a 

Number,” which is how Pandas marks missing data. This index matching is imple mented this 

way for any of Python’s built-in arithmetic expressions; any missing val‐ ues are filled in with 

NaN by default: 

In[9]: A = pd.Series([2, 4, 6], index=[0, 1, 2]) 

B = pd.Series([1, 3, 5], index=[1, 2, 3]) A + 
B 

Out[9]: 0 NaN 

1 5.0 

2 9.0 

3 NaN 

dtype: float64 

If using NaN values is not the desired behavior, we can modify the fill value using 

appropriate object methods in place of the operators. For example, calling 

A.add(B) is equivalent to calling A + B, but allows optional explicit specification of the 

fill value for any elements in A or B that might be missing: 

In[10]: A.add(B, fill_value=0) 

 
Out[10]: 0 2.0 
1 5.0 
2 9.0 
3 5.0 

dtype: float64 

 

Index alignment in DataFrame 

A similar type of alignment takes place for both columns and indices when you are 

performing operations on DataFrames: 

In[11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)), 

columns=list('AB')) 

A 

Out[11]: A B 

0 1 11 

1 5 1 

In[12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)), 

columns=list('BAC')) 

B 
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Out[12]:  B A C 0 
4 0 9 

1 5 8 0 

2 9 2 6 

In[13]: A + B 

Out[13]:   A B C 0
 1.0 15.0 NaN 

1 13.0 6.0 NaN 

2 NaN NaN NaN 

Notice that indices are aligned correctly irrespective of their order in the two objects, and 

indices in the result are sorted. As was the case with Series, we can use the asso‐ ciated 

object’s arithmetic method and pass any desired fill_value to be used in place of missing 

entries. Here we’ll fill with the mean of all values in A (which we compute by first stacking the 

rows of A): 

In[14]: fill = A.stack().mean() 
A.add(B, fill_value=fill) 

 
Out[14]
: 

A B C 

 0 1.0 15.0 13.5 
 1 13.0 6.0 4.5 
 2 6.5 13.5 10.5 

Table.  Lists Python operators and their equivalent Pandas object methods. 

 
Table . Mapping between Python operators and Pandas methods 

  Python operator Pandas method(s)  

+ add() 

- sub(), subtract() 

* mul(), multiply() 

/ truediv(), div(), divide() 

// floordiv() 

% mod() 

** pow() 

 

Ufuncs: Operations Between DataFrame and Series 

When you are performing operations between a DataFrame and a Series, the index and 
column alignment is similarly maintained. Operations between a DataFrame and a Series are 

similar to operations between a two-dimensional and one-dimensional NumPy array. 

Consider one common operation, where we find the difference of a two-dimensional array 
and one of its rows: 
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In[15]: A = rng.randint(10, size=(3, 4)) A 

Out[15]: array([[3, 8, 2, 4], 

[2, 6, 4, 8], 

[6, 1, 3, 8]]) 

 
In[16]: A - A[0]  
Out[16]: array([[ 0, 0, 0, 0], 

[-1, -2, 2, 4], 
[ 3, -7, 1, 4]]) 

In Pandas, the convention similarly operates row-wise by default: 

In[17]: df = pd.DataFrame(A, 
columns=list('QRST')) df - df.iloc[0] 

 
Out[17]
: 

Q R S T 

 0 0 0 0 0 
 1 -1 -2 2 4 
 2 3 -7 1 4 

If you would instead like to operate column-wise, you can use the object methods 

mentioned earlier, while specifying the axis keyword: 

In[18]: df.subtract(df['R'], axis=0) 

 
Out[18]
: 

Q R S T 

 0 -5 0 -6 -4 
 1 -4 0 -2 2 
 2 5 0 2 7 

Note that these DataFrame/Series operations, like the operations discussed before, will 
automatically align indices between the two elements: 

In[19]: halfrow = df.iloc[0, ::2] 
halfrow 

Out[19]: Q 3 

S 2 

Name: 0, dtype: int64 

In[20]: df - halfrow 

Out[20]
: 

Q R S T 

 0 0.0 Na
N 

0.0 Na
N 

 1 -1.0 Na
N 

2.0 Na
N 

 2 3.0 Na
N 

1.0 Na
N 

This preservation and alignment of indices and columns means that operations on data 

in Pandas will always maintain the data context, which prevents the types of silly errors that 

might come up when you are working with heterogeneous and/or mis‐ aligned data in raw 
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NumPy arrays. 

Handling Missing Data 

The difference between data found in many tutorials and data in the real world is that real-
world data is rarely clean and homogeneous. In particular, many interesting datasets will 

have some amount of data missing. To make matters even more compli‐ cated, different data 

sources may indicate missing data in different ways. 

 

we will discuss some general considerations for missing data, discuss how Pandas chooses 

to represent it, and demonstrate some built-in Pandas tools for handling missing data in 

Python. Here and throughout the book, we’ll refer to miss‐ ing data in general as null, NaN, 

or NA values. 

Trade-Offs in Missing Data Conventions 

A number of schemes have been developed to indicate the presence of missing data in a table 
or DataFrame. Generally, they revolve around one of two strategies: using a mask that 

globally indicates missing values, or choosing a sentinel value that indicates a missing entry. 

In the masking approach, the mask might be an entirely separate Boolean array, or 

it may involve appropriation of one bit in the data representation to locally indicate 

the null status of a value. 

In the sentinel approach, the sentinel value could be some data-specific convention, such as 

indicating a missing integer value with –9999 or some rare bit pattern, or it could be a more 

global convention, such as indicating a missing floating-point value with NaN (Not a 

Number), a special value which is part of the IEEE floating-point specification. 

None of these approaches is without trade-offs: use of a separate mask array requires 

allocation of an additional Boolean array, which adds overhead in both storage and 

computation. A sentinel value reduces the range of valid values that can be repre‐ sented, 

and may require extra (often non-optimized) logic in CPU and GPU arith‐ metic. Common 

special values like NaN are not available for all data types. 

As in most cases where no universally optimal choice exists, different languages and systems 
use different conventions. For example, the R language uses reserved bit pat‐ terns within 

each data type as sentinel values indicating missing data, while the SciDB system uses an extra 

byte attached to every cell to indicate a NA state. 

Missing Data in Pandas 

The way in which Pandas handles missing values is constrained by its reliance on 

the NumPy package, which does not have a built-in notion of NA values for non- 

floating-point data types. 

Pandas could have followed R’s lead in specifying bit patterns for each individual data type to 

indicate nullness, but this approach turns out to be rather unwieldy. While R contains four 

basic data types, NumPy supports far more than this: for example, while R has a single 

integer type, NumPy supports fourteen basic integer types once you account for available 

precisions, signedness, and endianness of the encoding. Reserving a specific bit pattern in 

all available NumPy types would lead to an unwieldy amount of overhead in special-

casing various operations for various types, likely even requiring a new fork of the NumPy 

package. Further, for the smaller data types (such as 8-bit integers), sacrificing a bit to use 

as a mask will significantly reduce the range of values it can represent. 

NumPy does have support for masked arrays—that is, arrays that have a separate Boolean 
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mask array attached for marking data as “good” or “bad.” Pandas could have derived from 

this, but the overhead in both storage, computation, and code mainte‐ nance makes that an 

unattractive choice. 

With these constraints in mind, Pandas chose to use sentinels for missing data, and further 

chose to use two already-existing Python null values: the special floating- point NaN value, 

and the Python None object. This choice has some side effects, as we will see, but in practice 

ends up being a good compromise in most cases of interest. 

None: Pythonic missing data 

The first sentinel value used by Pandas is None, a Python singleton object that is often used 

for missing data in Python code. Because None is a Python object, it cannot be used in any 
arbitrary NumPy/Pandas array, but only in arrays with data type 'object' (i.e., arrays of Python 

objects): 

In[1]: import numpy as np 
import pandas as pd 

In[2]: vals1 = np.array([1, None, 3, 4]) 
vals1 

Out[2]: array([1, None, 3, 4], dtype=object) 

This dtype=object means that the best common type representation NumPy could infer for 
the contents of the array is that they are Python objects. While this kind of object array is 

useful for some purposes, any operations on the data will be done at the Python level, with 
much more overhead than the typically fast operations seen for arrays with native types: 

In[3]: for dtype in ['object', 'int']: 

print("dtype =", dtype) 

%timeit np.arange(1E6, dtype=dtype).sum() 

print() 

dtype = object 

10 loops, best of 3: 78.2 ms per loop 

 
dtype = int 

100 loops, best of 3: 3.06 ms per loop 

The use of Python objects in an array also means that if you perform aggregations like 

sum() or min() across an array with a None value, you will generally get an error: 

In[4]: vals1.sum() 

TypeError Traceback (most recent call last) 

 
<ipython-input-4-749fd8ae6030> in <module>() 

----> 1 vals1.sum() 

 
 

/Users/jakevdp/anaconda/lib/python3.5/site-packages/numpy/core/_methods.py ... 

30 
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31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False): 

---> 32 return umr_sum(a, axis, dtype, out, 
keepdims) 33 

34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False): 

 

 
TypeError: unsupported operand type(s) for +: 'int' and 'NoneType' 

This reflects the fact that addition between an integer and None is undefined. 

NaN: Missing numerical data 

The other missing data representation, NaN (acronym for Not a Number), is 
different; it is a special floating-point value recognized by all systems that use the 
standard IEEE floating-point representation: 

In[5]: vals2 = np.array([1, np.nan, 3, 4]) 
vals2.dtype 

Out[5]: dtype('float64') 

Notice that NumPy chose a native floating-point type for this array: this means that unlike 

the object array from before, this array supports fast operations pushed into compiled code. 

You should be aware that NaN is a bit like a data virus—it infects any other object it touches. 

Regardless of the operation, the result of arithmetic with NaN will be another NaN: 

In[6]: 1 + np.nan 

Out[6]: nan 

In[7]: 0 * np.nan 

Out[7]: nan 

Note that this means that aggregates over the values are well defined (i.e., they 

don’t result in an error) but not always useful: 

In[8]: vals2.sum(), vals2.min(), vals2.max() 

Out[8]: (nan, nan, nan) 

NumPy does provide some special aggregations that will ignore these missing values: 

In[9]: np.nansum(vals2), np.nanmin(vals2), 

np.nanmax(vals2) Out[9]: (8.0, 1.0, 4.0) 

Keep in mind that NaN is specifically a floating-point value; there is no equivalent 
NaN value for integers, strings, or other types. 

NaN and None in Pandas 

NaN and None both have their place, and Pandas is built to handle the two of them 
nearly interchangeably, converting between them where appropriate: 

In[10]: pd.Series([1, np.nan, 2, None]) 

Out[10]: 0 1.0 

1 NaN 
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2 2.0 

3 NaN 

dtype: float64 

For types that don’t have an available sentinel value, Pandas automatically type-casts when 

NA values are present. For example, if we set a value in an integer array to np.nan, it will 

automatically be upcast to a floating-point type to accommodate the NA: 

In[11]: x = pd.Series(range(2), dtype=int) x 

Out[11]: 0 0 

1 1 

dtype: int64 

In[12]: x[0] = None x 

Out[12]: 0 NaN 

1 1.0 

dtype: float64 

Notice that in addition to casting the integer array to floating point, Pandas automati‐ cally 

converts the None to a NaN value. (Be aware that there is a proposal to add a native integer 

NA to Pandas in the future; as of this writing, it has not been included.) 

While this type of magic may feel a bit hackish compared to the more unified approach to 

NA values in domain-specific languages like R, the Pandas sentinel/cast‐ ing approach works 

quite well in practice and in my experience only rarely causes issues. 

Operating on Null Values 

As we have seen, Pandas treats None and NaN as essentially interchangeable for indi‐ cating 

missing or null values. To facilitate this convention, there are several useful methods for 

detecting, removing, and replacing null values in Pandas data structures. They are: 

isnull() 

Generate a Boolean mask indicating missing values 

notnull() 

Opposite of isnull() 

dropna() 

Return a filtered version of the data 

fillna() 

Return a copy of the data with missing values filled or imputed 

We will conclude this section with a brief exploration and demonstration of these 
routines. 

Detecting null values 

Pandas data structures have two useful methods for detecting null data: isnull() and 

notnull(). Either one will return a Boolean mask over the data. For example: 
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In[13]: data = pd.Series([1, np.nan, 'hello', None]) 

In[14]: data.isnull() 

Out[14]: 0 False 

1 True 
2 False 
3 True 
dtype: bool 

In[15]: data[data.notnull()] 

Out[15]: 0 1 

2 hello 
dtype: object 

The isnull() and notnull() methods produce similar Boolean results for Data Frames. 

Dropping null values 

In addition to the masking used before, there are the convenience methods, 
dropna() (which removes NA values) and fillna() (which fills in NA values). For a 
Series, the result is straightforward: 

In[16]: data.dropna() 

Out[16]: 0 1 

2 hello 
dtype: object 

For a DataFrame, there are more options. Consider the following DataFrame: 

In[17]: df = pd.DataFrame([[1, np.nan, 2], 

[2, 3, 5], 

[np.nan, 4, 6]]) 

df 

Out[17]: 0 1 2 

0 1.0 NaN 2 

1 2.0 3.0 5 

2 NaN 4.0 6 

We cannot drop single values from a DataFrame; we can only drop full rows or full columns. 

Depending on the application, you might want one or the other, so dropna() gives a number 

of options for a DataFrame. 

By default, dropna() will drop all rows in which any null value is present: 

In[18]: df.dropna() 

Out[18]: 0 1 2 

1 2.0 3.0 5 

Alternatively, you can drop NA values along a different axis; axis=1 drops all col‐ 
umns containing a null value: 

In[19]: df.dropna(axis='columns') 
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Out[19]
:  2 

 0 2 
 1 5 
 2 6 

But this drops some good data as well; you might rather be interested in dropping rows or 

columns with all NA values, or a majority of NA values. This can be specified through the how 

or thresh parameters, which allow fine control of the number of nulls to allow through. 

The default is how='any', such that any row or column (depending on the axis key‐ 
word) containing a null value will be dropped. You can also specify how='all', which 
will only drop rows/columns that are all null values: 

In[20]: df[3] = np.nan 

df 

 
Out[20]
:  0 1 2 3 

 0 1.0 Na
N 

2 Na
N 

 1 2.0 3.0 5 Na
N 

 2 Na
N 

4.0 6 Na
N 

In[21]: df.dropna(axis='columns', how='all') 

 
Out[21]
:  0 1 2 

 0 1.0 Na
N 

2 

 1 2.0 3.0 5 
 2 Na

N 
4.0 6 

For finer-grained control, the thresh parameter lets you specify a minimum number 
of non-null values for the row/column to be kept: 

In[22]: df.dropna(axis='rows', thresh=3) 

Out[22]: 0 1 2 3 

1 2.0 3.0 5 NaN 

Here the first and last row have been dropped, because they contain only two non- null 

values. 

Filling null values 

Sometimes rather than dropping NA values, you’d rather replace them with a valid value. 

This value might be a single number like zero, or it might be some sort of imputation or 

interpolation from the good values. You could do this in-place using the isnull() method as 

a mask, but because it is such a common operation Pandas provides the fillna() method, 

which returns a copy of the array with the null values replaced. 

Consider the following Series: 

In[23]: data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde')) 
data 
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Out[23]: a 1.0 

b NaN 

c 2.0 

d NaN 

e 3.0 

dtype: float64 

We can fill NA entries with a single value, such as zero: 

In[24]: data.fillna(0) 

 
Out[24]: a 1.0 
b 0.0 
c 2.0 
d 0.0 
e 3.0 

dtype: float64 

We can specify a forward-fill to propagate the previous value forward: 

In[25]: #  forward-fill 

data.fillna(method='ffill') 

 
Out[25]: a 1.0 
b 1.0 
c 2.0 
d 2.0 
e 3.0 

dtype: float64 

Or we can specify a back-fill to propagate the next values backward: 

In[26]: # back-fill 

data.fillna(method='bfill') 

 
Out[26]: a 1.0 
b 2.0 
c 2.0 
d 3.0 
e 3.0 

dtype: float64 

For DataFrames, the options are similar, but we can also specify an axis along which 
the fills take place: 

In[27]: df 

 
Out[27]
:  0 1 2 3 

 0 1.0 Na
N 

2 Na
N 

 1 2.0 3.0 5 Na
N 
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 2 Na
N 

4.0 6 Na
N 

In[28]: df.fillna(method='ffill', axis=1) 

 
Out[28]
:  0 1 2 3 

 0 1.0 1.0 2.0 2.0 
 1 2.0 3.0 5.0 5.0 
 2 Na

N 
4.0 6.0 6.0 

Notice that if a previous value is not available during a forward fill, the NA value remains. 

Hierarchical Indexing 

Up to this point we’ve been focused primarily on one-dimensional and two- dimensional 
data, stored in Pandas Series and DataFrame objects, respectively. Often it is useful to go 

beyond this and store higher-dimensional data—that is, data indexed by more than one or 

two keys. While Pandas does provide Panel and Panel4D objects that natively handle three-

dimensional and four-dimensional data a far more common pattern in practice is to make 

use of hierarchical indexing (also known as multi-indexing) to incorporate multiple index 

levels within a single index. In this way, higher-dimensional data can be compactly 

represented within the familiar one-dimensional Series and two-dimensional DataFrame 

objects. 

In this section, we’ll explore the direct creation of MultiIndex objects; considerations around 
indexing, slicing, and computing statistics across multiply indexed data; and useful routines 

for converting between simple and hierarchically indexed representa‐ tions of your data. 

We begin with the standard imports: 

In[1]: import pandas as pd 
import numpy as np 

 

A Multiply Indexed Series 

Let’s start by considering how we might represent two-dimensional data within a 

one-dimensional Series. For concreteness, we will consider a series of data where 

each point has a character and numerical key. 

The bad way 

Suppose you would like to track data about states from two different years. Using the Pandas 

tools we’ve already covered, you might be tempted to simply use Python tuples as keys: 

In[2]: index = [('California', 2000), ('California', 2010), 

('New York', 2000), ('New York', 2010), 

('Texas', 2000), ('Texas', 2010)] 

populations = [33871648, 37253956, 

18976457, 19378102, 

20851820, 25145561] 

pop = pd.Series(populations, 
index=index) pop 

 
Out[2]: (California, 2000) 3387164
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8 
(California, 2010) 3725395

6 
(New York, 2000) 1897645

7 
(New York, 2010) 1937810

2 
(Texas, 2000) 2085182

0 
(Texas, 2010) 25145561 

dtype: int64 

With this indexing scheme, you can straightforwardly index or slice the series based 

on this multiple index: 

In[3]: pop[('California', 2010):('Texas', 2000)] 

 
Out[3]: (California, 2010) 3725395

6 
(New York, 2000) 1897645

7 
(New York, 2010) 1937810

2 
(Texas, 2000) 2085182

0 
dtype: int64  

But the convenience ends there. For example, if you need to select all values from 2010, 

you’ll need to do some messy (and potentially slow) munging to make it happen: 

In[4]: pop[[i for i in pop.index if i[1] == 2010]] 

 
Out[4]: (California, 2010) 3725395

6 
(New York, 2010) 1937810

2 
(Texas, 2010) 2514556

1 
dtype: int64  

This produces the desired result, but is not as clean (or as efficient for large datasets) as the 

slicing syntax we’ve grown to love in Pandas. 

The better way: Pandas MultiIndex 

Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a 

rudimentary multi-index, and the Pandas MultiIndex type gives us the type of opera‐ tions we 

wish to have. We can create a multi-index from the tuples as follows: 

In[5]: index = 
pd.MultiIndex.from_tuples(index) index 

Out[5]: MultiIndex(levels=[['California', 'New York', 'Texas'], [2000, 2010]], 
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) 

Notice that the MultiIndex contains multiple levels of indexing—in this case, the state names 
and the years, as well as multiple labels for each data point which encode these levels. 
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If we reindex our series with this MultiIndex, we see the hierarchical representation of the 
data: 

In[6]: pop = pop.reindex(index) 
pop 

 
Out[6]: California 2000 3387164

8 
2010 3725395

6 
New York 2000 1897645

7 
2010 1937810

2 
Texas 2000 20851820 

2010 25145561 

dtype: int64 

First two columns of the Series representation show the multiple index val‐ ues, while the 
third column shows the data. Notice that some entries are missing in the first column:in 
this multi-index representation, any blank entry indicates the same value as the line above 

it. 

Now to access all data for which the second index is 2010, we can simply use the Pan‐ das 

slicing notation: 

In[7]: pop[:, 2010] 

 
Out[7]: California 372539

56 
New York 193781

02 
Texa
s 

251455
61 

dtype: int64  

The result is a singly indexed array with just the keys we’re interested in. This syntax is much 
more convenient (and the operation is much more efficient!) than the home- spun tuple-

based multi-indexing solution that we started with. We’ll now further dis‐ cuss this sort of 

indexing operation on hierarchically indexed data. 

MultiIndex as extra dimension 

You might notice something else here: we could easily have stored the same data using a 

simple DataFrame with index and column labels. In fact, Pandas is built with this equivalence 

in mind. The unstack() method will quickly convert a multiply- indexed Series into a 

conventionally indexed DataFrame: 

In[8]: pop_df = pop.unstack() 
pop_df 

 
Out[8]
:  2000 2010 

 California 338716
48 

372539
56 

 New York 189764 193781
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57 02 
 Texas 208518

20 
251455
61 

Naturally, the stack() method provides the opposite operation: 

In[9]: pop_df.stack() 

 
Out[9]: California 2000 3387164

8 
 2010 3725395

6 
New York 2000 1897645

7 
 2010 1937810

2 
Texas 2000 2085182

0 
 2010 2514556

1 
dtype: int64 

Seeing this, you might wonder why would we would bother with hierarchical index‐ ing at 

all. The reason is simple: just as we were able to use multi-indexing to represent two-

dimensional data within a one-dimensional Series, we can also use it to repre‐ sent data of 

three or more dimensions in a Series or DataFrame. Each extra level in a multi-index 

represents an extra dimension of data; taking advantage of this property gives us much more 

flexibility in the types of data we can represent. Concretely, we might want to add another 

column of demographic data for each state at each year (say, population under 18); with a 

MultiIndex this is as easy as adding another col‐ umn to the DataFrame: 

In[10]: pop_df = pd.DataFrame({'total': pop, 

'under18': [9267089, 9284094, 

4687374, 4318033, 

5906301, 6879014]}) 

pop_df 

 
Out[10]
:   total under

18 
 California 200

0 
338716
48 

92670
89 

  201
0 

372539
56 

92840
94 

 New York 200
0 

189764
57 

46873
74 

  201
0 

193781
02 

43180
33 

 Texas 200
0 

208518
20 

59063
01 

  201
0 

251455
61 

68790
14 

Here we compute the fraction of people under 18 by year, given the above data: 

In[11]: f_u18 = pop_df['under18'] / pop_df['total'] 
f_u18.unstack() 
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Out[11]
:  2000 2010 

 California 0.27359
4 

0.24921
1 

 New York 0.24701
0 

0.22283
1 

 Texas 0.28325
1 

0.27356
8 

This allows us to easily and quickly manipulate and explore even high-dimensional 

data. 

Methods of MultiIndex Creation 

The most straightforward way to construct a multiply indexed Series or DataFrame 
is to simply pass a list of two or more index arrays to the constructor. For example: 

In[12]: df = pd.DataFrame(np.random.rand(4, 2), 

index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], 

columns=['data1', 'data2']) 

df 

 
Out[12]
:  data1 data2 

 a 1 0.55423
3 

0.35607
2 

 2 0.92524
4 

0.21947
4 

 b 1 0.44175
9 

0.61005
4 

 2 0.17149
5 

0.88668
8 

The work of creating the MultiIndex is done in the background. 

Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will auto‐ matically 

recognize this and use a MultiIndex by default: 

In[13]: data = {('California', 2000): 33871648, 

('California', 2010): 37253956, 

('Texas', 2000): 20851820, 

('Texas', 2010): 25145561, 

('New York', 2000): 18976457, 

('New York', 2010): 19378102} 

pd.Series(data) 

 
Out[13]: California 2000 3387164

8 
 2010 3725395

6 
New York 2000 1897645

7 
 2010 1937810

2 



 

Page 118 of 580  

Texas 2000 2085182
0 

 2010 2514556
1 

dtype: int64 

Nevertheless, it is sometimes useful to explicitly create a MultiIndex; we’ll see a cou‐ ple of 
these methods here. 

Explicit MultiIndex constructors 

For more flexibility in how the index is constructed, you can instead use the class method 
constructors available in the pd.MultiIndex. For example, as we did before, you can construct 
the MultiIndex from a simple list of arrays, giving the index values within each level: 

In[14]: pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]]) 

Out[14]: MultiIndex(levels=[['a', 'b'], [1, 2]], 

labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

You can construct it from a list of tuples, giving the multiple index values of each 

point: 

In[15]: pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)]) 

Out[15]: MultiIndex(levels=[['a', 'b'], [1, 2]], 

labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

You can even construct it from a Cartesian product of single indices: 

In[16]: pd.MultiIndex.from_product([['a', 'b'], [1, 2]]) 

Out[16]: MultiIndex(levels=[['a', 'b'], [1, 2]], 

labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

Similarly, you can construct the MultiIndex directly using its internal encoding by 
passing levels (a list of lists containing available index values for each level) and 
labels (a list of lists that reference these labels): 

In[17]: pd.MultiIndex(levels=[['a', 'b'], [1, 2]], 

labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

Out[17]: MultiIndex(levels=[['a', 'b'], [1, 2]], 

labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) 

You can pass any of these objects as the index argument when creating a Series or 

DataFrame, or to the reindex method of an existing Series or DataFrame. 

MultiIndex level names 

Sometimes it is convenient to name the levels of the MultiIndex. You can 
accomplish this by passing the names argument to any of the above MultiIndex 
constructors, or by setting the names attribute of the index after the fact: 

In[18]: pop.index.names = ['state', 'year'] 
pop 

 
Out[18]: state year  

California 2000 3387164
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8 
 2010 3725395

6 
New York 2000 1897645

7 
 2010 1937810

2 
Texas 2000 2085182

0 
 2010 2514556

1 
dtype: int64 

With more involved datasets, this can be a useful way to keep track of the meaning of various 

index values. 

MultiIndex for columns 

In a DataFrame, the rows and columns are completely symmetric, and just as the rows can 
have multiple levels of indices, the columns can have multiple levels as well. Con‐ sider the 
following, which is a mock-up of some (somewhat realistic) medical data: 

In[19]: 

# hierarchical indices and columns 

index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]], 

names=['year', 'visit']) 

columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']], 

names=['subject', 'type']) 

 
# mock some data 

data = np.round(np.random.randn(4, 6), 1) 

data[:, ::2] *= 10 

data += 37 

 
# create the DataFrame 

health_data = pd.DataFrame(data, index=index, 
columns=columns) health_data 

 

 

 

 

 

Here we see where the multi-indexing for both rows and columns can come in very handy. 

Out[19]: 
 

 

subject Bob Guido Sue 
type HR Temp HR Temp HR Temp 

year visit       

2013 1 31.0 38.7 32.0 36.7 35.0 37.2 
2 44.0 37.7 50.0 35.0 29.0 36.7 

2014 1 30.0 37.4 39.0 37.8 61.0 36.9 
2 47.0 37.8 48.0 37.3 51.0 36.5 
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This is fundamentally four-dimensional data, where the dimensions are the subject, the 

measurement type, the year, and the visit number. With this in place we can, for example, 

index the top-level column by the person’s name and get a full Data Frame containing just 

that person’s information: 

 

For complicated records containing multiple labeled measurements across multiple times 

for many subjects (people, countries, cities, etc.), use of hierarchical rows and columns can 

be extremely convenient! 

Indexing and Slicing a MultiIndex 

Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you think about 

the indices as added dimensions. We’ll first look at indexing multiply indexed Series, and 

then multiply indexed DataFrames. 

Multiply indexed Series 

Consider the multiply indexed Series of state populations we saw earlier: 

In[21]: pop 

 
Out[21]: state year  

California 2000 33871648 
 2010 37253956 

New York 2000 18976457 
 2010 19378102 

Texas 2000 20851820 
 2010 25145561 

dtype: int64 

We can access single elements by indexing with multiple terms: 

In[22]: pop['California', 2000] 

Out[22]: 33871648 

The MultiIndex also supports partial indexing, or indexing just one of the levels in the index. 
The result is another Series, with the lower-level indices maintained: 

In[23]: pop['California'] 

Out[23]: year 

2000 33871648 

2010 37253956 

dtype: int64 

Partial slicing is available as well, as long as the MultiIndex is sorted (see discussion 
in “Sorted and unsorted indices” on page 137): 

In[20]: health_data['Guido'] 
 

Out[20]: type 
year visit 

HR Temp 

2013 1 32.0 36.7 
2 50.0 35.0 

2014 1 39.0 37.8 
2 48.0 37.3 
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In[24]: pop.loc['California':'New York'] 

 
Out[24]: state year  

California 2000 3387164
8 

 2010 3725395
6 

New York 2000 1897645
7 

 2010 1937810
2 

dtype: int64 

With sorted indices, we can perform partial indexing on lower levels by passing 

an empty slice in the first index: 

In[25]: pop[:, 2000] 

Out[25]: state 

California 33871648 

New York 18976457 

Texas 20851820 

dtype: int64 

For example, selection based on Boolean masks: 

In[26]: pop[pop > 22000000] 

 
Out[26]: state year  

California 2000 3387164
8 

 2010 3725395
6 

Texas 2010 2514556
1 

dtype: 
int64   

Selection based on fancy indexing also works: 

In[27]: pop[['California', 'Texas']] 

 
Out[27]: state year  

California 2000 3387164
8 

 2010 3725395
6 

Texas 2000 2085182
0 

 2010 2514556
1 

dtype: int64 
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Multiply indexed DataFrames 

A multiply indexed DataFrame behaves in a similar manner. Consider our toy medical 
DataFrame from before: 

In[28]: health_data 

Out[28]: 

 
 
 
 
 
 
Remember that columns are primary in a DataFrame, and the syntax used for multi‐ ply 
indexed Series applies to the columns. For example, we can recover Guido’s heart rate data 
with a simple operation: 

In[29]: health_data['Guido', 'HR'] 

 
Out[29]: 
year 

visit  

2013 1 32.0 
 2 50.0 
2014 1 39.0 
 2 48.0 

Name: (Guido, HR), dtype: float64 

Also, as with the single-index case, we can use the loc, iloc, and ix indexers intro‐ duced in 
“Data Indexing and Selection” on page 107. For example: 

In[30]: health_data.iloc[:2, :2] 

 
Out[30]: subject 

type 
year visit 

Bo
b 
H
R 

 
Te
mp 

2013 1 31.0 38.
7 

2 44.0 37.
7 

These indexers provide an array-like view of the underlying two-dimensional data, but each 

individual index in loc or iloc can be passed a tuple of multiple indices. For example: 

In[31]: health_data.loc[:, ('Bob', 'HR')] 

 
Out[31]: 
year 

visit  

2013 1 31.0 
 2 44.0 
2014 1 30.0 
 2 47.0 

Name: (Bob, HR), dtype: float64 

Working with slices within these index tuples is not especially convenient; trying to 

subject Bob Guid
o 

Su
e 

type HR Tem

p 

HR Tem

p 

HR Temp 

year 

visit 

      

2013 1 31.

0 

38.

7 

32.0 36.

7 

35.0 37.2 

2 44.

0 

37.

7 

50.0 35.

0 

29.0 36.7 

2014 1 30.

0 

37.

4 

39.0 37.

8 

61.0 36.9 

2 47.
0 

37.
8 

48.0 37.
3 

51.0 36.5 
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create a slice within a tuple will lead to a syntax error: 

 

In[32]: health_data.loc[(:, 1), (:, 'HR')] 

File "<ipython-input-32-8e3cc151e316>", line 
1 health_data.loc[(:, 1), (:, 'HR')] 

^ 
SyntaxError: invalid syntax 

You could get around this by building the desired slice explicitly using Python’s 

built- in slice() function, but a better way in this context is to use an IndexSlice 

object, which Pandas provides for precisely this situation. For example: 

In[33]: idx = pd.IndexSlice 
health_data.loc[idx[:, 1], idx[:, 'HR']] 

Out[33]: subject   Bob Guido   Sue 
type HR HR   HR 
year visit 

2013 1      31.0 32.0 35.0 

2014 1      30.0 39.0 61.0 

There are so many ways to interact with data in multiply indexed Series and Data 
Frames, and as with many tools in this book the best way to become familiar with 
them is to try them out! 

Rearranging Multi-Indices 

One of the keys to working with multiply indexed data is knowing how to effectively 

transform the data. There are a number of operations that will preserve all the infor‐ 

mation in the dataset, but rearrange it for the purposes of various computations. We saw 

a brief example of this in the stack() and unstack() methods, but there are many more 

ways to finely control the rearrangement of data between hierarchical indices and 

columns, and we’ll explore them here. 

Sorted and unsorted indices 

Earlier, we briefly mentioned a caveat, but we should emphasize it more here. Many 

of the MultiIndex slicing operations will fail if the index is not sorted. Let’s take a look at 

this here. 

We’ll start by creating some simple multiply indexed data where the indices are not 

lexographically sorted: 

In[34]: index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]]) 
data = pd.Series(np.random.rand(6), index=index) 
data.index.names = ['char', 'int'] 

data 

Out[34]: char int 
a 1 0.003001 

 2 0.164974 
c 1 0.741650 

2 0.569264 
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b 1 0.001693 

2 0.526226 

dtype: float64 

If we try to take a partial slice of this index, it will result in an error: 

In[35]: try: 

data['a':'b'] 

except KeyError as e: 
print(type(e)) 
print(e) 

<class 'KeyError'> 

'Key length (1) was greater than MultiIndex lexsort depth (0)' 

Although it is not entirely clear from the error message, this is the result of the Multi Index 
not being sorted. For various reasons, partial slices and other similar opera‐ tions require 

the levels in the MultiIndex to be in sorted (i.e., lexographical) order. Pandas provides a 
number of convenience routines to perform this type of sorting; examples are the 
sort_index() and sortlevel() methods of the DataFrame. We’ll use the simplest, sort_index(), 

here: 

In[36]: data = data.sort_index() 
data 

Out[36]: char int 
a 1 0.003001 

 2 0.164974 
b 1 0.001693 

 2 0.526226 
c 1 0.741650 

 2 0.569264 

dtype: float64 

With the index sorted in this way, partial slicing will work as expected: 

In[37]: data['a':'b'] 

Out[37]: char int 
a 1 0.003001 

 2 0.164974 
b 1 0.001693 

 2 0.526226 

dtype: float64 

 

Stacking and unstacking indices 

As we saw briefly before, it is possible to convert a dataset from a stacked multi-

index to a simple two-dimensional representation, optionally specifying the level 

to use: 

 

In[38]: pop.unstack(level=0) 
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Out[38]: 
state 
year 

California New 
York 

Texas 

2000 33871648 189764
57 

208518
20 

2010 37253956 193781
02 

251455
61 

In[39]: pop.unstack(level=1) 

 
Out[39]: 
year 
state 

2000 2010 

California 338716
48 

372539
56 

New York 189764
57 

193781
02 

Texas 208518
20 

251455
61 

The opposite of unstack() is stack(), which here can be used to recover the original 
series: 

In[40]: pop.unstack().stack() 

 
Out[40]: state year  

California 2000 3387164
8 

 2010 3725395
6 

New York 2000 1897645
7 

 2010 1937810
2 

Texas 2000 2085182
0 

 2010 2514556
1 

dtype: int64 

 
Index setting and resetting 

Another way to rearrange hierarchical data is to turn the index labels into columns; this 

can be accomplished with the reset_index method. Calling this on the popula‐ tion 

dictionary will result in a DataFrame with a state and year column holding the information 

that was formerly in the index. For clarity, we can optionally specify the name of the data 

for the column representation: 

In[41]: pop_flat = 
pop.reset_index(name='population') 
pop_flat 

 
Out[41]: state year population 

0 California 2000 33871648 
1 California 2010 37253956 
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2 New York 2000 18976457 
3 New York 2010 19378102 
4 Texas 2000 20851820 
5 Texas 2010 25145561 

Often when you are working with data in the real world, the raw input data looks like this 

and it’s useful to build a MultiIndex from the column values. This can be done with the 

set_index method of the DataFrame, which returns a multiply indexed Data Frame: 

 

In[42]: pop_flat.set_index(['state', 'year']) 

 
Out[42]
: 

 
state 

 
yea

r 

populatio
n 

 California 200
0 

33871648 

  201
0 

37253956 

 New York 200
0 

18976457 

  201
0 

19378102 

 Texas 200
0 

20851820 

  201
0 

25145561 

In practice, I find this type of reindexing to be one of the more useful patterns 

when I encounter real-world datasets. 

Data Aggregations on Multi-Indices 

We’ve previously seen that Pandas has built-in data aggregation methods, such as 

mean(), sum(), and max(). For hierarchically indexed data, these can be passed a 

level parameter that controls which subset of the data the aggregate is computed 

on. 

For example, let’s return to our health data: 

In[43]: health_data 

Out[43]: 

 
 
 
 
 

 
Perhaps we’d like to average out the measurements in the two visits each year. We 

can do this by naming the index level we’d like to explore, in this case the year: 

In[44]: data_mean = 
health_data.mean(level='year') 
data_mean 

subject Bob Guid
o 

Su
e 

type HR Tem

p 

HR Tem

p 

HR Temp 

year 

visit 

      

2013 1 31.0 38.

7 

32.0 36.

7 

35.0 37.2 

2 44.0 37.

7 

50.0 35.

0 

29.0 36.7 

2014 1 30.0 37.

4 

39.0 37.

8 

61.0 36.9 

2 47.0 37.
8 

48.0 37.
3 

51.0 36.5 
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Out[44]: subject Bob Guido Sue 

type HR Temp HR Temp HR
 Temp year 

2013 37.5 38.2 41.0 35.85 32.0 36.95 

2014 38.5 37.6 43.5 37.55 56.0 36.70 

By further making use of the axis keyword, we can take the mean among levels on the 
columns as well: 

In[45]: data_mean.mean(axis=1, level='type') 

 
Out[45]: 
type 
year 

HR Temp 

2013 36.83333
3 

37.00000
0 

2014 46.00000
0 

37.28333
3 

Combining Datasets: Merge and Join 

One essential feature offered by Pandas is its high-performance, in-memory join and 

merge operations. If you have ever worked with databases, you should be familiar with this 

type of data interaction. The main interface for this is the pd.merge func‐ tion, and we’ll 

see a few examples of how this can work in practice. 

 

Categories of Joins 

The pd.merge() function implements a number of types of joins: the one-to-one, many-to-

one, and many-to-many joins. All three types of joins are accessed via an identical call to 
the pd.merge() interface; the type of join performed depends on the form of the input 

data. Here we will show simple examples of the three types of merges, and discuss detailed 
options further below. 

One-to-one joins 

Perhaps the simplest type of merge expression is the one-to-one join, which is in many 

ways very similar to the column-wise concatenation. As a concrete example, consider the 

following two DataFrames, which contain information on several employees in a company: 

In[2]: 

df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 

'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) 

df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 

'hire_date': [2004, 2008, 2012, 2014]}) 

print(df1); print(df2) 

 
df1  df2  

 employee group  employee hire_date 
0 Bob Accountin

g 
0 Lisa 2004 

1 Jake Engineerin 1 Bob 2008 
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g 
2 Lisa Engineerin

g 
2 Jake 2012 

3 Sue HR 3 Sue 2014 

To combine this information into a single DataFrame, we can use the pd.merge() 

function: 

In[3]: df3 = pd.merge(df1, df2) 
df3 

 
Out[3]
:  employ

ee 
group hire_dat

e 
 0 Bob Accounting 2008 
 1 Jake Engineerin

g 
2012 

 2 Lisa Engineerin
g 

2004 

 3 Sue HR 2014 

The pd.merge() function recognizes that each DataFrame has an “employee” column, and 

automatically joins using this column as a key. The result of the merge is a new DataFrame that 

combines the information from the two inputs. Notice that the order of entries in each column is not 

necessarily maintained: in this case, the order of the “employee” column differs between df1 and 

df2, and the pd.merge() function cor‐ rectly accounts for this. 

 

Many-to-one joins 

Many-to-one joins are joins in which one of the two key columns contains duplicate 

entries. For the many-to-one case, the resulting DataFrame will preserve those dupli‐ cate 

entries as appropriate. Consider the following example of a many-to-one join: 

In[4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'], 

'supervisor': ['Carly', 'Guido', 'Steve']}) 

print(df3); print(df4); print(pd.merge(df3, df4)) 

df3 df4 

employee group hire_date group supervisor 

0 Bob Accounting 2008 0 Accounting Carly 
1 Jake Engineering 2012 1 Engineering Guido 
2 Lisa Engineering 2004 2 HR Steve 
3 Sue HR 2014 

 
pd.merge(df3, df4) 
employee group hire_dat

e 
superviso
r 

0
 Bo
b 

Accounting 2008 Carly 

1 Jake Engineerin
g 

2012 Guido 

2 Lisa Engineerin
g 

2004 Guido 

3 HR 2014 Steve 
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 Su
e 

The resulting DataFrame has an additional column with the “supervisor” information, where 
the information is repeated in one or more locations as required by the inputs. 

Many-to-many joins 

Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined. If 

the key column in both the left and right array contains duplicates, then the result is a 

many-to-many merge. This will be perhaps most clear with a concrete example. Consider 

the following, where we have a DataFrame showing one or more skills associated with a 

particular group. 

By performing a many-to-many join, we can recover the skills associated with any 

individual person: 

In[5]: df5 = pd.DataFrame({'group': ['Accounting', 'Accounting', 

'Engineering', 'Engineering', 'HR', 'HR'], 

'skills': ['math', 'spreadsheets', 'coding', 'linux', 
'spreadsheets', 'organization']}) 

print(df1); print(df5); print(pd.merge(df1, df5)) 

df1 df5 

 employ
ee 

group  group skills 

0 Bob Accounting 0 Accounting math 
1 Jake Engineerin

g 
1 Accounting spreadsheet

s 
2 Lisa Engineerin

g 
2 Engineerin

g 
coding 

3 Sue HR 3 Engineerin
g 

linux 

   4 HR spreadsheet
s 

   5 HR organizatio
n 

 
pd.merge(df1, df5) 
employee group skills 
0
 Bo
b 

Accounting math 

1
 Bo
b 

Accounting spreadsheet
s 

2 Jake Engineerin
g 

coding 

3 Jake Engineerin
g 

linux 

4 Lisa Engineerin
g 

coding 

5 Lisa Engineerin
g 

linux 

6 HR spreadsheet
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 Su
e 

s 

7
 Su
e 

HR organizatio
n 

These three types of joins can be used with other Pandas tools to implement a wide array 

of functionality. But in practice, datasets are rarely as clean as the one we’re working with 

here. In the following section, we’ll consider some of the options pro‐ vided by pd.merge() 

that enable you to tune how the join operations work. 

Specification of the Merge Key 

We’ve already seen the default behavior of pd.merge(): it looks for one or more matching 
column names between the two inputs, and uses this as the key. However, often the 
column names will not match so nicely, and pd.merge() provides a variety of options for 
handling this. 

The on keyword 

Most simply, you can explicitly specify the name of the key column using the on key‐ word, 
which takes a column name or a list of column names: 

In[6]: print(df1); print(df2); print(pd.merge(df1, df2, on='employee')) 

 
df1  df2  

 employ
ee 

group  employ
ee 

hire_dat
e 

0 Bob Accounting 0 Lisa 2004 
1 Jake Engineerin

g 
1 Bob 2008 

2 Lisa Engineerin
g 

2 Jake 2012 

3 Sue HR 3 Sue 2014 

pd.merge(df1, df2, on='employee') 
employee group hire_dat

e 
0
 Bo
b 

Accounting 2008 

1 Jake Engineerin
g 

2012 

2 Lisa Engineerin
g 

2004 

3
 Su
e 

HR 2014 

This option works only if both the left and right DataFrames have the specified col‐ umn 
name. 

The left_on and right_on keywords 

At times you may wish to merge two datasets with different column names; for exam‐ ple, 

we may have a dataset in which the employee name is labeled as “name” rather than 

“employee”. In this case, we can use the left_on and right_on keywords to specify the two 

column names: 

In[7]: 
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df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 

'salary': [70000, 80000, 120000, 90000]}) 

print(df1); print(df3); 

print(pd.merge(df1, df3, left_on="employee", right_on="name")) 

df1 df3 

employee group name salary 
0 Bob Accounting 0 Bo

b 
7000

0 
1 Jake Engineerin

g 
1 Jak

e 
8000

0 
2 Lisa Engineerin

g 
2 Lisa 1200

00 
3 Sue HR 3 Su

e 
9000

0 
 
 

pd.merge(df1, df3, left_on="employee", right_on="name") 
employee group na

me 
salary 

0
 Bo
b 

Accounting Bo
b 

70000 

1 Jake Engineerin
g 

Jak
e 

80000 

2 Lisa Engineerin
g 

Lisa 12000
0 

3
 Su
e 

HR Su
e 

90000 

The result has a redundant column that we can drop if desired—for example, by using 

the drop() method of DataFrames: 

In[8]: 

pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1) 

 
Out[8]
: 

employee group salary 

 0
 Bo
b 

Accounting 70000 

 1
 Jak
e 

Engineerin
g 

80000 

 2 Lisa Engineerin
g 

12000
0 

 3
 Su
e 

HR 90000 

The left_index and right_index keywords 

Sometimes, rather than merging on a column, you would instead like to merge on an 

index. For example, your data might look like this: 

In[9]: df1a = df1.set_index('employee') 
df2a = 
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df2.set_index('employee') 
print(df1a); print(df2a) 

 
df1a  df2a  

 group  hire_dat
e 

employ
ee 

 employ
ee 

 

Bob Accounting Lisa 2004 
Jake Engineerin

g 
Bob 2008 

Lisa Engineerin
g 

Jak
e 

2012 

Sue HR Sue 2014 

You can use the index as the key for merging by specifying the left_index and/or 
right_index flags in pd.merge(): 

In[10]: 

print(df1a); print(df2a); 

print(pd.merge(df1a, df2a, left_index=True, right_index=True)) 

 
df1a  df2a  

 group  hire_dat
e 

employ
ee 

 employ
ee 

 

Bob Accounting Lisa 2004 
Jake Engineerin

g 
Bob 2008 

Lisa Engineerin
g 

Jake 2012 

Sue HR Sue 2014 
 

pd.merge(df1a, df2a, left_index=True, right_index=True) 

 group hire_dat
e 

employ
ee 

  

Lisa Engineering 2004 
Bob Accounting 2008 
Jake Engineering 2012 
Sue HR 2014 

For convenience, DataFrames implement the join() method, which performs a merge that 
defaults to joining on indices: 

In[11]: print(df1a); print(df2a); print(df1a.join(df2a)) 

 
df1a  df2a  

 group  hire_dat
e 

employ  employ  
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ee ee 
Bob Accounting Lisa 2004 
Jake Engineerin

g 
Bob 2008 

Lisa Engineerin
g 

Jake 2012 

Sue HR Sue 2014 
df1a.join(df2a)  

group hire_dat
e 

employee  
Bob
 Accountin
g 

2008 

Jake
 Engineerin
g 

2012 

Lisa
 Engineerin
g 

2004 

Sue
 H
R 

2014 

If you’d like to mix indices and columns, you can combine left_index with right_on 

or left_on with right_index to get the desired behavior: 

In[12]: 

print(df1a); print(df3); 

print(pd.merge(df1a, df3, left_index=True, right_on='name')) 

 
df1a 

 
employ
ee 

 
group 

 df3 
 
nam
e 

 

 
salary 

Bob Accounting 0 Bo
b 

70000 

Jake Engineerin
g 

1 Jak
e 

80000 

Lisa Engineerin
g 

2 Lisa 12000
0 

Sue HR 3 Su
e 

90000 

 
pd.merge(df1a, df3, left_index=True, 

right_on='name') group name salary 

0 Accounting Bob 70000 
1 Engineering Jake 80000 
2 Engineering Lisa 
120000 3 HR Sue 90000 
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Specifying Set Arithmetic for Joins 

In all the preceding examples we have glossed over one important consideration 

in performing a join: the type of set arithmetic used in the join. This comes up 

when a value appears in one key column but not the other. Consider this example: 

In[13]: df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'], 

'food': ['fish', 'beans', 'bread']}, 
columns=['name', 'food']) 

df7 = pd.DataFrame({'name': ['Mary', 'Joseph'], 

'drink': ['wine', 'beer']}, 
columns=['name', 'drink']) 

print(df6); print(df7); print(pd.merge(df6, df7)) 

 

df
6   df7  pd.merge(df6, df7) 

 nam
e 

food  name 
drink 

name food drink 

0 Pete
r 

fish 0 Mary 
wine 

0 Mary bread wine 

1 Paul bean
s 

1 Joseph beer 

2 Mar
y 

brea
d  

Here we have merged two datasets that have only a single “name” entry in common: 

Mary. By default, the result contains the intersection of the two sets of inputs; this is what 

is known as an inner join. We can specify this explicitly using the how keyword, which defaults 

to 'inner': 

In[14]: pd.merge(df6, df7, 

how='inner') Out[14]: name

 food drink 

0 Mary bread wine 

Other options for the how keyword are 'outer', 'left', and 'right'. An outer join returns a join 
over the union of the input columns, and fills in all missing values with NAs: 

In[15]: print(df6); print(df7); print(pd.merge(df6, df7, 

how='outer')) df6 df7 pd.merge(df6, df7, 

how='outer') 

name food name drink name food drink 
0 Pete

r 
fish 0 Mary wine 0 Peter fish Na

N 
1 Pau

l 
bean
s 

1 Josep
h 

beer 1 Paul bean
s 

Na
N 

2 Mar
y 

brea
d 

   2 Mary brea
d 

win
e 

      3 Josep
h 

NaN bee
r 

The left join and right join return join over the left entries and right entries, 
respec‐ tively. For example: 

In[16]: print(df6); print(df7); print(pd.merge(df6, df7, how='left')) 

df6 df7 pd.merge(df6, df7, how='left') 
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name food name drink name food drink 
0 Peter fish 0 Mary wine 0 Peter fish Na

N 
1 Paul bean

s 
1 Josep

h 
beer 1 Paul bean

s 
Na
N 

2
 Mar
y 

brea
d    2 Mary brea

d 
win

e 

The output rows now correspond to the entries in the left input. Using how='right' 
works in a similar manner. 

All of these options can be applied straightforwardly to any of the preceding 

join types. 

Overlapping Column Names: The suffixes Keyword 

Finally, you may end up in a case where your two input DataFrames have conflicting 
column names. Consider this example: 

In[17]: df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 

'rank': [1, 2, 3, 4]}) 

df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 

'rank': [3, 1, 4, 2]}) 

print(df8); print(df9); print(pd.merge(df8, df9, on="name")) 

df8  df9  pd.merge(df8, df9, 
on="name") name rank  name rank 
 name rank_x rank_y 

0 Bob 1 0 Bob 3 0 Bob 1 3 
1 Jake 2 1 Jake 1 1 Jake 2 1 
2 Lisa 3 2 Lisa 4 2 Lisa 3 4 
3 Sue 4 3 Sue 2 3 Sue 4 2 

Because the output would have two conflicting column names, the merge function 
automatically appends a suffix _x or _y to make the output columns unique. If these 

defaults are inappropriate, it is possible to specify a custom suffix using the suffixes 
keyword: 

In[18]: 

print(df8); print(df9); 

print(pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])) 

 
df
8 

 
nam
e 

 
ran
k 

df
9 

 
nam
e 

 
ran
k 

0 Bob 1 0 Bob 3 
1 Jake 2 1 Jake 1 
2 Lisa 3 2 Lisa 4 
3 Sue 4 3 Sue 2 

 
 

pd.merge(df8, df9, on="name", suffixes=["_L", 
"_R"]) name rank_L rank_R 

0 Bob 1 3 
1 Jake 2 1 
2 Lisa 3 4 
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3 Sue 4 2 

These suffixes work in any of the possible join patterns, and work also if there are 

multiple overlapping columns. 

Day 05- Descriptive Statistics 

Cleansing Data with Pandas 

Example: US States Data 

Merge and join operations come up most often when one is combining data from dif‐ 

ferent sources. Here we will consider an example of some data about US states and their 

populations. The data files can be found at http://github.com/jakevdp/data- USstates/: 

In[19]: 

# Following are shell commands to download the data 

# !curl -O 

https://raw.githubusercontent.com/jakevdp/ #

 data-USstates/master/state-

population.csv 

# !curl   -O   

https://raw.githubusercontent.com/jakevdp/ #

 data-USstates/master/state-areas.csv 

# !curl   -O   

https://raw.githubusercontent.com/jakevdp/ #

 data-USstates/master/state-abbrevs.csv 

Let’s take a look at the three datasets, using the Pandas read_csv() function: 

In[20]: pop = pd.read_csv('state-population.csv') 
areas = pd.read_csv('state-areas.csv') 
abbrevs = pd.read_csv('state-
abbrevs.csv') 

 
print(pop.head()); print(areas.head()); print(abbrevs.head()) 

 
pop.head() 

state/region  ages 
 
yea

r 

 
populatio
n 

areas.head() 
state  

area (sq. mi) 

0 AL under1
8 

201
2 

1117489.
0 

0 Alabama 52423 

1 AL total 201
2 

4817528.
0 

1 Alaska 656425 

2 AL under1
8 

201
0 

1130966.
0 

2 Arizona 114006 

3 AL total 201
0 

4785570.
0 

3 Arkansas 53182 

4 AL under1
8 

201
1 

1125763.
0 

3 Arkansas 53182 

     4 California 163707 

 
abbrevs.head() 

state abbreviation 
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0 Alabama AL 
1 Alaska AK 
2 Arizona AZ 
3 Arkansas AR 
4 California CA 

Given this information, say we want to compute a relatively straightforward 

result: rank US states and territories by their 2010 population density. We clearly 

have the data here to find this result, but we’ll have to combine the datasets to 

get it. 

We’ll start with a many-to-one merge that will give us the full state name within the 
population DataFrame. We want to merge based on the state/region column of pop, and 

the abbreviation column of abbrevs. We’ll use how='outer' to make sure no data is thrown 

away due to mismatched labels. 

In[21]: merged = pd.merge(pop, abbrevs, how='outer', 

left_on='state/region', right_on='abbreviation') 
merged = merged.drop('abbreviation', 1) # drop duplicate 
info merged.head() 

 
Out[21]: state/region ages year population state 

 0 AL under18 2012 1117489.0 Alabama 
 1 AL total 2012 4817528.0 Alabama 
 2 AL under18 2010 1130966.0 Alabama 
 3 AL total 2010 4785570.0 Alabama 
 4 AL under18 2011 1125763.0 Alabama 

Let’s double-check whether there were any mismatches here, which we can do by looking 

for rows with nulls: 

In[22]: merged.isnull().any() 

Out[22]: state/region False 
ages False 

year False 

population True 

state True 

dtype: bool 

Some of the population info is null; let’s figure out which these are! 

In[23]: merged[merged['population'].isnull()].head() 

 
Out[23]
: 

state/region ages year populatio
n 

state 

 2448
 P
R 

under1
8 

199
0 

NaN NaN 

 2449
 P
R 

total 199
0 

NaN NaN 

 2450
 P

total 199
1 

NaN NaN 
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R 
 2451

 P
R 

under1
8 

199
1 

NaN NaN 

 2452
 P
R 

total 199
3 

NaN NaN 

It appears that all the null population values are from Puerto Rico prior to the 

year 2000; this is likely due to this data not being available from the original 

source. 

More importantly, we see also that some of the new state entries are also null, which means 
that there was no corresponding entry in the abbrevs key! Let’s figure out which regions 
lack this match: 

In[24]: merged.loc[merged['state'].isnull(), 'state/region'].unique() 

Out[24]: array(['PR', 'USA'], dtype=object) 

We can quickly infer the issue: our population data includes entries for Puerto 

Rico (PR) and the United States as a whole (USA), while these entries do not 

appear in the state abbreviation key. We can fix these quickly by filling in 

appropriate entries: 

In[25]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico' 
merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States' 
merged.isnull().any() 

Out[25]: state/region False 
ages False 

year False 

population True 

state False 

dtype: bool 

No more nulls in the state column: we’re all set! 

Now we can merge the result with the area data using a similar procedure. Examining our 

results, we will want to join on the state column in both: 

 

In[26]: final = pd.merge(merged, areas, on='state', how='left') 
final.head() 

 
Out[26]
: 

state/region ages yea
r 

populatio
n 

state area (sq. mi) 

 0
 A
L 

under1
8 

201
2 

1117489
.0 

Alabam
a 

52423.0 

 1
 A
L 

total 201
2 

4817528
.0 

Alabam
a 

52423.0 

 2
 A
L 

under1
8 

201
0 

1130966
.0 

Alabam
a 

52423.0 
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 3
 A
L 

total 201
0 

4785570
.0 

Alabam
a 

52423.0 

 4
 A
L 

under1
8 

201
1 

1125763
.0 

Alabam
a 

52423.0 

Again, let’s check for nulls to see if there were any mismatches: 

In[27]: final.isnull().any() 

Out[27]: state/region False 
ages False 

year False 

population True 

state False 

area (sq. mi) True 
dtype: bool 

There are nulls in the area column; we can take a look to see which regions were 
ignored here: 

In[28]: final['state'][final['area (sq. mi)'].isnull()].unique() 

Out[28]: array(['United States'], dtype=object) 

We see that our areas DataFrame does not contain the area of the United States as a 

whole. We could insert the appropriate value (using the sum of all state areas, for 
instance), but in this case we’ll just drop the null values because the population den‐ sity of 
the entire United States is not relevant to our current discussion: 

In[29]: final.dropna(inplace=True) 
final.head() 

 
Out[29]
: 

state/region ages yea
r 

populatio
n 

state area (sq. mi) 

 0
 A
L 

under1
8 

201
2 

1117489
.0 

Alabam
a 

52423.0 

 1
 A
L 

total 201
2 

4817528
.0 

Alabam
a 

52423.0 

 2
 A
L 

under1
8 

201
0 

1130966
.0 

Alabam
a 

52423.0 

 3
 A
L 

total 201
0 

4785570
.0 

Alabam
a 

52423.0 

 4
 A
L 

under1
8 

201
1 

1125763
.0 

Alabam
a 

52423.0 

Now we have all the data we need. To answer the question of interest, let’s first select the 

portion of the data corresponding with the year 2000, and the total population. We’ll use 

the query() function to do this quickly (this requires the numexpr package to be installed;  
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In[30]: data2010 = final.query("year == 2010 & ages == 
'total'") data2010.head() 

Out[30]:  state/region ages year population  state area (sq. mi) 3
  AL total 2010 4785570.0 Alabama 52423.0 

91 AK total 2010 713868.0 Alaska 656425.0 

101 AZ total 201
0 

6408790 Arizona 114006.0 

189 AR total 201
0 

2922280 Arkansas 53182.0 

197 CA total 201
0 

3733360
1 

California 163707.0 

Now let’s compute the population density and display it in order. We’ll start by 

rein‐ dexing our data on the state, and then compute the result: 

In[31]: data2010.set_index('state', inplace=True) 

density = data2010['population'] / data2010['area (sq. mi)'] 

In[32]: density.sort_values(ascending=False, 
inplace=True) density.head() 

Out[32]: state 
District of Columbia 8898.89705

9 
Puerto Rico 1058.66514

9 
New Jersey 1009.25326

8 
Rhode Island 681.339159 
Connecticut 645.600649 
dtype: float64  

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of their 

2010 population density, in residents per square mile. We can see that by far the densest 

region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the 

densest is New Jersey. 

We can also check the end of the list: 

In[33]: density.tail() 

Out[33]: state 

 
 
 
 
 
 
We see that the least dense state, by far, is Alaska, averaging slightly over one resident per 

square mile. 

This type of messy data merging is a common task when one is trying to answer questions 

using real-world data sources. I hope that this example has given you an idea of the ways 

you can combine tools we’ve covered in order to gain insight from your data! 

 

South Dakota 10.583512 

North Dakota 9.537565 

Montana 6.736171 

Wyoming 5.768079 

Alaska 1.087509 

dtype: 
float64 
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Aggregation and Grouping 

An essential piece of analysis of large data is efficient summarization: computing 
aggregations like sum(), mean(), median(), min(), and max(), in which a single num‐ ber 

gives insight into the nature of a potentially large dataset. In this section, we’ll explore 

aggregations in Pandas, from simple operations akin to what we’ve seen on NumPy arrays, 

to more sophisticated operations based on the concept of a groupby. 

Planets Data 

Here we will use the Planets dataset, available via the Seaborn package (see “Visuali‐ zation with 

Seaborn” on page 311). It gives information on planets that astronomers have discovered around 

other stars (known as extrasolar planets or exoplanets for short). It can be downloaded with a simple 

Seaborn command: 

In[2]: import seaborn as sns 

planets = sns.load_dataset('planets') 
planets.shape 

Out[2]: (1035, 6) 

In[3]: planets.head() 

 
Out[3]: method numbe

r 
orbital_perio
d 

mass distance year 

0 Radial Velocity 1 269.300 7.10 77.40 200
6 

1 Radial Velocity 1 874.774 2.21 56.95 200
8 

2 Radial Velocity 1 763.000 2.60 19.84 201
1 

3 Radial Velocity 1 326.030 19.40 110.62 200
7 

4 Radial Velocity 1 516.220 10.50 119.47 200
9 

This has some details on the 1,000+ exoplanets discovered up to 2014. 

Simple Aggregation in Pandas 

Earlier we explored some of the data aggregations available for NumPy arrays 

(“Aggregations: Min, Max, and Everything in Between” on page 58). As with a one- 

dimensional NumPy array, for a Pandas Series the aggregates return a single value: 

In[4]: rng = 
np.random.RandomState(42) 
ser = pd.Series(rng.rand(5)) ser 

 
Out[4]: 0 0.374540 
1 0.950714 
2 0.731994 
3 0.598658 
4 0.156019 

dtype: float64 

In[5]: ser.sum() 

Out[5]: 2.8119254917081569 
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In[6]: ser.mean() 

Out[6]: 0.56238509834163142 

For a DataFrame, by default the aggregates return results within each column: 
 

In[7]: df = pd.DataFrame({'A': rng.rand(5), 

'B': rng.rand(5)}) 

df 

 
Out[7]
:  A B 

 0 0.15599
5 

0.02058
4 

 1 0.05808
4 

0.96991
0 

 2 0.86617
6 

0.83244
3 

 3 0.60111
5 

0.21233
9 

 4 0.70807
3 

0.18182
5 

In[8]: df.mean() 

Out[8]: A 0.477888 

B 0.443420 

dtype: float64 

By specifying the axis argument, you can instead aggregate within each row: 

In[9]: df.mean(axis='columns') 

 
Out[9]: 0 0.088290 
1 0.513997 
2 0.849309 
3 0.406727 
4 0.444949 

dtype: float64 

Pandas Series and DataFrames include all of the common aggregates mentioned in 

“Aggregations: Min, Max, and Everything in Between” on page 58; in addition, there is a 
convenience method describe() that computes several common aggregates for each 

column and returns the result. Let’s use this on the Planets data, for now drop‐ ping rows 
with missing values: 

In[10]: planets.dropna().describe() 

 
Out[10]: number orbital_perio

d 
mass distance year 

count 498.0000
0 

498.000000 498.0000
00 

498.0000
00 

498.00000
0 

mean 1.73494 835.778671 2.509320 52.06821
3 

2007.3775
10 
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std 1.17572 1469.128259 3.636274 46.59604
1 

4.167284 

min 1.00000 1.328300 0.003600 1.350000 1989.0000
00 

25% 1.00000 38.272250 0.212500 24.49750
0 

2005.0000
00 

50% 1.00000 357.000000 1.245000 39.94000
0 

2009.0000
00 

75% 2.00000 999.600000 2.867500 59.33250
0 

2011.0000
00 

max 6.00000 17337.50000
0 

25.00000
0 

354.0000
00 

2014.0000
00 

This can be a useful way to begin understanding the overall properties of a dataset. For 

example, we see in the year column that although exoplanets were discovered as far back 

as 1989, half of all known exoplanets were not discovered until 2010 or after. This is largely 

thanks to the Kepler mission, which is a space-based telescope specifi‐ cally designed for 

finding eclipsing planets around other stars. 

 

GroupBy: Split, Apply, Combine 

Simple aggregations can give you a flavor of your dataset, but often we would prefer to 

aggregate conditionally on some label or index: this is implemented in the so- called 

groupby operation. The name “group by” comes from a command in the SQL database 

language, but it is perhaps more illuminative to think of it in the terms first coined by 

Hadley Wickham of Rstats fame: split, apply, combine. 

Split, apply, combine 

• The split step involves breaking up and grouping a DataFrame depending on 
the value of the specified key. 

• The apply step involves computing some function, usually an aggregate, 

transfor‐ mation, or filtering, within the individual groups. 

• The combine step merges the results of these operations into an output array. 
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While we could certainly do this manually using some combination of the masking, 

aggregation, and merging commands covered earlier, it’s important to realize that the 

intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can (often) 

do this in a single pass over the data, updating the sum, mean, count, min, or other 

aggregate for each group along the way. The power of the GroupBy is that it abstracts 

away these steps: the user need not think about how the computation is done under 

the hood, but rather thinks about the operation as a whole. 

We’ll start by creating the input DataFrame: 
In[11]: df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 

'data': range(6)}, columns=['key', 'data']) 

df 

Out[11]: key data 

0 A 0 

1 B 1 

2 C 2 

3 A 3 

4 B 4 

5 C 5 

We can compute the most basic split-apply-combine operation with the groupby() 
method of DataFrames, passing the name of the desired key column: 

In[12]: df.groupby('key') 

Out[12]: <pandas.core.groupby.DataFrameGroupBy object at 0x117272160> 

 

Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy object. 

This object is where the magic is: you can think of it as a special view of the DataFrame, 

which is poised to dig into the groups but does no actual computation until the 

aggregation is applied. This “lazy evaluation” approach means that common aggregates 

can be implemented very efficiently in a way that is almost transparent to the user. 
To produce a result, we can apply an aggregate to this DataFrameGroupBy object, which 
will perform the appropriate apply/combine steps to produce the desired result: 
In[13]: df.groupby('key').sum() 

Data   key  

A 3 
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B 5 

C 7 

The sum() method is just one possibility here; you can apply virtually any 
common Pandas or NumPy aggregation function, as well as virtually any valid 
DataFrame operation, as we will see in the following discussion. 
The GroupBy object 

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if 
it’s a collection of DataFrames, and it does the difficult things under the hood. Let’s see 
some examples using the Planets data. 
Perhaps the most important operations made available by a GroupBy are aggregate, 
filter, transform, and apply. We’ll discuss each of these more fully in “Aggregate, filter, 
transform, apply” on page 165, but before that let’s introduce some of the other func‐ 
tionality that can be used with the basic GroupBy operation. 
Column indexing 

 The GroupBy object supports column indexing in the same way as the DataFrame, and returns 

a modified GroupBy object. For example: 

In[14]: planets.groupby('method') 

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at 

0x1172727b8> In[15]: planets.groupby('method')['orbital_period'] 

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0> 

Here we’ve selected a particular Series group from the original DataFrame group by 
reference to its column name. As with the GroupBy object, no computation is done until 
we call some aggregate on the object: 

In[16]: planets.groupby('method')['orbital_period'].median() 

 
Out[16]: method 

Astrometry 631.180000 

Eclipse Timing Variations 4343.500000 

Imaging 27500.000000 

Microlensing 3300.000000 

Orbital Brightness Modulation 0.342887 

Pulsar Timing 66.541900 
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Pulsation Timing Variations 1170.000000 

Radial Velocity 360.200000 

Transit 5.714932 

Transit Timing Variations 57.011000 

Name: orbital_period, dtype: float64 

Iteration over groups. The GroupBy object supports direct iteration over the groups, 

returning each group as a Series or DataFrame: 
In[17]: for (method, group) in planets.groupby('method'): 

print("{0:30s} shape={1}".format(method, group.shape)) 

Astrometry shape=(2, 6) 
Eclipse Timing Variations shape=(9, 6) 
Imaging shape=(38, 
6) 

Microlensing shape=(23, 
6) Orbital Brightness Modulation 
shape=(3, 6) Pulsar Timing shape=(5, 6) 
Pulsation Timing Variations shape=(1, 6) 
Radial Velocity shape=(553, 
6) 

Transit shape=(397, 6) 

Transit Timing Variations shape=(4, 6) 

This can be useful for doing certain things manually, though it is often much faster to use 

the built-in apply functionality, which we will discuss momentarily. 

Dispatch methods. Through some Python class magic, any method not explicitly 

implemented by the GroupBy object will be passed through and called on the groups, 
whether they are DataFrame or Series objects. For example, you can use the describe() 
method of DataFrames to perform a set of aggregations that describe each group in the 
data: 

In[18]: planets.groupby('method')['year'].describe().unstack() 

 
Out[18]: 

 
method 

 
count 

 
mean 

 
std 

 
min 

 
25% \\ 

Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75 

Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00 

Imaging 38.0 2009.131579 2.781901 2004.0 2008.00 
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Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00 
Orbital Brightness 
Modulation 

3.0 2011.666667 1.154701 2011.0 2011.00 

Aggregate, filter, transform, apply. 

The preceding discussion focused on aggregation for the combine operation, but 
there are more options available. In particular, GroupBy objects have aggregate(), filter(), 
transform(), and apply() methods that efficiently implement a variety of useful operations 

before combining the grouped data. 

For the purpose of the following subsections, we’ll use this DataFrame: 
In[19]: rng = np.random.RandomState(0) 

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 

'data1': range(6), 

'data2': rng.randint(0, 10, 6)}, 

columns = ['key', 'data1', 'data2']) 

df 

 
Out[19]
: 

key data
1 

data
2 

 0 A 0 5 
 1 B 1 0 
 2 C 2 3 

3 A 3 3 
4 B 4 7 
5 C 5 9 

 
Aggregation. We’re now familiar with GroupBy aggregations with sum(), median(), and the 
like, but the aggregate() method allows for even more flexibility. It can take a string, a 
function, or a list thereof, and compute all the aggregates at once. Here is a quick example 
combining all these: 

In[20]: df.groupby('key').aggregate(['min', np.median, max]) 

Out[20]: data1 data2 

min median max min median max 
key  
A 0 1.5 3 3 4.0 5 
B 1 2.5 4 0 3.5 7 
C 2 3.5 5 3 6.0 9 

Another useful pattern is to pass a dictionary mapping column names to 

operations to be applied on that column: 
In[21]: df.groupby('key').aggregate({'data1': 'min', 
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'data2': 'max'}) 

Out[21]:  data1 
data2 key 

A 0 5 

B 1 7 

C 2 9 

 
Filtering. A filtering operation allows you to drop data based on the group proper‐ ties. 

For example, we might want to keep all groups in which the standard deviation is larger 

than some critical value: 
In[22]: 

def filter_func(x): 

return x['data2'].std() > 4 

 
print(df); print(df.groupby('key').std()); 
print(df.groupby('key').filter(filter_func)) 

df  df.groupby('key').std() 
key data1 data2 key data1
 data2 

0 A 0 5 A 2.12132 1.4142
14 

1 B 1 0 B 2.12132 4.9497
47 

2 C 2 3 C 2.12132 4.2426
41 

3 A 3 3  
4 B 4 7 
5 C 5 9 

 
df.groupby('key').filter(filter_func) 

key data1 data2 

1 B 1 0 

2 C 2 3 
4 B 4 7 
5 C 5 9 

The filter() function should return a Boolean value specifying whether the group passes 
the filtering. Here because group A does not have a standard deviation greater than 4, it 
is dropped from the result. 
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Transformation. While aggregation must return a reduced version of the data, trans‐ 

formation can return some transformed version of the full data to recombine. For 

such a transformation, the output is the same shape as the input. A common example is 

to center the data by subtracting the group-wise mean: 

In[23]: df.groupby('key').transform(lambda x: x - 

x.mean()) Out[23]: data1 data2 

0 -1.5 1.0 

1 -1.5 -3.5 

2 -1.5 -3.0 

3 1.5 -1.0 

4 1.5 3.5 

5 1.5 3.0 

 
The apply() method. The apply() method lets you apply an arbitrary function to the group 
results. The function should take a DataFrame, and return either a Pandas object 
(e.g., DataFrame, Series) or a scalar; the combine operation will be tailored to the type of 
output returned. 

For example, here is an apply() that normalizes the first column by the sum of 
the second: 

In[24]: def norm_by_data2(x): 

# x is a DataFrame of group 
values x['data1'] /= 
x['data2'].sum() return x 

 
print(df); 

print(df.groupby('key').apply(norm_by_data2)) df

 df.groupby('key').apply(norm_by_data

2) 

 
 
 
 
 
 

 ke
y 

data
1 

data
2 

key data1 data
2 

0 A 0 5 0 A 0.00000

0 

5 

1 B 1 0 1 B 0.14285

7 

0 

2 C 2 3 2 C 0.16666

7 

3 

3 A 3 3 3 A 0.37500

0 

3 

4 B 4 7 4 B 0.57142

9 

7 

5 C 5 9 5 C 0.41666
7 

9 
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apply() within a GroupBy is quite flexible: the only criterion is that the function takes a 
DataFrame and returns a Pandas object or scalar; what you do in the middle is up to you! 
 

Specifying the split key 

In the simple examples presented before, we split the DataFrame on a single column 
name. This is just one of many options by which the groups can be defined, and we’ll go 
through some other options for group specification here. 

A list, array, series, or index providing the grouping keys. The key can be any series or list 

with a length matching that of the DataFrame. For example: 

In[25]: L = [0, 1, 0, 1, 2, 0] 

print(df); print(df.groupby(L).sum()) 

df df.groupby(L).sum() 

key data1 data2  data1 
data2 0 A 0 5 0  7
 17 

1 B 1 0 1 4 3 

2 C 2 3 2 4 7 

3 A 3 3 

4 B 4 7 

5 C 5 9 

Of course, this means there’s another, more verbose way of accomplishing the 
df.groupby('key') from before: 

In[26]: print(df); 

print(df.groupby(df['key']).sum()) df

 df.groupby(df['key']).sum

() 

 
 
 
 
 
 

key data1 data2 data1 data
2 

0 A 0 5 A 3 8 

1 B 1 0 B 5 7 

2 C 2 3 C 7 12 

3 A 3 3   

4 B 4 7   

5 C 5 9   
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A dictionary or series mapping index to group. Another method is to provide a dictionary that 
maps index values to the group keys: 

In[27]: df2 = df.set_index('key') 

mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'} 

print(df2); print(df2.groupby(mapping).sum()) 

 
df2 
key 

 
data
1 

 
data
2 

df2.groupby(mapping).s
um() 

data1 data2 

A 0 5 consonant 12 19 
B 1 0 vowel 3 8 
C 2 3  
A 3 3  
B 4 7  
C 5 9  
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Week 3- Data Cleaning and Summarization 

Descriptive statistics and data summarization 

Data visualization using Matplotlib and Seaborn 

Exploring relationships and patterns in data 

Day 01- Pandas String Operations 

We saw in previous sections how tools like NumPy and Pandas generalize 

arithmetic operations so that we can easily and quickly perform the same 

operation on many array elements. For example: 

In[1]: import numpy as np 

x = np.array([2, 3, 5, 7, 11, 13]) 

x * 2 

Out[1]: array([ 4, 6, 10, 14, 22, 26]) 

This vectorization of operations simplifies the syntax of operating on arrays of data: we 

no longer have to worry about the size or shape of the array, but just about what 

operation we want done. For arrays of strings, NumPy does not provide such simple 

access, and thus you’re stuck using a more verbose loop syntax: 

In[2]: data = ['peter', 'Paul', 'MARY', 'gUIDO'] 
[s.capitalize() for s in data] 

Out[2]: ['Peter', 'Paul', 'Mary', 'Guido'] 

This is perhaps sufficient to work with some data, but it will break if there are any missing 

values. For example: 

In[3]: data = ['peter', 'Paul', None, 'MARY', 'gUIDO'] 
[s.capitalize() for s in data] 

Pandas includes features to address both this need for vectorized string operations 
and for correctly handling missing data via the str attribute of Pandas Series and Index 
objects containing strings. So, for example, suppose we create a Pandas Series with this 
data: 

In[4]: import pandas as pd 
names = 
pd.Series(data) names 
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Out[4]: 0 peter 

1 Paul 
2 None 
3 MARY 
4 gUIDO 
dtype: 
object 

We can now call a single method that will capitalize all the entries, while 

skipping over any missing values: 

In[5]: names.str.capitalize() 

Out[5]: 0 Peter 

1 Paul 
2 None 
3 Mary 
4 Guido 
dtype: 
object 

Using tab completion on this str attribute will list all the vectorized string 
methods available to Pandas. 

Tables of Pandas String Methods 

If you have a good understanding of string manipulation in Python, most of Pandas’ string 

syntax is intuitive enough that it’s probably sufficient to just list a table of avail‐ able 

methods; we will start with that here, before diving deeper into a few of the sub‐ tleties. 

The examples in this section use the following series of names: 

In[6]: monte = pd.Series(['Graham Chapman', 'John Cleese', 'Terry Gilliam', 

'Eric Idle', 'Terry Jones', 'Michael Palin']) 

 
Methods similar to Python string methods 

Nearly all Python’s built-in string methods are mirrored by a Pandas vectorized 

string method. Here is a list of Pandas str methods that mirror Python string 

methods: 

 
len() lower() translate() islower() 

ljust() upper() startswith() isupper() 

rjust() find() endswith() isnumeric() 

center() rfind() isalnum() isdecimal() 
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zfill() index() isalpha() split() 

strip() rindex() isdigit() rsplit() 

rstrip() capitalize() isspace() partition() 

lstrip() swapcase() istitle() rpartition() 

 
Notice that these have various return values. Some, like lower(), return a series of strings: 

In[7]: monte.str.lower() 

Out[7]: 0 graham 

chapman 

1 john cleese 
2 terry gilliam 
3 eric idle 
4 terry jones 
5 michael 
palin dtype: 
object 

But some others return numbers: 

In[8]: monte.str.len() 

 
Out[8]: 0 14 
1 11 
2 13 
3 9 
4 11 
5 13 

dtype: int64 

Or Boolean values: 

In[9]: monte.str.startswith('T') 

Out[9]: 0 False 

1 False 
2 True 
3 False 
4 True 
5 False 
dtype: 
bool 

Still others return lists or other compound values for each element: 
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In[10]: monte.str.split() 

Out[10]: 0 [Graham, 

Chapman] 

1 [John, Cleese] 
2 [Terry, Gilliam] 
3 [Eric, Idle] 
4 [Terry, Jones] 
5 [Michael, 
Palin] dtype: object 

We’ll see further manipulations of this kind of series-of-lists object as we 

continue our discussion. 

Methods using regular expressions 

In addition, there are several methods that accept regular expressions to 

examine the content of each string element, and follow some of the API 

conventions of Python’s built-in re module. 

 

Table . Mapping between Pandas methods and functions in Python’s re module 

match() Call re.match() on each element, returning a Boolean. 

extract() Call re.match() on each element, returning matched groups as strings. 

findall() Call re.findall() on each element. 

replace() Replace occurrences of pattern with some other string. 

contains() Call re.search() on each element, returning a 

Boolean. count() Count occurrences of pattern. 

split() Equivalent to str.split(), but accepts regexps. 

rsplit() Equivalent to str.rsplit(), but accepts regexps. 

 
With these, you can do a wide range of interesting operations. For example, we 

can extract the first name from each by asking for a contiguous group of 

characters at the beginning of each element: 

In[11]: monte.str.extract('([A-Za-z]+)') 

Out[11]: 0 Graham 

Method Description 
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1 John 
2 Terry 
3 Eric 
4 Terry 
5 Michae
l dtype: 
object 

Or we can do something more complicated, like finding all names that start and end with 

a consonant, making use of the start-of-string (^) and end-of-string ($) regular expression 

characters: 

In[12]: 

monte.str.findall(r'^[^AEIOU].*[^aeiou]$') 

Out[12]: 0 [Graham Chapman] 

1 [] 

2 [Terry Gilliam] 

3 [] 

4 [Terry Jones] 
5 [Michael 
Palin] dtype: object 

The ability to concisely apply regular expressions across Series or DataFrame entries opens up 
many possibilities for analysis and cleaning of data. 

Vectorized item access and slicing. The get() and slice() operations, in particular, enable 

vectorized element access from each array. For example, we can get a slice of the 

first three characters of each array using str.slice(0, 3). Note that this behav‐ ior 

is also available through Python’s normal indexing syntax—for example, 

df.str.slice(0, 3) is equivalent to df.str[0:3]: 

In[13]: 

monte.str[0:3] 

Out[13]: 0 Gra 

1 Joh 
2 Ter 
3 Eri 
4 Ter 
5 Mic 
dtype: object 

Indexing via df.str.get(i) and df.str[i] is similar. 

These get() and slice() methods also let you access elements of arrays returned 
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by split(). For example, to extract the last name of each entry, we can 

combine split() and get(): 

In[14]: monte.str.split().str.get(-1) 

Out[14]: 0 Chapman 

1 Cleese 
2 Gilliam 
3 Idle 
4 Jones 
5 Palin 
dtype: object 

 
Indicator variables. Another method that requires a bit of extra explanation is the get_dummies() 
method. This is useful when your data has a column containing some sort of coded 

indicator. For example, we might have a dataset that contains informa‐ tion in the form 
of codes, such as A=“born in America,” B=“born in the United King‐ dom,” C=“likes 

cheese,” D=“likes spam”: 

In[15]: 

full_monte = pd.DataFrame({'name': monte, 

'info': ['B|C|D', 'B|D', 'A|C', 'B|D', 'B|C', 
'B|C|D']}) 

full_monte 

Out[15]: info name 

0 B|C|D Graham Chapman 
1 B|D John Cleese 
2 A|C Terry Gilliam 
3 B|D Eric Idle 
4 B|C Terry Jones 

5 B|C|D Michael Palin 

The get_dummies() routine lets you quickly split out these indicator variables into a 

DataFrame: 

In[16]: full_monte['info'].str.get_dummies('|') 
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With these operations as building blocks, you can construct an endless range of 

string processing procedures when cleaning your data. 

Miscellaneous methods 

Finally, there are some miscellaneous methods that enable other convenient operations. 

 
Table . Other Pandas string methods 

get() Index each element 

slice() Slice each element 

slice_replace() Replace slice in each element with passed value 

cat() Concatenate strings 

repeat() Repeat values 

normalize() Return Unicode form of string 

pad() Add whitespace to left, right, or both sides of strings 

wrap() Split long strings into lines with length less than a given 

width join() Join strings in each element of the Series with passed 

separator get_dummies() Extract dummy variables as a DataFrame 

Dates and Times in Python 

The Python world has several available representations of dates, times, deltas, and 

timespans. While the time series tools provided by Pandas tend to be the most useful for 

data science applications, it is helpful to see their relationship to other packages used in 

Python. 

Native Python dates and times: datetime and dateutil 

Python’s basic objects for working with dates and times reside in the built-in date time 
module. Along with the third-party dateutil module, you can use it to quickly perform a 

 

Out[16]: A B C D 
 0 0 1 1 1 
 1 0 1 0 1 
 2 1 0 1 0 
 3 0 1 0 1 
 4 0 1 1 0 
 5 0 1 1 1 

 

Method Description 
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host of useful functionalities on dates and times. For example, you can manually build a 

date using the datetime type: 

In[1]: from datetime import datetime 
datetime(year=2015, month=7, 
day=4) 

Out[1]: datetime.datetime(2015, 7, 4, 0, 0) 

Or, using the dateutil module, you can parse dates from a variety of string formats: 

In[2]: from dateutil import parser 

date = parser.parse("4th of July, 
2015") date 

Out[2]: datetime.datetime(2015, 7, 4, 0, 0) 

Once you have a datetime object, you can do things like printing the day of the week: 

In[3]: date.strftime('%A') 

Out[3]: 'Saturday' 

In the final line, we’ve used one of the standard string format codes for printing dates 

("%A"), which you can read about in the strftime section of Python’s datetime 

documentation. Documentation of other useful date utilities can be found in dateutil’s 

online documentation. A related package to be aware of is pytz, which contains  tools          for 

working with the most migraine-inducing piece of time series data: time zones. 

The power of datetime and dateutil lies in their flexibility and easy syntax: you can use these 
objects and their built-in methods to easily perform nearly any operation you might be 
interested in. Where they break down is when you wish to work with large arrays of 

dates and times: just as lists of Python numerical variables are subopti‐ mal compared to 

NumPy-style typed numerical arrays, lists of Python datetime objects are suboptimal 
compared to typed arrays of encoded dates. 

Typed arrays of times: NumPy’s datetime64 

The weaknesses of Python’s datetime format inspired the NumPy team to add a set of 

native time series data type to NumPy. The datetime64 dtype encodes dates as 64-bit 

integers, and thus allows arrays of dates to be represented very compactly. The date 

time64 requires a very specific input format: 

In[4]: import numpy as np 

date = np.array('2015-07-04', 
dtype=np.datetime64) date 
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Out[4]: array(datetime.date(2015, 7, 4), dtype='datetime64[D]') 

Once we have this date formatted, however, we can quickly do vectorized operations on 

it: 

In[5]: date + 

np.arange(12) Out[5]: 

array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07', 

'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11', 

'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'], 

dtype='datetime64[D]') 

Because of the uniform type in NumPy datetime64 arrays, this type of operation can be 
accomplished much more quickly than if we were working directly with Python’s datetime 
objects, especially as arrays get large. 

One detail of the datetime64 and timedelta64 objects is that they are built on a fun‐ 

damental time unit. Because the datetime64 object is limited to 64-bit precision, the range 

of encodable times is 264 times this fundamental unit. In other words, date time64 imposes 
a trade-off between time resolution and maximum time span. 

For example, if you want a time resolution of one nanosecond, you only have enough 

information to encode a range of 264 nanoseconds, or just under 600 years. NumPy will 

infer the desired unit from the input; for example, here is a day-based datetime: 

In[6]: np.datetime64('2015-07-04') 

Out[6]: numpy.datetime64('2015-

07-04') 

Here is a minute-based datetime: 

In[7]: np.datetime64('2015-07-04 12:00') 

Out[7]: numpy.datetime64('2015-07-04T12:00') 

Notice that the time zone is automatically set to the local time on the computer exe‐ 

cuting the code. You can force any desired fundamental unit using one of many for‐ mat 

codes; for example, here we’ll force a nanosecond-based time: 
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In[8]: np.datetime64('2015-07-04 12:59:59.50', 'ns') 

Out[8]: numpy.datetime64('2015-07-

04T12:59:59.500000000') 

Table 3-6. Description of date and time codes 

  Code Meaning    Time span (relative)  Time span (absolute)    

Y Year ± 9.2e18 
years 

[9.2e18 BC, 9.2e18 AD] 

M Month ± 7.6e17 
years 

[7.6e17 BC, 7.6e17 AD] 

W Week ± 1.7e17 
years 

[1.7e17 BC, 1.7e17 AD] 

Code Meaning    Time span (relative)  Time span (absolute)    

D Day ± 2.5e16 years [2.5e16 BC, 2.5e16 AD] 

h Hour ± 1.0e15 years [1.0e15 BC, 1.0e15 AD] 

m Minute ± 1.7e13 years [1.7e13 BC, 1.7e13 AD] 

s Second ± 2.9e12 years [ 2.9e9 BC, 2.9e9 AD] 

ms Millisecon
d 

± 2.9e9 years [ 2.9e6 BC, 2.9e6 AD] 

us Microsecon
d 

± 2.9e6 years [290301 BC, 294241 
AD] 

ns Nanosecon
d 

± 292 years [ 1678 AD, 2262 AD] 

ps Picosecond ± 106 days [ 1969 AD, 1970 AD] 

fs Femtosecon
d 

± 2.6 hours [ 1969 AD, 1970 AD] 

as Attosecon
d 

± 9.2 seconds [ 1969 AD, 1970 AD] 

 
For the types of data we see in the real world, a useful default is datetime64[ns], as it can 
encode a useful range of modern dates with a suitably fine precision. 

Finally, we will note that while the datetime64 data type addresses some of the defi‐ ciencies 
of the built-in Python datetime type, it lacks many of the convenient meth‐ ods and 
functions provided by datetime and especially dateutil. More information can be found in 
NumPy’s datetime64 documentation. 
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Dates and times in Pandas: Best of both worlds 

Pandas builds upon all the tools just discussed to provide a Timestamp object, 
which combines the ease of use of datetime and dateutil with the efficient 
storage and vectorized interface of numpy.datetime64. From a group of these 

Timestamp objects, Pandas can construct a DatetimeIndex that can be used to 

index data in a Series or DataFrame; we’ll see many examples of this below. 

For example, we can use Pandas tools to repeat the demonstration from above. We can 

parse a flexibly formatted string date, and use format codes to output the day of the 

week: 

In[9]: import pandas as pd 

date = pd.to_datetime("4th of July, 
2015") date 

Out[9]: Timestamp('2015-07-04 00:00:00') 

In[10]: 

date.strftime('%A') 

Out[10]: 'Saturday' 

Additionally, we can do NumPy-style vectorized operations directly on this same 

object: 

In[11]: date + pd.to_timedelta(np.arange(12), 'D') 

Out[11]: DatetimeIndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07', 

'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11', 

'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'], 

dtype='datetime64[ns]', freq=None) 

In the next section, we will take a closer look at manipulating time series data 

with the tools provided by Pandas. 

Pandas Time Series: Indexing by Time 

Where the Pandas time series tools really become useful is when you begin to index data 

by timestamps. For example, we can construct a Series object that has time- indexed 

data: 

In[12]: index = pd.DatetimeIndex(['2014-07-04', '2014-08-04', 

'2015-07-04', '2015-08-04']) 
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data = pd.Series([0, 1, 2, 3], index=index) 
data 

Out[12]: 2014-07-04 0 

2014-08-04 1 

2015-07-04 2 

2015-08-04 3 

dtype: int64 

Now that we have this data in a Series, we can make use of any of the Series index‐ ing 
patterns we discussed in previous sections, passing values that can be coerced into dates: 

In[13]: data['2014-07-04':'2015-07-

04'] Out[13]: 2014-07-04 0 

2014-08-04 1 

2015-07-04 2 

dtype: int64 

There are additional special date-only indexing operations, such as passing a year to 

obtain a slice of all data from that year: 

In[14]: data['2015'] 

Out[14]: 2015-07-04

 

2 

2015-08-04 3 

dtype: int64 

Later, we will see additional examples of the convenience of dates-as-indices. But 

first, let’s take a closer look at the available time series data structures. 

Pandas Time Series Data Structures 

This section will introduce the fundamental Pandas data structures for working 
with time series data: 

For time stamps, Pandas provides the Timestamp type. As mentioned before, it 
is essentially a replacement for Python’s native datetime, but is based on the 

more efficient numpy.datetime64 data type. The associated index structure 

is DatetimeIndex. 
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• For time periods, Pandas provides the Period type. This encodes a fixed- 

frequency interval based on numpy.datetime64. The associated index 
structure is PeriodIndex. 

• For time deltas or durations, Pandas provides the Timedelta type. Timedelta is 
a more efficient replacement for Python’s native datetime.timedelta type, and 
is based on numpy.timedelta64. The associated index structure is 

TimedeltaIndex. 

The most fundamental of these date/time objects are the Timestamp and 
DatetimeIn dex objects. While these class objects can be invoked directly, it is 

more common to use the pd.to_datetime() function, which can parse a wide 

variety of formats. Pass‐ ing a single date to pd.to_datetime() yields a Timestamp; 

passing a series of dates by default yields a DatetimeIndex: 

In[15]: dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015', 

'2015-Jul-6', '07-07-2015', '20150708']) 

dates 

Out[15]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07', 

'2015-07-08'], 

dtype='datetime64[ns]', freq=None) 

Any DatetimeIndex can be converted to a PeriodIndex with the to_period() func‐ 
tion with the addition of a frequency code; here we’ll use 'D' to indicate daily 
frequency: 

In[16]: dates.to_period('D') 

Out[16]: PeriodIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07', 

'2015-07-08'], 

dtype='int64', freq='D') 

A TimedeltaIndex is created, for example, when one date is subtracted from another: 

In[17]: dates - dates[0] 

Out[17]: 

TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'], 
dtype='timedelta64[ns]', freq=None) 
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Regular sequences: pd.date_range() 

To make the creation of regular date sequences more convenient, Pandas offers 

a few functions for this purpose: pd.date_range() for timestamps, 

pd.period_range() for periods, and pd.timedelta_range() for time deltas. We’ve 

seen that Python’s 

range() and NumPy’s np.arange() turn a startpoint, endpoint, and optional stepsize into a 
sequence. Similarly, pd.date_range() accepts a start date, an end date, and an optional 
frequency code to create a regular sequence of dates. By default, the fre‐ quency is one 
day: 

In[18]: pd.date_range('2015-07-03', '2015-07-10') 

Out[18]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06', 

'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'], 

dtype='datetime64[ns]', freq='D') 

Alternatively, the date range can be specified not with a start- and endpoint, but with a 

startpoint and a number of periods: 

In[19]: pd.date_range('2015-07-03', periods=8) 

Out[19]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06', 

'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'], 

dtype='datetime64[ns]', freq='D') 

You can modify the spacing by altering the freq argument, which defaults to D. 
For example, here we will construct a range of hourly timestamps: 

In[20]: pd.date_range('2015-07-03', periods=8, freq='H') 

Out[20]: DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00', 

'2015-07-03 02:00:00', '2015-07-03 03:00:00', 

'2015-07-03 04:00:00', '2015-07-03 05:00:00', 

'2015-07-03 06:00:00', '2015-07-03 07:00:00'], 

dtype='datetime64[ns]', freq='H') 

To create regular sequences of period or time delta values, the very similar 

pd.period_range() and pd.timedelta_range() functions are useful. Here are some 

monthly periods: 
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In[21]: pd.period_range('2015-07', periods=8, 

freq='M') Out[21]: 

PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12', 

'2016-01', '2016-02'], 

dtype='int64', freq='M') 

And a sequence of durations increasing by an hour: 

In[22]: pd.timedelta_range(0, periods=10, 

freq='H') Out[22]: 

TimedeltaIndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00', 

'05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00'], 

dtype='timedelta64[ns]', freq='H') 

All of these require an understanding of Pandas frequency codes, which we’ll summa‐ rize 

in the next section. 

Frequencies and Offsets 

Fundamental to these Pandas time series tools is the concept of a frequency or date 

offset. Just as we saw the D (day) and H (hour) codes previously, we can use such codes to 

specify any desired frequency spacing. Table 3-7 summarizes the main codes available. 

Table 3-7. Listing of Pandas frequency codes 

  Code Description Code Description  

D Calendar day B Business day 

W Weekly   

M Month end B
M 

Business month 
end 

Q Quarter end BQ Business quarter 
end 

A Year end BA Business year end 

H Hours BH Business hours 

T Minutes   

S Seconds   

L Milliseonds   

U Microsecond
s 
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N Nanosecon
ds 

  

 
The monthly, quarterly, and annual frequencies are all marked at the end of the speci‐ 

fied period. Adding an S suffix to any of these marks it instead at the beginning (Table 3-

8). 

 

Table. Listing of start-indexed frequency codes 

  Code Description  

MS Month start 

BMS Business month start 

QS Quarter start 

BQS Business quarter start 

AS Year start 

BAS Business year start 

Additionally, you can change the month used to mark any quarterly or annual code by 

adding a three-letter month code as a suffix: 

• Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc. 

• A-JAN, BA-FEB, AS-MAR, BAS-APR, etc. 

In the same way, you can modify the split-point of the weekly frequency by 

adding a three-letter weekday code: 

• W-SUN, W-MON, W-TUE, W-WED, etc. 

On top of this, codes can be combined with numbers to specify other 

frequencies. For example, for a frequency of 2 hours 30 minutes, we can 

combine the hour (H) and minute (T) codes as follows: 

In[23]: pd.timedelta_range(0, periods=9, 

freq="2H30T") Out[23]: 

TimedeltaIndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00', 
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'12:30:00', '15:00:00', '17:30:00', '20:00:00'], 

dtype='timedelta64[ns]', freq='150T') 

All of these short codes refer to specific instances of Pandas time series offsets, which can 

be found in the pd.tseries.offsets module. For example, we can create a busi‐ ness day 

offset directly as follows: 

In[24]: from pandas.tseries.offsets import BDay 
pd.date_range('2015-07-01', periods=5, 
freq=BDay()) 

Out[24]: DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06', 

'2015-07-07'], 

dtype='datetime64[ns]', freq='B') 

For more discussion of the use of frequencies and offsets, see the “DateOffset 

objects” section of the Pandas online documentation. 

Resampling, Shifting, and Windowing 

The ability to use dates and times as indices to intuitively organize and access data is an 

important piece of the Pandas time series tools. The benefits of indexed data in general 

(automatic alignment during operations, intuitive data slicing and access, etc.) still 

apply, and Pandas provides several additional time series–specific operations. 

We will take a look at a few of those here, using some stock price data as an example. 

Because Pandas was developed largely in a finance context, it includes some very spe‐ cific 

tools for financial data. For example, the accompanying pandas-datareader package 

(installable via conda install pandas-datareader) knows how to import financial data 

from a number of available sources, including Yahoo finance, Google Finance, and 

others. Here we will load Google’s closing price history: 

In[25]: from pandas_datareader import data 

 
goog = data.DataReader('GOOG', start='2004', end='2016', 

data_source='google') 

goog.head() 

 
Out[25]
: 

 
Date 

Ope
n 

Hig
h 

Low Clos
e 

Volum
e 

 2004-08-
19 

49.9
6 

51.9
8 

47.93 50.1
2 

NaN 
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 2004-08-
20 

50.6
9 

54.4
9 

50.20 54.1
0 

NaN 

 2004-08-
23 

55.3
2 

56.6
8 

54.47 54.6
5 

NaN 

 2004-08-
24 

55.5
6 

55.7
4 

51.73 52.3
8 

NaN 

 2004-08-
25 

52.4
3 

53.9
5 

51.89 52.9
5 

NaN 

For simplicity, we’ll use just the closing price: 

In[26]: goog = goog['Close'] 

We can visualize this using the plot() method, after the normal Matplotlib 
setup boilerplate : 

In[27]: %matplotlib inline 

import matplotlib.pyplot as 
plt import seaborn; 
seaborn.set() 

In[28]: goog.plot(); 

Figure 3-5. Google’s closing stock price over time 

Resampling and converting frequencies 

One common need for time series data is resampling at a higher or lower 
frequency. You can do this using the resample() method, or the much simpler 

asfreq()method. The primary difference between the two is that resample() is 
fundamentally a data aggregation, while asfreq() is fundamentally a data selection. 
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Taking a look at the Google closing price, let’s compare what the two return when we 

down-sample the data. Here we will resample the data at the end of business year : 

In[29]: goog.plot(alpha=0.5, style='-') 
goog.resample('BA').mean().plot(style='
:') 

goog.asfreq('BA').plot(style='--'); 

plt.legend(['input', 'resample', 'asfreq'], 
loc='upper left'); 

Figure . Resamplings of Google’s stock price 

 
Notice the difference: at each point, resample reports the average of the previous 
year, while asfreq reports the value at the end of the year. 

For up-sampling, resample() and asfreq() are largely equivalent, though resample has 
many more options available. In this case, the default for both methods is to leave the up-

sampled points empty—that is, filled with NA values. Just as with the pd.fillna() function 

discussed previously, asfreq() accepts a method argument to specify how values are 

imputed. Here, we will resample the business day data at a daily frequency (i.e., including 

weekends); see Figure 3-7: 

In[30]: fig, ax = plt.subplots(2, sharex=True) 
data = goog.iloc[:10] 

data.asfreq('D').plot(ax=ax[0], marker='o') 

data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o') 

data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o') 
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ax[1].legend(["back-fill", "forward-fill"]); 

The top panel is the default: non-business days are left as NA values and do not appear 

on the plot. The bottom panel shows the differences between two strategies for filling 

the gaps: forward-filling and backward-filling. 

Time-shifts 

Another common time series–specific operation is shifting of data in time. Pandas has 
two closely related methods for computing this: shift() and tshift(). In short, the difference 

between them is that shift() shifts the data, while tshift() shifts the index. In both cases, the 
shift is specified in multiples of the frequency. 

Here we will both shift() and tshift() by 900 days (Figure 3-8): 

In[31]: fig, ax = plt.subplots(3, sharey=True) 

 
# apply a frequency to the data 

goog = goog.asfreq('D', method='pad') 

 
goog.plot(ax=ax[0]) 
goog.shift(900).plot(ax=ax[1]
) 
goog.tshift(900).plot(ax=ax[2
]) 

 
# legends and annotations 

local_max = pd.to_datetime('2007-
11-05') offset = pd.Timedelta(900, 'D') 

 
ax[0].legend(['input'], loc=2) 
ax[0].get_xticklabels()[4].set(weight='heavy', 
color='red') ax[0].axvline(local_max, alpha=0.3, 
color='red') 

ax[1].legend(['shift(900)'], loc=2) 
ax[1].get_xticklabels()[4].set(weight='heavy', 
color='red') ax[1].axvline(local_max + offset, alpha=0.3, 
color='red') 
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ax[2].legend(['tshift(900)'], loc=2) 
ax[2].get_xticklabels()[1].set(weight='heavy', 

color='red') ax[2].axvline(local_max + offset, alpha=0.3, 
color='red'); 

Figure . Comparison between shift and tshift 

We see here that shift(900) shifts the data by 900 days, pushing some of it off the 
end of the graph (and leaving NA values at the other end), while tshift(900) shifts 
the index values by 900 days. 

A common context for this type of shift is computing differences over time. For 

example, we use shifted values to compute the one-year return on investment 

for Google stock over the course of the dataset (Figure 3-9): 

In[32]: ROI = 100 * (goog.tshift(-365) / goog - 1) 
ROI.plot() 

plt.ylabel('% Return on Investment'); 
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Figure . Return on investment to present day for Google stock 

This helps us to see the overall trend in Google stock: thus far, the most profitable times 

to invest in Google have been (unsurprisingly, in retrospect) shortly after its IPO, and in 

the middle of the 2009 recession. 

Rolling windows 

Rolling statistics are a third type of time series–specific operation implemented by 

Pandas. These can be accomplished via the rolling() attribute of Series and Data Frame 

objects, which returns a view similar to what we saw with the groupby operation. This 

rolling view makes available a number of aggregation operations by default. 

For example, here is the one-year centered rolling mean and standard deviation 
of the Google stock prices (Figure 3-10): 

In[33]: rolling = goog.rolling(365, center=True) 

 
data = pd.DataFrame({'input': goog, 

'one-year rolling_mean': 
rolling.mean(), 'one-year rolling_std': 
rolling.std()}) 

ax = data.plot(style=['-', '--', ':']) 
ax.lines[0].set_alpha(0.3) 
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Figure 3-10. Rolling statistics on Google stock prices 

 
As with groupby operations, the aggregate() and apply() methods can be used for 

custom rolling computations. 

Where to Learn More 

This section has provided only a brief summary of some of the most essential features of 

time series tools provided by Pandas; for a more complete discussion, you can refer to the 

“Time Series/Date” section of the Pandas online documentation. 

Another excellent resource is the textbook Python for Data Analysis by Wes McKin‐ ney 

(O’Reilly, 2012). Although it is now a few years old, it is an invaluable resource on the use of 

Pandas. In particular, this book emphasizes time series tools in the context of business 

and finance, and focuses much more on particular details of business cal‐ endars, time 

zones, and related topics. 

As always, you can also use the IPython help functionality to explore and try 

further options available to the functions and methods discussed here. I find 

this often is the best way to learn a new Python tool. 

Example: Visualizing Seattle Bicycle Counts 

As a more involved example of working with some time series data, let’s take a look at 

bicycle counts on Seattle’s Fremont Bridge. This data comes from an automated bicy‐ cle 

counter, installed in late 2012, which has inductive sensors on the east and west 

sidewalks of the bridge. The hourly bicycle counts can be downloaded from http:// 

data.seattle.gov/; here is the direct link to the dataset. 
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As of summer 2016, the CSV can be downloaded as follows: 

 

 

In[34]: 

# !curl -o FremontBridge.csv 

# https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD 

Once this dataset is downloaded, we can use Pandas to read the CSV output into 

a DataFrame. We will specify that we want the Date as an index, and we want 

these dates to be automatically parsed: 

In[35]: 

data = pd.read_csv('FremontBridge.csv', index_col='Date', 
parse_dates=True) data.head() 

Out[35]: Fremont Bridge West Sidewalk \\ 
Date 
2012-10-
03 

 
00:00:0

0 

 
4.0 

2012-10-
03 

01:00:0
0 

4.0 

2012-10-
03 

02:00:0
0 

1.0 

2012-10-
03 

03:00:0
0 

2.0 

2012-10-
03 

04:00:0
0 

6.0 

 
Date 

 Fremont Bridge East 
Sidewalk 

2012-10-
03 

00:00:0
0 

9.0 

2012-10-
03 

01:00:0
0 

6.0 

2012-10-
03 

02:00:0
0 

1.0 

2012-10-
03 

03:00:0
0 

3.0 

2012-10-
03 

04:00:0
0 

1.0 

For convenience, we’ll further process this dataset by shortening the column 

names and adding a “Total” column: 
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In[36]: data.columns = ['West', 'East'] 
data['Total'] = data.eval('West + East') 

Now let’s take a look at the summary statistics for this data: 

In[37]: data.dropna().describe() 

 
Out[37]
:  West East Total 

 coun
t 

33544.0000
00 

33544.0000
00 

33544.0000
00 

 mean 61.726568 53.541706 115.268275 
 std 83.210813 76.380678 144.773983 
 min 0.000000 0.000000 0.000000 
 25% 8.000000 7.000000 16.000000 
 50% 33.000000 28.000000 64.000000 
 75% 80.000000 66.000000 151.000000 
 max 825.000000 717.000000 1186.00000

0 

Visualizing the data 

We can gain some insight into the dataset by visualizing it. Let’s start by 

plotting the raw data: 

In[38]: %matplotlib inline 

import seaborn; seaborn.set() 

In[39]: data.plot() 

plt.ylabel('Hourly Bicycle Count'); 

Figure . Hourly bicycle counts on Seattle’s Fremont bridge 
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The ~25,000 hourly samples are far too dense for us to make much sense of. We 

can gain more insight by resampling the data to a coarser grid. Let’s resample by 

week: 

In[40]: weekly = 
data.resample('W').sum() 
weekly.plot(style=[':', '--', '-']) 
plt.ylabel('Weekly bicycle count'); 

This shows us some interesting seasonal trends: as you might expect, people bicycle 

more in the summer than in the winter, and even within a particular season the bicycle 

use varies from week to week . 

 
Figure . Weekly bicycle crossings of Seattle’s Fremont bridge 

Another way that comes in handy for aggregating the data is to use a rolling mean, 

utilizing the pd.rolling_mean() function. Here we’ll do a 30-day rolling mean of our data, 

making sure to center the window : 

In[41]: daily = data.resample('D').sum() 
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daily.rolling(30, center=True).sum().plot(style=[':', '--', '-']) 
plt.ylabel('mean hourly count'); 

Figure . Rolling mean of weekly bicycle counts 

The jaggedness of the result is due to the hard cutoff of the window. We can get a 

smoother version of a rolling mean using a window function—for example, a Gaus‐ sian 

window. The following code specifies both the width of the window (we chose 50 days) 

and the width of the Gaussian within the window (we chose 10 days): 

In[42]: 

daily.rolling(50, center=True, 

win_type='gaussian').sum(std=10).plot(style=[':', '--', '-']); 

Figure. Gaussian smoothed weekly bicycle counts 
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Day-02: Digging into the data 

While the smoothed data views in Figure  are useful to get an idea of the general trend in 

the data, they hide much of the interesting structure. For example, we might want to 

look at the average traffic as a function of the time of day. We can do this using the 

GroupBy functionality discussed in: 

In[43]: by_time = data.groupby(data.index.time).mean() 
hourly_ticks = 4 * 60 * 60 * np.arange(6) 
by_time.plot(xticks=hourly_ticks, style=[':', '--', '-']); 

The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the morning and 

5:00 in the evening. This is likely evidence of a strong component of commuter traffic crossing the 

bridge. This is further evidenced by the differences between the western sidewalk (generally used 

going toward downtown Seattle), which peaks more strongly in the morning, and the eastern 

sidewalk (generally used going away from downtown Seattle), which peaks more strongly in the 

evening. 

 

 
Figure . Average hourly bicycle counts 

We also might be curious about how things change based on the day of the week. 

Again, we can do this with a simple groupby: 

In[44]: by_weekday = data.groupby(data.index.dayofweek).mean() 

by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'] 
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by_weekday.plot(style=[':', '--', '-']); 

Figure 3-16. Average daily bicycle counts 

This shows a strong distinction between weekday and weekend totals, with around twice 

as many average riders crossing the bridge on Monday through Friday than on Saturday 

and Sunday. 

 

With this in mind, let’s do a compound groupby and look at the hourly trend on 
weekdays versus weekends. We’ll start by grouping by both a flag marking the week‐ end, 
and the time of day: 

In[45]: weekend = np.where(data.index.weekday < 5, 'Weekday', 
'Weekend') by_time = data.groupby([weekend, 
data.index.time]).mean() 

Now we’ll use some of the Matplotlib tools described in “Multiple Subplots” on 

page 262 to plot two panels side by side (Figure 3-17): 

In[46]: import matplotlib.pyplot as plt 

fig, ax = plt.subplots(1, 2, figsize=(14, 5)) 
by_time.ix['Weekday'].plot(ax=ax[0], title='Weekdays', 

xticks=hourly_ticks, style=[':', '--', '-']) 
by_time.ix['Weekend'].plot(ax=ax[1], title='Weekends', 
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xticks=hourly_ticks, style=[':', '--', '-']); 

Figure 3-17. Average hourly bicycle counts by weekday and weekend 

The result is very interesting: we see a bimodal commute pattern during the work week, 

and a unimodal recreational pattern during the weekends. It would be interesting to dig 

through this data in more detail, and examine the effect of weather, temper ature, time 

of year, and other factors on people’s commuting patterns. 

High-Performance Pandas: eval() and query() 

As we’ve already seen in previous chapters, the power of the PyData stack is built upon 

the ability of NumPy and Pandas to push basic operations into C via an intu‐ itive syntax: 

examples are vectorized/broadcasted operations in NumPy, and grouping-type 

operations in Pandas. While these abstractions are efficient and effec tive for many 

common use cases, they often rely on the creation of temporary inter‐ mediate objects, 

which can cause undue overhead in computational time and memory use. 

As of version 0.13 (released January 2014), Pandas includes some experimental tools that 

allow you to directly access C-speed operations without costly allocation of inter‐ mediate 

arrays. These are the eval() and query() functions, which rely on the Numexpr package. In 

this notebook we will walk through their use and give some rules of thumb about when 

you might think about using them. 

Motivating query() and eval(): Compound Expressions 

We’ve seen previously that NumPy and Pandas support fast vectorized 
operations; for example, when you are adding the elements of two arrays: 

In[1]: import numpy as np 

rng = 
np.random.RandomState(42) 
x = rng.rand(1E6) 
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y = rng.rand(1E6) 

%timeit x + y 

100 loops, best of 3: 3.39 ms per loop 

As discussed in “Computation on NumPy Arrays: Universal Functions” on page 

50, this is much faster than doing the addition via a Python loop or 

comprehension: 

In[2]: 

%timeit np.fromiter((xi + yi for xi, yi in zip(x, y)), 

dtype=x.dtype, count=len(x)) 

1 loop, best of 3: 266 ms per loop 

But this abstraction can become less efficient when you are computing compound 

expressions. For example, consider the following expression: 

In[3]: mask = (x > 0.5) & (y < 0.5) 

Because NumPy evaluates each subexpression, this is roughly equivalent to the 

following: 

In[4]: tmp1 = (x > 0.5) 

tmp2 = (y < 0.5) 
mask = tmp1 & 
tmp2 

In other words, every intermediate step is explicitly allocated in memory. If the x and y arrays 

are very large, this can lead to significant memory and computational over‐ head. The 

Numexpr library gives you the ability to compute this type of compound expression 

element by element, without the need to allocate full intermediate arrays. The Numexpr 

documentation (https://github.com/pydata/numexpr) has more details, but for the time 

being it is sufficient to say that the library accepts a string giving the NumPy-style 

expression you’d like to compute: 

 

In[5]: import numexpr 

mask_numexpr = numexpr.evaluate('(x > 0.5) & (y < 
0.5)') np.allclose(mask, mask_numexpr) 

Out[5]: True 

The benefit here is that Numexpr evaluates the expression in a way that does not use 
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full-sized temporary arrays, and thus can be much more efficient than NumPy, espe‐ cially 

for large arrays. The Pandas eval() and query() tools that we will discuss here are conceptually 

similar, and depend on the Numexpr package. 

pandas.eval() for Efficient Operations 

The eval() function in Pandas uses string expressions to efficiently compute 
opera‐ tions using DataFrames. For example, consider the following DataFrames: 

In[6]: import pandas as pd 

nrows, ncols = 100000, 100 

rng = np.random.RandomState(42) 

df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols)) 

for i in range(4)) 

To compute the sum of all four DataFrames using the typical Pandas approach, we can just 
write the sum: 

In[7]: %timeit df1 + df2 + df3 + df4 

10 loops, best of 3: 87.1 ms per loop 

We can compute the same result via pd.eval by constructing the expression 
as a string: 

In[8]: %timeit pd.eval('df1 + df2 + df3 + df4') 

10 loops, best of 3: 42.2 ms per loop 

The eval() version of this expression is about 50% faster (and uses much less 
mem‐ ory), while giving the same result: 

In[9]: np.allclose(df1 + df2 + df3 + df4, 

pd.eval('df1 + df2 + df3 + df4')) 

Out[9]: True 

 
Operations supported by pd.eval() 

As of Pandas v0.16, pd.eval() supports a wide range of operations. To demonstrate these, 
we’ll use the following integer DataFrames: 

In[10]: df1, df2, df3, df4, df5 = (pd.DataFrame(rng.randint(0, 1000, (100, 3))) 

for i in range(5)) 
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Arithmetic operators. pd.eval() supports all arithmetic operators. For example: 

 

In[11]: result1 = -df1 * df2 / (df3 + df4) - df5 

result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5') 
np.allclose(result1, result2) 

Out[11]: True 

 
Comparison operators. pd.eval() supports all comparison operators, including 

chained expressions: 

In[12]: result1 = (df1 < df2) & (df2 <= df3) & (df3 != df4) 
result2 = pd.eval('df1 < df2 <= df3 != df4') 
np.allclose(result1, result2) 

Out[12]: True 

 
Bitwise operators. pd.eval() supports the & and | bitwise operators: 

In[13]: result1 = (df1 < 0.5) & (df2 < 0.5) | (df3 < df4) 

result2 = pd.eval('(df1 < 0.5) & (df2 < 0.5) | (df3 < df4)') 
np.allclose(result1, result2) 

Out[13]: True 

In addition, it supports the use of the literal and and or in Boolean expressions: 

In[14]: result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)') 
np.allclose(result1, result3) 

Out[14]: True 

 
Object attributes and indices. pd.eval() supports access to object attributes via the 

obj.attr syntax, and indexes via the obj[index] syntax: 

In[15]: result1 = df2.T[0] + df3.iloc[1] 

result2 = pd.eval('df2.T[0] + df3.iloc[1]') 
np.allclose(result1, result2) 
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Out[15]: True 

Other operations. Other operations, such as function calls, conditional statements, loops, and 
other more involved constructs, are currently not implemented in pd.eval(). If you’d like 
to execute these more complicated types of expressions, you can use the Numexpr library 

itself. 

DataFrame.eval() for Column-Wise Operations 

Just as Pandas has a top-level pd.eval() function, DataFrames have an eval() method that 
works in similar ways. The benefit of the eval() method is that columns can be referred to 
by name. We’ll use this labeled array as an example: 

In[16]: df = pd.DataFrame(rng.rand(1000, 3), columns=['A', 'B', 
'C']) df.head() 

 
Out[16]
: 

A B C 

 0 
0.375506 

0.40693
9 

0.06993
8 

 1 
0.069087 

0.23561
5 

0.15437
4 

 2 
0.677945 

0.43383
9 

0.65232
4 

 3 
0.264038 

0.80805
5 

0.34719
7 

 4 
0.589161 

0.25241
8 

0.55778
9 

Using pd.eval() as above, we can compute expressions with the three columns 
like this: 

In[17]: result1 = (df['A'] + df['B']) / (df['C'] - 1) result2 
= pd.eval("(df.A + df.B) / (df.C - 1)") 
np.allclose(result1, result2) 

Out[17]: True 

The DataFrame.eval() method allows much more succinct evaluation of 
expressions with the columns: 

In[18]: result3 = df.eval('(A + B) / (C - 1)') 
np.allclose(result1, result3) 

Out[18]: True 
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Notice here that we treat column names as variables within the evaluated 

expression, and the result is what we would wish. 

Assignment in DataFrame.eval() 

In addition to the options just discussed, DataFrame.eval() also allows assignment 
to any column. Let’s use the DataFrame from before, which has columns 'A', 'B', 
and 'C': 

In[19]: df.head() 

 

 

We can use df.eval() to create a new column 'D' and assign to it a value computed from 
the other columns: 

In[20]: df.eval('D = (A + B) / C', inplace=True) 
df.head() 

 

 

 

In the same way, any existing column can be modified: 

In[21]: df.eval('D = (A - B) / C', inplace=True) 
df.head() 

Out[21]:  A B
 C D 0 0.375506 
0.406939 0.069938 -0.449425 
1 
0.069087 

0.2356
15 

0.154374 -
1.078728 

2 
0.677945 

0.4338
39 

0.652324 
0.374209 

Out[19]: A B C 
 0 0.375506 0.406939 0.069938 
 1 0.069087 0.235615 0.154374 
 2 0.677945 0.433839 0.652324 
 3 0.264038 0.808055 0.347197 
 4 0.589161 0.252418 0.557789 

 

Out[20]: A B C D 
 0 0.375506 0.406939 0.069938 11.187620 
 1 0.069087 0.235615 0.154374 1.973796 
 2 0.677945 0.433839 0.652324 1.704344 
 3 0.264038 0.808055 0.347197 3.087857 
 4 0.589161 0.252418 0.557789 1.508776 
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3 
0.264038 

0.8080
55 

0.347197 -
1.566886 

4 
0.589161 

0.2524
18 

0.557789 
0.603708 

 
Local variables in DataFrame.eval() 

The DataFrame.eval() method supports an additional syntax that lets it work with local 
Python variables. Consider the following: 

In[22]: column_mean = df.mean(1) 
result1 = df['A'] + 
column_mean 

result2 = df.eval('A + 
@column_mean') 
np.allclose(result1, result2) 

Out[22]: True 

The @ character here marks a variable name rather than a column name, and lets 

you efficiently evaluate expressions involving the two “namespaces”: the 
namespace of columns, and the namespace of Python objects. Notice that this @ 

character is only supported by the DataFrame.eval() method, not by the 
pandas.eval() function, because the pandas.eval() function only has access to the 

one (Python) namespace. 

DataFrame.query() Method 

The DataFrame has another method based on evaluated strings, called the query() 

method. Consider the following: 

In[23]: result1 = df[(df.A < 0.5) & (df.B < 0.5)] 

result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]') 
np.allclose(result1, result2) 

Out[23]: True 

As with the example used in our discussion of DataFrame.eval(), this is an expres‐ sion 
involving columns of the DataFrame. It cannot be expressed using the Data Frame.eval() 

syntax, however! Instead, for this type of filtering operation, you can use the query() 
method: 

In[24]: result2 = df.query('A < 0.5 and B < 0.5') 
np.allclose(result1, result2) 
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Out[24]: True 

 

In addition to being a more efficient computation, compared to the masking expres‐ sion 

this is much easier to read and understand. Note that the query() method also accepts the 

@ flag to mark local variables: 

In[25]: Cmean = df['C'].mean() 

result1 = df[(df.A < Cmean) & (df.B < 
Cmean)] result2 = df.query('A < @Cmean 
and B < @Cmean') np.allclose(result1, 
result2) 

Out[25]: True 

 
Performance: When to Use These Functions 

When considering whether to use these functions, there are two considerations: com‐ 

putation time and memory use. Memory use is the most predictable aspect. As already 

mentioned, every compound expression involving NumPy arrays or Pandas Data Frames 

will result in implicit creation of temporary arrays: For example, this: 

In[26]: x = df[(df.A < 0.5) & (df.B < 0.5)] 

is roughly equivalent to this: 

In[27]: tmp1 = df.A < 0.5 

tmp2 = df.B < 0.5 
tmp3 = tmp1 & 
tmp2 x = 
df[tmp3] 

If the size of the temporary DataFrames is significant compared to your available sys‐ tem 
memory (typically several gigabytes), then it’s a good idea to use an eval() or query() 
expression. You can check the approximate size of your array in bytes using this: 

In[28]: 

df.values.nbytes 

Out[28]: 32000 

On the performance side, eval() can be faster even when you are not maxing out your 
system memory. The issue is how your temporary DataFrames compare to the size of the 
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L1 or L2 CPU cache on your system (typically a few megabytes in 2016); if they are much 

bigger, then eval() can avoid some potentially slow movement of val‐ ues between the 
different memory caches. In practice, I find that the difference in computation time 

between the traditional methods and the eval/query method is usually not significant—if 
anything, the traditional method is faster for smaller arrays! The benefit of eval/query is 
mainly in the saved memory, and the sometimes cleaner syntax they offer. 

We’ve covered most of the details of eval() and query() here; for more information on 

these, you can refer to the Pandas documentation. In particular, different parsers and 
engines can be specified for running these queries; for details on this, see the dis‐ cussion 
within the “Enhancing Performance” section. 

 

Lab Activity -DataFrame Data Structure 

This lab activity must be performed using Jupyter Notebook, PyCharm, or any other IDLE . 

The lines starting with the # sign are comments in Python and are used to elaborate the 

code. 

 

======================================================================== 

# The DataFrame data structure is the heart of the Panda's library. It is #a primary object you will 
work with in data analysis and #cleaning #tasks. 
# The DataFrame is conceptually a two-dimensional series object, where # there is an index and 
multiple columns of content, with each column #having a label. The distinction between a column 
and a row is #only a conceptual distinction. Moreover, you can think of the #DataFrame as simply a 
two-axes labeled array. 
# Lets start by importing our pandas library 
import pandas as pd 
## I'm going to jump in with an example. Lets create three school records for students and their  
# class grades. I'll create each as a series which has a student name, #the class name, and the 
score.  
record1 = pd.Series({'Name': 'Ali','Class': 'Physics', 'Score': 85}) 
record2 = pd.Series({'Name': 'Javed','Class': 'Chemistry','Score': 82}) 
record3 = pd.Series({'Name': 'Hafeez', 'Class': 'Biology','Score': 90}) 
# Like a Series, the DataFrame object is index. Here I'll use a group of series, where each series  
# represents a row of data. Just like the Series function, we can pass in our individual items 
# in an array, and we can pass in our index values as a second arguments 
df = pd.DataFrame([record1, record2, record3],index=['school1', 'school2', 'school1']) 
# And just like the Series we can use the head() function to see the first several rows of the 
# dataframe, including indices from both axes, and we can use this to verify the columns and the 
rows 
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df.head() 
#The results of the 
# dataframe. So we have the index, which is the leftmost column and is #the school name, and 
# then we have the rows of data, where each row has a column header which #was given in our 
initial 
# record dictionaries 
# An alternative method is that you could use a list of dictionaries, where each dictionary  
# represents a row of data. 
students = [{'Name': 'ali', 
              'Class': 'Physics', 
              'Score': 85}, 
            {'Name': 'Javed', 
             'Class': 'Chemistry', 
             'Score': 82}, 
            {'Name': 'Hafeez', 
             'Class': 'Biology', 
             'Score': 90}] 
# Then we pass this list of dictionaries into the DataFrame function 
df = pd.DataFrame(students, index=['school1', 'school2', 'school1']) 
# And lets print the head again 
df.head() 
# Similar to the series, we can extract data using the .iloc and .loc #attributes. Because the  
# DataFrame is two-dimensional, passing a single value to the loc #indexing operator will return  
# the series if there's only one row to return. 
# For instance, if we wanted to select data associated with school2, we #would just query the  
# .loc attribute with one parameter. 
df.loc['school2'] 
# You'll note that the name of the series is returned as the index value, #while the column name is 
included in the output. 
#We can check the data type of the return using the python type function. 
type(df.loc['school2']) 
# It's important to remember that the indices and column names along #either axes horizontal or  
# vertical, could be non-unique. In this example, we see two records for #school1 as different rows. 
# If we use a single value with the DataFrame lock attribute, multiple #rows of the DataFrame will  
# return, not as a new series, but as a new DataFrame. 
# Lets query for school1 records 
df.loc['school1'] 
# And we can see the the type of this is different too 
type(df.loc['school1']) 
# One of the powers of the Panda's DataFrame is that you can quickly #select data based on 
multiple axes. 
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# For instance, if you wanted to just list the student names for school1, #you would supply two 
parameters to .loc, one being the row index and the #other being the column name. 
# For instance, if we are only interested in school1's student names 
df.loc['school1', 'Name'] 
# Remember, just like the Series, the pandas developers have implemented #this using the indexing 
operator and not as parameters to a function. 
# What would we do if we just wanted to select a single column though? #Well, there are a few 
# mechanisms. Firstly, we could transpose the matrix. This pivots all of #the rows into columns 
#and all of the columns into rows, and is done with the T attribute 
df.T 
# Then we can call .loc on the transpose to get the student names only 
df.T.loc['Name'] 
# However, since iloc and loc are used for row selection, Panda reserves #the indexing operator  
# directly on the DataFrame for column selection. In a Panda's DataFrame, #columns always have a 
name.  
# So this selection is always label based, and is not as confusing as it #was when using the square  
# bracket operator on the series objects. For those familiar with #relational databases, this 
operator  
# is analogous to column projection. 
df['Name'] 
# In practice, this works really well since you're often trying to add or #drop new columns. However, 
# this also means that you get a key error if you try and use .loc with a #column name 
df.loc['Name'] 
#Note too that the result of a single column projection is a Series object 
type(df['Name']) 
 
# Since the result of using the indexing operator is either a DataFrame #or Series, you can chain  
# operations together. For instance, we can select all of the rows which #related to school1 using 
# .loc, then project the name column from just those rows 
df.loc['school1']['Name'] 
# If you get confused, use type to check the responses from resulting #operations 
print(type(df.loc['school1'])) #should be a DataFrame 
print(type(df.loc['school1']['Name'])) #should be a Series 
# Chaining, by indexing on the return type of another index, can come #with some costs and is 
# best avoided if you can use another approach. In particular, chaining #tends to cause Pandas  
# to return a copy of the DataFrame instead of a view on the DataFrame.  
# For selecting data, this is not a big deal, though it might be slower #than necessary.  
# If you are changing data though this is an important distinction and #can be a source of error. 
# Here's another approach. As we saw, .loc does row selection, and it can #take two parameters,  
# the row index and the list of column names. The .loc attribute also #supports slicing. 
# If we wanted to select all rows, we can use a colon to indicate a full #slice from beginning to end.  
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# This is just like slicing characters in a list in python. Then we can #add the column name as the  
# second parameter as a string. If we wanted to include multiple columns, #we could do so in a list.  
# and Pandas will bring back only the columns we have asked for. 
 
# Here's an example, where we ask for all the names and scores for all #schools using the .loc 
operator. 
df.loc[:,['Name', 'Score']] 
# Take a look at that again. The colon means that we want to get all of #the rows, and the list in 
the second argument position is the list of #columns we want to get back 
# That's selecting and projecting data from a DataFrame based on row and #column labels. The key  
# concepts to remember are that the rows and columns are really just for #our benefit. Underneath  
# this is just a two axes labeled array, and transposing the columns is #easy. Also, consider the  
# issue of chaining carefully, and try to avoid it, as it can cause #unpredictable results, where  
# your intent was to obtain a view of the data, but instead Pandas #returns to you a copy.  
# Before we leave the discussion of accessing data in DataFrames, lets #talk about dropping data. 
# It's easy to delete data in Series and DataFrames, and we can use the #drop function to do so.  
# This function takes a single parameter, which is the index or row #label, to drop. This is another  
# tricky place for new users -- the drop function doesn't change the #DataFrame by default! Instead, 
#the drop function returns to you a copy of the DataFrame with the given #rows removed. 
df.drop('school1') 
# But if we look at our original DataFrame we see the data is still intact. 
df 
# Drop has two interesting optional parameters. The first is called #inplace, and if it's  
# set to true, the DataFrame will be updated in place, instead of a copy #being returned.  
# The second parameter is the axes, which should be dropped. By default, #this value is 0,  
# indicating the row axis. But you could change it to 1 if you want to #drop a column. 
# For example, lets make a copy of a DataFrame using .copy() 
copy_df = df.copy() 
# Now lets drop the name column in this copy 
copy_df.drop("Name", inplace=True, axis=1) 
copy_df 
# There is a second way to drop a column, and that's directly through the #use of the indexing  
# operator, using the del keyword. This way of dropping data, however, #takes immediate effect  
# on the DataFrame and does not return a view. 
del copy_df['Class'] 
copy_df 
## Finally, adding a new column to the DataFrame is as easy as assigning #it to some value using 
# the indexing operator. For instance, if we wanted to add a class #ranking column with default  
# value of None, we could do so by using the assignment operator after #the square brackets. 
# This broadcasts the default value to the new column immediately. 
df['ClassRanking'] = None 
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df 
# In this LAB ACTIVTIY you've learned about the data structure you'll use #the most in pandas, the 
DataFrame. The  dataframe is indexed both by row #and column, and you can easily select 
individual rows and project the #columns  you're interested in using the familiar indexing methods 
from #the Series class.  
 
 
 

Lab Activity -Merging DataFrames 

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The 

lines starting with # sign are comments in Python and are used to elaborate the code.  

=================================================================================  

# In this lab we're going to address how you can bring multiple dataframe #objects together, either 
by merging them horizontally, or by #concatenating them vertically. import pandas as pd 
 
# First we create two DataFrames, staff and students. 
staff_df = pd.DataFrame([{'Name': 'Kiran', 'Role': 'Director of HR'}, 
                         {'Name': 'Salma', 'Role': 'Course liasion'}, 
                         {'Name': 'Jameel', 'Role': 'Grader'}]) 
# And lets index these staff by name 
staff_df = staff_df.set_index('Name') 
# Now we'll create a student dataframe 
student_df = pd.DataFrame([{'Name': 'Jameel', 'School': 'Business'}, 
                           {'Name': 'Mushahid', 'School': 'Law'}, 
                           {'Name': 'Salma', 'School': 'Engineering'}]) 
# And we'll index this by name too 
student_df = student_df.set_index('Name') 
 
# And lets just print out the dataframes 
print(staff_df.head()) 
print(student_df.head()) 
# There's some overlap in these DataFrames in that Jameel and Salma are #both students and staff, 
but Mushahid and 
# Kiran are not. Importantly, both DataFrames are indexed along the value  
pd.merge(staff_df, student_df, how='outer', left_index=True, right_index=True) 
pd.merge(staff_df, student_df, how='inner', left_index=True, right_index=True) 
pd.merge(staff_df, student_df, how='left', left_index=True, right_index=True) 
pd.merge(staff_df, student_df, how='right', left_index=True, right_index=True) 
staff_df = staff_df.reset_index() 
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student_df = student_df.reset_index() 
# Now lets merge using the on parameter 
pd.merge(staff_df, student_df, how='right', on='Name') 
# So what happens when we have conflicts between the DataFrames? Let's #take a look by creating 
new staff and 
# student DataFrames that have a location information added to them. 
staff_df = pd.DataFrame([{'Name': 'Kiran', 'Role': 'Director of HR',  
                          'Location': 'Sukkur'}, 
                         {'Name': 'Salma', 'Role': 'Course liasion',  
                          'Location': 'Karachi'}, 
                         {'Name': 'Jameel', 'Role': 'Grader',  
                          'Location': 'Hyderabad'}]) 
student_df = pd.DataFrame([{'Name': 'Jameel', 'School': 'Business',  
                            'Location': 'Lateefabad 7'}, 
                           {'Name': 'Mushahid', 'School': 'Law',  
                            'Location': 'Nawab Shah'}, 
                           {'Name': 'Salma', 'School': 'Engineering',  
                            'Location': 'Korangi 2'}]) 
 
pd.merge(staff_df, student_df, how='left', on='Name') 
 
# Here's an example with some new student and staff data 
staff_df = pd.DataFrame([{'First Name': 'Kiran', 'Last Name': 'Khan',  
                          'Role': 'Director of HR'}, 
                         {'First Name': 'Salma', 'Last Name': 'Mughal',  
                          'Role': 'Course liasion'}, 
                         {'First Name': 'Jameel', 'Last Name': 'Malik',  
                          'Role': 'Grader'}]) 
student_df = pd.DataFrame([{'First Name': 'Jameel', 'Last Name': 'Mughal',  
                            'School': 'Business'}, 
                           {'First Name': 'Mushahid', 'Last Name': 'Uqaili',  
                            'School': 'Law'}, 
                           {'First Name': 'Salma', 'Last Name': 'Mughal',  
                            'School': 'Engineering'}]) 
# As you see here, Jameel malik and Jameel Mughal don't match on both keys since they have 
different last names. So we would expect that an #inner join doesn't include these individuals in the 
output, and only #Salma  Mughal will be retained. 
pd.merge(staff_df, student_df, how='inner', on=['First Name','Last Name']) 
 
get_ipython().run_cell_magic('capture', '', 'df_2011 = 
pd.read_csv("datasets/college_scorecard/MERGED2011_12_PP.csv", 
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error_bad_lines=False)\ndf_2012 = 
pd.read_csv("datasets/college_scorecard/MERGED2012_13_PP.csv", 
error_bad_lines=False)\ndf_2013 = 
pd.read_csv("datasets/college_scorecard/MERGED2013_14_PP.csv", error_bad_lines=False)\n') 
df_2011.head(3) 
print(len(df_2011)) 
print(len(df_2012)) 
print(len(df_2013)) 
#Let's see what it looks like 
frames = [df_2011, df_2012, df_2013] 
pd.concat(frames) 
# As you can see, we have more observations in one dataframe and columns remain the same. If we 
scroll down to 
# the bottom of the output, we see that there are a total of 30,832 rows after concatenating three 
dataframes. 
# Let's add the number of rows of the three dataframes and see if the two numbers match 
len(df_2011)+len(df_2012)+len(df_2013) 
# Now let's try it out 
pd.concat(frames, keys=['2011','2012','2013']) 
 
# Now you know how to merge and concatenate datasets together. You will #find such functions 
very useful for combining data to get more complex #or complicated results and to do analysis 
with. A solid understanding of #how to merge data is absolutely essentially when you are procuring, 
#cleaning, and manipulating data. It's worth knowing how to join #different datasets quickly, and 
the different options you can use when #joining datasets, and I would encourage you to check out 
the pandas docs #for joining and concatenating data. 
 

Lab activity - DataFrame` Indexing and Loading 

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The 

lines starting with # sign are comments in Python and are used to elaborate the code.   

============================================================================= 

#lets look at the content of a CSV file 
get_ipython().system('more Admission_Predict.csv') 
import pandas as pd 
df = pd.read_csv('Admission_Predict.csv') 
df.head() 
df = pd.read_csv('datasets/Admission_Predict.csv', index_col=0) 
df.head() 
new_df=df.rename(columns={'GRE Score':'GRE Score', 'TOEFL Score':'TOEFL Score', 
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                   'University Rating':'University Rating',  
                   'SOP': 'Statement of Purpose','LOR': 'Letter of Recommendation', 
                   'CGPA':'CGPA', 'Research':'Research', 
                   'Chance of Admit':'Chance of Admit'}) 
new_df.head() 
new_df.columns 
# way would be to change a column by including the space in the name 
new_df=new_df.rename(columns={'LOR ': 'Letter of Recommendation'}) 
new_df.head() 
# What if that was a tab instead of a space? Or two spaces? 
# Another way is to create some function that does the cleaning and then #tell renamed to apply 
that function 
# across all of the data. Python comes with a handy string function to strip white space called 
"strip()". 
# When we pass this in to rename we pass the function as the mapper #parameter, and then 
indicate whether the 
# axis should be columns or index (row labels) 
new_df=new_df.rename(mapper=str.strip, axis='columns') 
new_df.head() 
df.columns 
cols = list(df.columns) 
# Then a little list comprehenshion 
cols = [x.lower().strip() for x in cols] 
# Then we just overwrite what is already in the .columns attribute 
df.columns=cols 
# And take a look at our results 
df.head() 
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Day-03: Pivot Tables 

We have seen how the GroupBy abstraction lets us explore relationships within a data‐ set. 

A pivot table is a similar operation that is commonly seen in spreadsheets and other 
programs that operate on tabular data. The pivot table takes simple column- wise data as 
input, and groups the entries into a two-dimensional table that provides a 
multidimensional summarization of the data. The difference between pivot tables and 

GroupBy can sometimes cause confusion; it helps me to think of pivot tables as 
essentially a multidimensional version of GroupBy aggregation. That is, you split- apply-

combine, but both the split and the combine happen across not a one- dimensional 

index, but across a two-dimensional grid. 
Motivating Pivot Tables 

For the examples in this section, we’ll use the database of passengers on the 

Titanic, available through the Seaborn library (see “Visualization with Seaborn” ): 

In[1]: import numpy as np 
import pandas as pd 
import seaborn as 
sns 

titanic = sns.load_dataset('titanic') 

In[2]: titanic.head() 

Out[2]: 

survived pclass  sex age sibsp parch  fare embarked class 
\\ 0 0 3 male 22.0 1 0 7.2500 S Third 

1 1 1 female 38.0 1 0 71.2833 C First 

2 1 3 female 26.0 0 0 7.9250 S Third 

3 1 1 female 35.0 1 0 53.1000 S First 

4 0 3 male 35.0 0 0 8.0500 S Third 

 
who adult_male deck embark_town alive alone 

0 man True NaN Southampton no False 
1 woman False C Cherbourg yes False 
2 woman False NaN Southampton yes True 
3 woman False C Southampton yes False 
4 man True NaN Southampton no True 

This contains a wealth of information on each passenger of that ill-fated voyage, 

including gender, age, class, fare paid, and much more. 
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Pivot Tables by Hand 

To start learning more about this data, we might begin by grouping it according to 

gender, survival status, or some combination thereof. If you have read the previous 

section, you might be tempted to apply a GroupBy operation—for example, let’s look at 

survival rate by gender: 

In[3]: titanic.groupby('sex')[['survived']].mean() 

Out[3]: 
 survive
d sex 

female 0.742038 

male 0.188908 

This immediately gives us some insight: overall, three of every four females on 

board survived, while only one in five males survived! 

This is useful, but we might like to go one step deeper and look at survival by both sex and, 

say, class. Using the vocabulary of GroupBy, we might proceed using something like this: 

we group by class and gender, select survival, apply a mean aggregate, com‐ bine the 

resulting groups, and then unstack the hierarchical index to reveal the hidden 

multidimensionality. In code: 

In[4]: titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack() 

 
Out[4]: class 

sex 
First Second Third 

femal
e 

0.96808
5 

0.92105
3 

0.50000
0 

male 0.36885
2 

0.15740
7 

0.13544
7 

This gives us a better idea of how both gender and class affected survival, but the code is 

starting to look a bit garbled. While each step of this pipeline makes sense in light of the 

tools we’ve previously discussed, the long string of code is not particularly easy to read or 

use. This two-dimensional GroupBy is common enough that Pandas includes a 

convenience routine, pivot_table, which succinctly handles this type of multidimensional 

aggregation. 

Pivot Table Syntax 

Here is the equivalent to the preceding operation using the pivot_table method of 
DataFrames: 

In[5]: titanic.pivot_table('survived', index='sex', columns='class') 
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Out[5]: class 
sex 

First Second Third 

femal
e 

0.96808
5 

0.92105
3 

0.50000
0 

male 0.36885
2 

0.15740
7 

0.13544
7 

This is eminently more readable than the GroupBy approach, and produces the 
same result. As you might expect of an early 20th-century transatlantic cruise, 
the survival gradient favors both women and higher classes. First-class women 
survived with near certainty (hi, Rose!), while only one in ten third-class men 
survived (sorry, Jack!). 

Multilevel pivot tables 

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple lev‐ els, 

and via a number of options. For example, we might be interested in looking at age as a 

third dimension. We’ll bin the age using the pd.cut function: 
In[6]: age = pd.cut(titanic['age'], [0, 18, 80]) 

titanic.pivot_table('survived', ['sex', age], 'class') 

 
Out[6]: class 

sex 
 
age 

First Second Third 

 femal
e 

(0, 18] 0.90909
1 

1.00000
0 

0.51162
8 

  (18, 80] 0.97297
3 

0.90000
0 

0.42372
9 

 male (0, 18] 0.80000
0 

0.60000
0 

0.21568
6 

  (18, 80] 0.37500
0 

0.07142
9 

0.13366
3 

We can apply this same strategy when working with the columns as well; let’s add info on 

the fare paid using pd.qcut to automatically compute quantiles: 

In[7]: fare = pd.qcut(titanic['fare'], 2) 
titanic.pivot_table('survived', ['sex', age], [fare, 'class']) 

 
Out[7]
: 
fare 
class 
sex 

 
 
 
age 

 
[0, 14.454] 
First 

 
 
Second 

 
 
Third 

 
 

\\ 

femal
e 

(0, 18] NaN 1.00000
0 

0.71428
6 

 

 (18, 80] NaN 0.88000
0 

0.44444
4 

 

male (0, 18] NaN 0.00000 0.26087  
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0 0 
 (18, 80] 0.0 0.09803

9 
0.12500
0  

 
fare (14.454, 512.329] 
class 
sex 

 
age 

First Second Third 

femal
e 

(0, 18] 0.909091 1.00000
0 

0.31818
2 

 (18, 80] 0.972973 0.91428
6 

0.39130
4 

male (0, 18] 0.800000 0.81818
2 

0.17857
1 

 (18, 80] 0.391304 0.03030
3 

0.19230
8 

The result is a four-dimensional aggregation with hierarchical indices, shown in 

a grid demonstrating the relationship between the values. 

 

Additional pivot table options 

The full call signature of the pivot_table method of DataFrames is as follows: 

# call signature as of Pandas 0.18 

DataFrame.pivot_table(data, values=None, index=None, columns=None, 

aggfunc='mean', fill_value=None, 
margins=False, dropna=True, 
margins_name='All') 

We’ve already seen examples of the first three arguments; here we’ll take a quick look at 

the remaining ones. Two of the options, fill_value and dropna, have to do with missing 

data and are fairly straightforward; we will not show examples of them here. 

The aggfunc keyword controls what type of aggregation is applied, which is a mean by 
default. As in the GroupBy, the aggregation specification can be a string represent‐ ing 

one of several common choices ('sum', 'mean', 'count', 'min', 'max', etc.) or a function that 

implements an aggregation (np.sum(), min(), sum(), etc.). Additionally, it can be specified 

as a dictionary mapping a column to any of the above desired options: 
In[8]: titanic.pivot_table(index='sex', columns='class', 

aggfunc={'survived':sum, 'fare':'mean'}) 

Out[8]: fare survived 

class First Second Third First Second 
Third sex 
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female 106.125798 21.970121 16.118810 91.0 70.0 72.0 

male 67.226127 19.741782 12.661633 45.0 17.0 47.0 

Notice also here that we’ve omitted the values keyword; when you’re specifying a 
mapping for aggfunc, this is determined automatically. 

At times it’s useful to compute totals along each grouping. This can be done via the 
margins keyword: 

In[9]: titanic.pivot_table('survived', index='sex', columns='class', margins=True) 

 
Out[9]: class 

sex 
First Second Third All 

femal
e 

0.96808
5 

0.92105
3 

0.50000
0 

0.74203
8 

male 0.36885
2 

0.15740
7 

0.13544
7 

0.18890
8 

All 0.62963
0 

0.47282
6 

0.24236
3 

0.38383
8 

Here this automatically gives us information about the class-agnostic survival rate by 

gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%. The 

margin label can be specified with the margins_name keyword, which defaults to "All". 

 

Example: Birthrate Data 

As a more interesting example, let’s take a look at the freely available data on births in the 

United States, provided by the Centers for Disease Control (CDC). This data can be found 

at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/ births.csv (this 

dataset has been analyzed rather extensively by Andrew Gelman and his group; see, for 

example, this blog post): 
In[10]: 

# shell command to download the data: 

# !curl -O 

https://raw.githubusercontent.com/jakevdp/data-

CDCbirths/ # master/births.csv 

In[11]: births = pd.read_csv('births.csv') 

Taking a look at the data, we see that it’s relatively simple—it contains the 

number of births grouped by date and gender: 

In[12]: births.head() 

Out[12]: year month day gender births 
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0 1969 1 1 F 4046 
1 1969 1 1 M 4440 
2 1969 1 2 F 4454 
3 1969 1 2 M 4548 
4 1969 1 3 F 4548 

We can start to understand this data a bit more by using a pivot table. Let’s add 

a dec‐ ade column, and take a look at male and female births as a function of 

decade: 
In[13]: 

births['decade'] = 10 * (births['year'] // 10) 

births.pivot_table('births', index='decade', columns='gender', aggfunc='sum') 

 
Out[13]: gender 
decade 

F M 

1960 1753634 1846572 

1970 16263075 17121550 

1980 18310351 19243452 

1990 19479454 20420553 
2000 18229309 19106428 

We immediately see that male births outnumber female births in every decade. To see 

this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visual‐ ize 

the total number of births by year (Figure 3-2; see Chapter 4 for a discussion of plotting 

with Matplotlib): 
In[14]: 

%matplotlib inline 

import matplotlib.pyplot as plt 

sns.set() # use Seaborn styles 

births.pivot_table('births', index='year', columns='gender', 
aggfunc='sum').plot() plt.ylabel('total births per year'); 



 

Page 203 of 580  

 
Figure . Total number of US births by year and gender 

 
With a simple pivot table and plot() method, we can immediately see the annual trend in 
births by gender. By eye, it appears that over the past 50 years male births have 
outnumbered female births by around 5%. 
Further data exploration 

Though this doesn’t necessarily relate to the pivot table, there are a few more interest‐ ing 

features we can pull out of this dataset using the Pandas tools covered up to this point. 

We must start by cleaning the data a bit, removing outliers caused by mistyped dates 

(e.g., June 31st) or missing values (e.g., June 99th). One easy way to remove these all at 

once is to cut outliers; we’ll do this via a robust sigma-clipping operation:1 
In[15]: quartiles = np.percentile(births['births'], [25, 50, 75]) 

mu = quartiles[1] 

sig = 0.74 * (quartiles[2] - quartiles[0]) 

This final line is a robust estimate of the sample mean, where the 0.74 comes from the 

interquartile range of a Gaussian distribution. With this we can use the query() method 

to filter out rows with births outside these values: 
In[16]: 

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') 

 

Next we set the day column to integers; previously it had been a string because some 
columns in the dataset contained the value 'null': 

In[17]: # set 'day' column to integer; it originally was a string due to nulls 
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births['day'] = births['day'].astype(int) 

Finally, we can combine the day, month, and year to create a Date index (see “Work‐ ing 

with Time Series” on page 188). This allows us to quickly compute the weekday 

corresponding to each row: 
In[18]: # create a datetime index from the year, month, day 

births.index = pd.to_datetime(10000 * births.year + 

100 * births.month + 
births.day, 
format='%Y%m%d') 

 
births['dayofweek'] = births.index.dayofweek 

Using this we can plot births by weekday for several decades (Figure 3-3): 
In[19]: 

import matplotlib.pyplot as 

plt import matplotlib as mpl 

 
births.pivot_table('births', index='dayofweek', 

columns='decade', aggfunc='mean').plot() 
plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']) 

plt.ylabel('mean births by day'); 

Figure . Average daily births by day of week and decade 
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Apparently births are slightly less common on weekends than on weekdays! Note that the 

1990s and 2000s are missing because the CDC data contains only the month of birth 

starting in 1989. 

Another interesting view is to plot the mean number of births by the day of the year. 

Let’s first group the data by month and day separately: 
In[20]: 

births_by_date = births.pivot_table('births', 

[births.index.month, births.index.day]) 

births_by_date.head() 

 
Out[20]: 1 
1 

4009.225 

2 4247.400 
3 4500.900 
4 4571.350 
5 4603.625 

Name: births, dtype: float64 

The result is a multi-index over months and days. To make this easily plottable, let’s turn 

these months and days into a date by associating them with a dummy year vari‐ able 

(making sure to choose a leap year so February 29th is correctly handled!) 
In[21]: births_by_date.index = [pd.datetime(2012, month, day) 

for (month, day) in births_by_date.index] 

births_by_date.head() 

 
Out[21]: 2012-01-
01 

4009.225 

2012-01-02 4247.400 
2012-01-03 4500.900 
2012-01-04 4571.350 
2012-01-05 4603.625 

Name: births, dtype: float64 

Focusing on the month and day only, we now have a time series reflecting the average 

number of births by date of the year. From this, we can use the plot method to plot the 

data. It reveals some interesting trends: 
In[22]: # Plot the  results 
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fig, ax = plt.subplots(figsize=(12, 4)) 

births_by_date.plot(ax=ax); 

Figure. Average daily births by date 

 

Lab Activity  

 This lab activity need to performed using Jupyter Notebook, PyCharm, or any other IDLE  

# Pivot Tables 
# A pivot table is a way of summarizing data in a DataFrame for a #particular purpose. It makes 
heavy use of the aggregation function. A #pivot table is itself a DataFrame, where the rows 
represent one variable #that you're interested in, the columns another, and the cell's some 
#aggregate value. A pivot table also tends to includes marginal values as #well, which are the sums 
for each column and row. This allows you to be #able to see the relationship between two variables 
at just a glance. 
import pandas as pd 
import numpy as np 
#Here we have the Times Higher Education World University Ranking dataset, #which is one of the 
most 
#influential university measures. Let's import the dataset and see what it #looks like 
df = pd.read_csv('cwurData.csv') 
df.head() 
# Here we can see each institution's rank, country, quality of education, #other metrics, and overall 
score. 
# Let's say we want to create a new column called Rank_Level, where #institutions with world 
ranking 1-100 are 
# categorized as first tier and those with world ranking 101 - 200 are #second tier, ranking 201 - 
300 are # third tier, after 301 is other top #universities. 
# Now, you actually already have enough knowledge to do this, so why don't #you pause the video 
and give it try? 
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# Create a function called create_category which will operate on the first 
# column in the dataframe, world_rank 
def create_category(ranking): 
    if (ranking >= 1) & (ranking <= 100): 
        return "First Tier Top Unversity" 
    elif (ranking >= 101) & (ranking <= 200): 
        return "Second Tier Top Unversity" 
    elif (ranking >= 201) & (ranking <= 300): 
        return "Third Tier Top Unversity" 
    return "Other Top Unversity" 
# Now we can apply this to a single column of data to create a new series 
df['Rank_Level'] = df['world_rank'].apply(lambda x: create_category(x)) 
# And lets look at the result 
df.head() 
# A pivot table allows us to pivot out one of these columns a new column #headers and compare it 
against 
# another column as row indices. Let's say we want to compare rank level #versus country of the 
universities 
# and we want to compare in terms of overall score 
# To do this, we tell Pandas we want the values to be Score, and index to #be the country and the 
columns to be 
# the rank levels. Then we specify that the aggregation function, and here #we'll use the NumPy 
mean to get the 
# average rating for universities in that country 
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean]).head() 
# We can see a  hierarchical dataframe where the index, or rows, are by #country and the columns 
have two levels, the top level indicating that the #mean value is being used and the second level 
being our ranks. In this #example we only have one variable, the mean, that we are looking at, so 
we #don't really need a heirarchical index. 
# We notice that there are some NaN values, for example, the first row, Argentia. The NaN values 
indicate that 
# Argentia has only observations in the "Other Top Unversities" category 
# Now, pivot tables aren't limited to one function that you might want to #apply. You can pass a 
named 
# parameter, aggfunc, which is a list of the different functions to apply, #and pandas will provide 
you with 
# the result using hierarchical column names.  Let's try that same query, #but pass in the max() 
function too 
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean, 
np.max]).head() 
# So now we see we have both the mean and the max. As mentioned earlier, we #can also 
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summarize the values 
# within a given top level column. For instance, if we want to see an #overall average for the 
country for the 
# mean and we want to see the max of the max, we can indicate that we want #pandas to provide 
marginal values 
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean, np.max],  
               margins=True).head() 
# A pivot table is just a multi-level dataframe, and we can access series #or cells in the dataframe in 
a similar way  
# as we do so for a regular dataframe.  
# Let's create a new dataframe from our previous example 
new_df=df.pivot_table(values='score', index='country',columns='Rank_Level', aggfunc=[np.mean, 
np.max], margins=True) 
# Now let's look at the index 
print(new_df.index) 
# And let's look at the columns 
print(new_df.columns) 
# We can see the columns are hierarchical. The top level column indices #have two categories: 
mean and max, and 
# the lower level column indices have four categories, which are the four #rank levels. How would 
we query this 
# if we want to get the average scores of First Tier Top Unversity levels #in each country? We would 
just need 
# to make two dataframe projections, the first for the mean, then the #second for the top tier 
new_df['mean']['First Tier Top Unversity'].head() 
# We can see that the output is a series object which we can confirm by #printing the type. 
Remember that when 
# you project a single column of values out of a DataFrame you get series. 
type(new_df['mean']['First Tier Top Unversity']) 
# What if we want to find the country that has the maximum average score on #First Tier Top 
University level? 
# We can use the idxmax() function. 
new_df['mean']['First Tier Top Unversity'].idxmax() 
# Now, the idxmax() function isn't special for pivot tables, it's a built in function to the Series object. 
# We don't have time to go over all pandas functions and attributes, and I #want to encourage you 
to explore 
# the API to learn more deeply what is available to you. 
# If you want to achieve a different shape of your pivot table, you can do #so with the stack and 
unstack 
# functions. Stacking is pivoting the lowermost column index to become the #innermost row index. 
Unstacking is 
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# the inverse of stacking, pivoting the innermost row index to become the #lowermost column 
index. An example 
# will help make this clear 
# Let's look at our pivot table first to refresh what it looks like 
new_df.head() 
# Now let's try stacking, this should move the lowermost column, so the #tiers of the university 
rankings, to 
# the inner most row 
new_df=new_df.stack() 
new_df.head() 
# In the original pivot table, rank levels are the lowermost column, after stacking, rank levels 
become the 
# innermost index, appearing to the right after country 
# Now let's try unstacking 
new_df.unstack().head() 
# That seems to restore our dataframe to its original shape. What do you #think would happen if 
we unstacked twice in a row? 
new_df.unstack().unstack().head() 
# We actually end up unstacking all the way to just a single column, so a #series object is returned. 
This column is just a "value", the meaning of #which is denoted by the #heirarachical index of 
operation, rank, and #country. 
# So that's pivot tables. This has been a pretty short description, but #they're incredibly useful when 
dealing with numeric data, especially if #you're trying to summarize the data in some form. You'll 
regularly be #creating new pivot tables on slices of data, whether you're exploring the #data 
yourself or preparing data for others to report on. And of course, #you can pass any function you 
want to the aggregate function, including those that you define yourself. 
 

Day-04: What Is Machine Learning? 

Before we take a look at the details of various machine learning methods, let’s start by looking 
at what machine learning is, and what it isn’t. Machine learning is often cate‐ gorized as a 
subfield of artificial intelligence, but I find that categorization can often be misleading at first 
brush. The study of machine learning certainly arose from research in this context, but in the 
data science application of machine learning meth‐ ods, it’s more helpful to think of machine 
learning as a means of building models of data. 

Fundamentally, machine learning involves building mathematical models to help understand 
data. “Learning” enters the fray when we give these models tunable parameters that can be 
adapted to observed data; in this way the program can be con‐ sidered to be “learning” from 
the data. Once these models have been fit to previously seen data, they can be used to predict 
and understand aspects of newly observed data. I’ll leave to the reader the more philosophical 
digression regarding the extent to which this type of mathematical, model-based “learning” is 
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similar to the “learning” exhibited by the human brain. 

Understanding the problem setting in machine learning is essential to using these tools 
effectively, and so we will start with some broad categorizations of the types of approaches 
we’ll discuss here. 

Categories of Machine Learning 

At the most fundamental level, machine learning can be categorized into two main 
types: supervised learning and unsupervised learning. 

Supervised learning involves somehow modeling the relationship between measured features 
of data and some label associated with the data; once this model is deter‐ mined, it can be 
used to apply labels to new, unknown data. This is further subdivi‐ ded into classification tasks 

and regression tasks: in classification, the labels are discrete categories, while in regression, 
the labels are continuous quantities. We will see examples of both types of supervised learning 
in the following section. 

Unsupervised learning involves modeling the features of a dataset without reference to 

any label, and is often described as “letting the dataset speak for itself.” These models 
include tasks such as clustering and dimensionality reduction. Clustering algorithms 

identify distinct groups of data, while dimensionality reduction algorithms search for more 
succinct representations of the data. We will see examples of both types of unsupervised 
learning in the following section. 

In addition, there are so-called semi-supervised learning methods, which fall some‐ where 
between supervised learning and unsupervised learning. Semi-supervised learning methods 
are often useful when only incomplete labels are available. 

Qualitative Examples of Machine Learning Applications 

To make these ideas more concrete, let’s take a look at a few very simple examples of a  machine 
learning task. These examples are meant to give an intuitive, non- quantitative overview of 
the types of machine learning tasks we will be looking at in this chapter. In later sections, we 
will go into more depth regarding the particular models and how they are used. For a preview 
of these more technical aspects, you can find the Python source that generates the figures in 
the online appendix. 

Classification: Predicting discrete labels 

We will first take a look at a simple classification task, in which you are given a set of labeled 
points and want to use these to classify some unlabeled points. 

Imagine that we have the data shown in Figure 5-1 (the code used to generate this figure, and 
all figures in this section, is available in the online appendix). 
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Figure 5-1. A simple data set for classification 

Here we have two-dimensional data; that is, we have two features for each point, rep‐ resented 
by the (x,y) positions of the points on the plane. In addition, we have one of two class labels for 
each point, here represented by the colors of the points. From these features and labels, we 
would like to create a model that will let us decide whether a new point should be labeled 
“blue” or “red.” 

There are a number of possible models for such a classification task, but here we will use an 
extremely simple one. We will make the assumption that the two groups can be separated by 
drawing a straight line through the plane between them, such that points on each side of the 
line fall in the same group. Here the model is a quantitative version of the statement “a straight 
line separates the classes,” while the model param‐ eters are the particular numbers 
describing the location and orientation of that line for our data. The optimal values for 
these model parameters are learned from the data (this is the “learning” in machine 
learning), which is often called training the model. 

Figure 5-2 is a visual representation of what the trained model looks like for this data. 
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Figure 5-2. A simple classification model 

Now that this model has been trained, it can be generalized to new, unlabeled data. In other 
words, we can take a new set of data, draw this model line through it, and assign labels to 
the new points based on this model. This stage is usually called predic‐ tion. See Figure 5-3. 

 
Figure 5-3. Applying a classification model to new data 

This is the basic idea of a classification task in machine learning, where “classifica‐ tion” 
indicates that the data has discrete class labels. At first glance this may look fairly trivial: it 
would be relatively easy to simply look at this data and draw such a discriminatory line to 
accomplish this classification. A benefit of the machine learn‐ ing approach, however, is that it 
can generalize to much larger datasets in many more dimensions. 

For example, this is similar to the task of automated spam detection for email; in this 
case, we might use the following features and labels: 
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• feature 1, feature 2, etc. normalized counts of important words or 
phrases (“Viagra,” “Nigerian prince,” etc.) 

• label “spam” or “not spam” 

For the training set, these labels might be determined by individual inspection of a small 
representative sample of emails; for the remaining emails, the label would be determined 
using the model. For a suitably trained classification algorithm with enough well-
constructed features (typically thousands or millions of words or phrases), this type of 
approach can be very effective. We will see an example of such text-based classification in “In 
Depth: Naive Bayes Classification” on page 382. 

Some important classification algorithms that we will discuss in more detail are Gaus‐ sian 
naive Bayes (see “In Depth: Naive Bayes Classification” on page 382), support vector 
machines (see “In-Depth: Support Vector Machines” on page 405), and ran‐ dom forest 
classification (see “In-Depth: Decision Trees and Random Forests” on page 421). 

Regression: Predicting continuous labels 

In contrast with the discrete labels of a classification algorithm, we will next look at a simple 
regression task in which the labels are continuous quantities. 

Consider the data shown in Figure 5-4, which consists of a set of points, each with a 
continuous label. 
 

Figure 5-4. A simple dataset for regression 

As with the classification example, we have two-dimensional data; that is, there are 
two features describing each data point. The color of each point represents the con‐ 
tinuous label for that point. 
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There are a number of possible regression models we might use for this type of data, but here 
we will use a simple linear regression to predict the points. This simple linear regression 
model assumes that if we treat the label as a third spatial dimension, we can fit a plane to the 
data. This is a higher-level generalization of the well-known problem of fitting a line to data 
with two coordinates. 

We can visualize this setup as shown in Figure 5-5. 

 
Figure 5-5. A three-dimensional view of the regression data 

Notice that the feature 1–feature 2 plane here is the same as in the two-dimensional plot from 
before; in this case, however, we have represented the labels by both color and three-
dimensional axis position. From this view, it seems reasonable that fitting a plane through 
this three-dimensional data would allow us to predict the expected label for any set of 
input parameters. Returning to the two-dimensional projection, when we fit such a plane we 
get the result shown in Figure 5-6. 
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Figure 5-6. A representation of the regression model 

This plane of fit gives us what we need to predict labels for new points. Visually, we find the 
results shown in Figure 5-7. 
 

Figure 5-7. Applying the regression model to new data 

As with the classification example, this may seem rather trivial in a low number of 
dimensions. But the power of these methods is that they can be straightforwardly 
applied and evaluated in the case of data with many, many features. 

For example, this is similar to the task of computing the distance to galaxies observed through 
a telescope—in this case, we might use the following features and labels: 

• feature 1, feature 2, etc. brightness of each galaxy at one of several 
wavelengths or colors 

• label distance or redshift of the galaxy 



 

Page 216 of 580  

The distances for a small number of these galaxies might be determined through an 
independent set of (typically more expensive) observations. We could then estimate distances 
to remaining galaxies using a suitable regression model, without the need to employ the more 
expensive observation across the entire set. In astronomy circles, this is known as the 
“photometric redshift” problem. 

Some important regression algorithms that we will discuss are linear regression (see “In 
Depth: Linear Regression” on page 390), support vector machines (see “In-Depth: Support 
Vector Machines” on page 405), and random forest regression (see “In- Depth: Decision Trees 
and Random Forests” on page 421). 

Clustering: Inferring labels on unlabeled data 

The classification and regression illustrations we just looked at are examples of super‐ vised 
learning algorithms, in which we are trying to build a model that will predict labels for new 
data. Unsupervised learning involves models that describe data without reference to any 
known labels. 

One common case of unsupervised learning is “clustering,” in which data is automati‐ cally 
assigned to some number of discrete groups. For example, we might have some two-
dimensional data like that shown in Figure 5-8. 
 

Figure 5-8. Example data for clustering 

By eye, it is clear that each of these points is part of a distinct group. Given this input, a 
clustering model will use the intrinsic structure of the data to determine which points are 
related. Using the very fast and intuitive k-means algorithm (see “In Depth: k-Means 
Clustering” on page 462), we find the clusters shown in Figure 5-9. 
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k-means fits a model consisting of k cluster centers; the optimal centers are assumed to be 
those that minimize the distance of each point from its assigned center. Again, this might 
seem like a trivial exercise in two dimensions, but as our data becomes larger and more 
complex, such clustering algorithms can be employed to extract use‐ ful information from the 
dataset. 

We will discuss the k-means algorithm in more depth in “In Depth: k-Means Cluster‐ ing” on 
page 462. Other important clustering algorithms include Gaussian mixture models (see “In 
Depth: Gaussian Mixture Models” on page 476) and spectral cluster‐ ing (see Scikit-Learn’s 
clustering documentation). 

 
Figure 5-9. Data labeled with a k-means clustering model 

Dimensionality reduction: Inferring structure of unlabeled data 

Dimensionality reduction is another example of an unsupervised algorithm, in which labels or 
other information are inferred from the structure of the dataset itself. Dimensionality 
reduction is a bit more abstract than the examples we looked at before, but generally it seeks 
to pull out some low-dimensional representation of data that in some way preserves relevant 
qualities of the full dataset. Different dimension‐ ality reduction routines measure these 
relevant qualities in different ways, as we will see in “In-Depth: Manifold Learning” on page 
445. 

As an example of this, consider the data shown in Figure 5-10. 

Visually, it is clear that there is some structure in this data: it is drawn from a one- 
dimensional line that is arranged in a spiral within this two-dimensional space. In a sense, you 
could say that this data is “intrinsically” only one dimensional, though this one-dimensional 
data is embedded in higher-dimensional space. A suitable dimen‐ sionality reduction model in 
this case would be sensitive to this nonlinear embedded structure, and be able to pull out this 
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lower-dimensionality representation. 

 
Figure 5-10. Example data for dimensionality reduction 

Figure 5-11 presents a visualization of the results of the Isomap algorithm, a manifold learning 
algorithm that does exactly this. 
 

Figure 5-11. Data with a label learned via dimensionality reduction 

Notice that the colors (which represent the extracted one-dimensional latent 
variable) change uniformly along the spiral, which indicates that the algorithm 
did in fact detect the structure we saw by eye. As with the previous examples, 
the power of 
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dimensionality reduction algorithms becomes clearer in higher-dimensional cases. For 
example, we might wish to visualize important relationships within a dataset that has 100 or 
1,000 features. Visualizing 1,000-dimensional data is a challenge, and one way we can make 
this more manageable is to use a dimensionality reduction techni‐ que to reduce the data to 
two or three dimensions. 

Some important dimensionality reduction algorithms that we will discuss are princi‐ pal 
component analysis (see “In Depth: Principal Component Analysis” on page 433) and various 
manifold learning algorithms, including Isomap and locally linear embedding (see “In-Depth: 
Manifold Learning” on page 445). 

Summary 

Here we have seen a few simple examples of some of the basic types of machine learn‐ ing 
approaches. Needless to say, there are a number of important practical details that we have 
glossed over, but I hope this section was enough to give you a basic idea of what types of 
problems machine learning approaches can solve. 

In short, we saw the following: 

Supervised learning 

Models that can predict labels based on labeled training data 

Classification 

Models that predict labels as two or more discrete categories 

Regression 

Models that predict continuous labels 

Unsupervised learning 

Models that identify structure in unlabeled data 

Clustering 

Models that detect and identify distinct groups in the data 

Dimensionality reduction 

Models that detect and identify lower-dimensional structure in higher- 
dimensional data 

In the following sections we will go into much greater depth within these categories, and see 
some more interesting examples of where these concepts can be useful. 

All of the figures in the preceding discussion are generated based on actual machine learning 
computations; the code behind them can be found in the online appendix. 
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Day-05: Introducing Scikit-Learn 

There are several Python libraries that provide solid implementations of a range of machine 
learning algorithms. One of the best known is Scikit-Learn, a package that provides efficient 
versions of a large number of common algorithms. Scikit-Learn is characterized by a clean, 
uniform, and streamlined API, as well as by very useful and complete online documentation. A 
benefit of this uniformity is that once you under‐ stand the basic use and syntax of Scikit-
Learn for one type of model, switching to a new model or algorithm is very straightforward. 

This section provides an overview of the Scikit-Learn API; a solid understanding of these API 
elements will form the foundation for understanding the deeper practical discussion of 
machine learning algorithms and approaches in the following chapters. 

We will start by covering data representation in Scikit-Learn, followed by covering the Estimator 
API, and finally go through a more interesting example of using these tools for exploring a set 
of images of handwritten digits. 

Data Representation in Scikit-Learn 

Machine learning is about creating models from data: for that reason, we’ll start by discussing 
how data can be represented in order to be understood by the computer. The best way to 
think about data within Scikit-Learn is in terms of tables of data. 

Data as table 

A basic table is a two-dimensional grid of data, in which the rows represent individ‐ ual 
elements of the dataset, and the columns represent quantities related to each of these 
elements. For example, consider the Iris dataset, famously analyzed by Ronald Fisher in 1936. 

We can download this dataset in the form of a Pandas DataFrame using the Seaborn library: 

In[1]: import seaborn as sns 

iris = sns.load_dataset('iris') 
iris.head() 

 

Out[1]
: 

sepal_length sepal_wid
th 

petal_leng
th 

petal_wid
th 

specie
s 

 0

 5.

1 

3.5 1.4 0.2 setos

a 

 1

 4.

9 

3.0 1.4 0.2 setos

a 

 2

 4.

7 

3.2 1.3 0.2 setos

a 

 3

 4.

6 

3.1 1.5 0.2 setos

a 

 4
 5.
0 

3.6 1.4 0.2 setos
a 

Here each row of the data refers to a single observed flower, and the number of rows is the 
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total number of flowers in the dataset. In general, we will refer to the rows of the matrix as 

samples, and the number of rows as n_samples. 

Likewise, each column of the data refers to a particular quantitative piece of informa‐ tion that 

describes each sample. In general, we will refer to the columns of the matrix as features, and 

the number of columns as n_features. 

Features matrix 

This table layout makes clear that the information can be thought of as a two- dimensional 
numerical array or matrix, which we will call the features matrix. By con‐ vention, this features 

matrix is often stored in a variable named X. The features matrix is assumed to be two-

dimensional, with shape [n_samples, n_features], and is most often contained in a NumPy 

array or a Pandas DataFrame, though some Scikit- Learn models also accept SciPy sparse 

matrices. 

The samples (i.e., rows) always refer to the individual objects described by the dataset. For 
example, the sample might be a flower, a person, a document, an image, a sound file, a video, 
an astronomical object, or anything else you can describe with a set of quantitative 
measurements. 

The features (i.e., columns) always refer to the distinct observations that describe each 
sample in a quantitative manner. Features are generally real-valued, but may be Boolean or 
discrete-valued in some cases. 

Target array 

In addition to the feature matrix X, we also generally work with a label or target array, which 

by convention we will usually call y. The target array is usually one dimen‐ sional, with length 

n_samples, and is generally contained in a NumPy array or Pan‐ das Series. The target array 

may have continuous numerical values, or discrete classes/labels. While some Scikit-Learn 

estimators do handle multiple target values in the form of a two-dimensional [n_samples, 

n_targets] target array, we will pri‐ marily be working with the common case of a one-

dimensional target array. 

Often one point of confusion is how the target array differs from the other features columns. 
The distinguishing feature of the target array is that it is usually the quantity we want to 
predict from the data: in statistical terms, it is the dependent variable. For example, in the 
preceding data we may wish to construct a model that can predict the species of flower based 

on the other measurements; in this case, the species column would be considered the feature. 

With this target array in mind, we can use Seaborn (discussed earlier in “Visualiza‐ tion with 
Seaborn” on page 311) to conveniently visualize the data (see Figure 5-12): 

In[2]: %matplotlib inline 
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import seaborn as sns; sns.set() 
sns.pairplot(iris, hue='species', size=1.5); 

Figure 5-12. A visualization of the Iris dataset 

For use in Scikit-Learn, we will extract the features matrix and target array from the 

DataFrame, which we can do using some of the Pandas DataFrame operations dis‐ cussed in 

Chapter 3: 

In[3]: X_iris = iris.drop('species', axis=1) 
X_iris.shape 

Out[3]: (150, 4) 

In[4]: y_iris = iris['species'] 
y_iris.shape 

Out[4]: (150,) 

To summarize, the expected layout of features and target values is visualized in 
Figure 5-13. 



 

Page 223 of 580  

 
Figure 5-13. Scikit-Learn’s data layout 

With this data properly formatted, we can move on to consider the estimator API of Scikit-
Learn. 

Scikit-Learn’s Estimator API 

The Scikit-Learn API is designed with the following guiding principles in mind, as 
outlined in the Scikit-Learn API paper: 

Consistency 

All objects share a common interface drawn from a limited set of methods, 
with consistent documentation. 

Inspection 

All specified parameter values are exposed as public attributes. 

Limited object hierarchy 

Only algorithms are represented by Python classes; datasets are represented in 

standard formats (NumPy arrays, Pandas DataFrames, SciPy sparse matrices) 

and parameter names use standard Python strings. 

Composition 

Many machine learning tasks can be expressed as sequences of more 
fundamen‐ tal algorithms, and Scikit-Learn makes use of this wherever possible. 

Sensible defaults 

When models require user-specified parameters, the library defines an 
appropri‐ ate default value. 

In practice, these principles make Scikit-Learn very easy to use, once the basic princi‐ ples are 
understood. Every machine learning algorithm in Scikit-Learn is imple‐ mented via the 
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Estimator API, which provides a consistent interface for a wide range of machine learning 
applications. 

Basics of the API 

Most commonly, the steps in using the Scikit-Learn estimator API are as follows (we 
will step through a handful of detailed examples in the sections that follow): 

1. Choose a class of model by importing the appropriate estimator class from Scikit- 
Learn. 

2. Choose model hyperparameters by instantiating this class with desired values. 

3. Arrange data into a features matrix and target vector following the 

discussion from before. 

4. Fit the model to your data by calling the fit() method of the model instance. 

5. Apply the model to new data: 

• For supervised learning, often we predict labels for unknown data using the 

predict() method. 

• For unsupervised learning, we often transform or infer properties of the 

data using the transform() or predict() method. 

 
We will now step through several simple examples of applying supervised and unsu‐ pervised 
learning methods. 

Supervised learning example: Simple linear regression 

As an example of this process, let’s consider a simple linear regression—that is, the common 
case of fitting a line to x, y data. We will use the following simple data for our regression 
example (Figure 5-14): 

In[5]: import matplotlib.pyplot as plt 

import numpy as np 

 
rng = np.random.RandomState(42) 
x = 10 * rng.rand(50) 

y = 2 * x - 1 + rng.randn(50) 
plt.scatter(x, y); 
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Figure 5-14. Data for linear regression 

With this data in place, we can use the recipe outlined earlier. Let’s walk through the process: 

1. Choose a class of model. 

In Scikit-Learn, every class of model is represented by a Python class. So, for example, if we 
would like to compute a simple linear regression model, we can import the linear 
regression class: 

In[6]: from sklearn.linear_model import LinearRegression 

Note that other, more general linear regression models exist as well; you can read more 

about them in the sklearn.linear_model module documentation. 

2. Choose model hyperparameters. 

An important point is that a class of model is not the same as an instance of a model. 

Once we have decided on our model class, there are still some options open to us. 
Depending on the model class we are working with, we might need to answer one or 
more questions like the following: 

• Would we like to fit for the offset (i.e., intercept)? 

• Would we like the model to be normalized? 

• Would we like to preprocess our features to add model flexibility? 

• What degree of regularization would we like to use in our model? 

• How many model components would we like to use? 

These are examples of the important choices that must be made once the model class is 
selected. These choices are often represented as hyperparameters, or parameters that 
must be set before the model is fit to data. In Scikit-Learn, we choose hyperparameters 
by passing values at model instantiation. We will explore how you can quantitatively 
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motivate the choice of hyperparameters in “Hyperparameters and Model Validation” on 
page 359. 

For our linear regression example, we can instantiate the LinearRegression class and 

specify that we would like to fit the intercept using the fit_inter cept 

hyperparameter: 

In[7]: model = LinearRegression(fit_intercept=True) model 

Out[7]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, 
normalize=False) 

Keep in mind that when the model is instantiated, the only action is the storing of these 
hyperparameter values. In particular, we have not yet applied the model to any data: 
the Scikit-Learn API makes very clear the distinction between choice of model and 
application of model to data. 

3. Arrange data into a features matrix and target vector. 

Previously we detailed the Scikit-Learn data representation, which requires a two-

dimensional features matrix and a one-dimensional target array. Here our target variable y 

is already in the correct form (a length-n_samples array), but we need to massage the data x 

to make it a matrix of size [n_samples, n_features]. In this case, this amounts to a simple 

reshaping of the one-dimensional array: 

In[8]: X = x[:, np.newaxis] X.shape 

Out[8]: (50, 1) 

4. Fit the model to your data. 

Now it is time to apply our model to data. This can be done with the fit() 
method of the model: 

In[9]: model.fit(X, y) Out[9]: 

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, 

normalize=False) 

This fit() command causes a number of model-dependent internal computa‐ tions to 

take place, and the results of these computations are stored in model- specific attributes 
that the user can explore. In Scikit-Learn, by convention all model parameters that were 

learned during the fit() process have trailing underscores; for example, in this linear 

model, we have the following: 

In[10]: model.coef_ 

Out[10]: array([ 1.9776566]) 

In[11]: model.intercept_ 

Out[11]: -0.90331072553111635 
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These two parameters represent the slope and intercept of the simple linear fit 
to the data. Comparing to the data definition, we see that they are very close to 
the input slope of 2 and intercept of –1. 

One question that frequently comes up regards the uncertainty in such internal 
model parameters. In general, Scikit-Learn does not provide tools to draw con‐ 
clusions from internal model parameters themselves: interpreting model 
parame‐ ters is much more a statistical modeling question than a machine 
learning question. Machine learning rather focuses on what the model predicts. 
If you would like to dive into the meaning of fit parameters within the model, 
other tools are available, including the StatsModels Python package. 

Predict labels for unknown data. 

Once the model is trained, the main task of supervised machine learning is to 
evaluate it based on what it says about new data that was not part of the 

training set. In Scikit-Learn, we can do this using the predict() method. For 

the sake of this example, our “new data” will be a grid of x values, and we will 
ask what y values the model predicts: 

In[12]: xfit = np.linspace(-1, 11) 

As before, we need to coerce these x values into a [n_samples, n_features] 

features matrix, after which we can feed it to the model: 

In[13]: Xfit = xfit[:, np.newaxis] 
yfit = model.predict(Xfit) 

Finally, let’s visualize the results by plotting first the raw data, and then this 
model fit (Figure 5-15): 

In[14]: plt.scatter(x, y) 

plt.plot(xfit, yfit); 

Typically one evaluates the efficacy of the model by comparing its results to some 
known baseline, as we will see in the next example. 



 

Page 228 of 580  

 
Figure 5-15. A simple linear regression fit to the data 

Supervised learning example: Iris classification 

Let’s take a look at another example of this process, using the Iris dataset we discussed earlier. 
Our question will be this: given a model trained on a portion of the Iris data, how well can we 
predict the remaining labels? 

For this task, we will use an extremely simple generative model known as Gaussian naive 
Bayes, which proceeds by assuming each class is drawn from an axis-aligned Gaussian 
distribution (see “In Depth: Naive Bayes Classification” on page 382 for more details). Because 
it is so fast and has no hyperparameters to choose, Gaussian naive Bayes is often a good 
model to use as a baseline classification, before you explore whether improvements can be 
found through more sophisticated models. 

We would like to evaluate the model on data it has not seen before, and so we will split the 

data into a training set and a testing set. This could be done by hand, but it is more convenient 

to use the train_test_split utility function: 

In[15]: from sklearn.cross_validation import train_test_split 

Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris, 

random_state=1) 

With the data arranged, we can follow our recipe to predict the labels: 

In[16]: from sklearn.naive_bayes import GaussianNB # 1. choose model class 

model = GaussianNB() #  2.  instantiate  model 

model.fit(Xtrain, ytrain) # 3. fit model to data 

y_model = model.predict(Xtest) # 4. predict on new data 

Finally, we can use the accuracy_score utility to see the fraction of predicted labels that 
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match their true value: 

In[17]: from sklearn.metrics import accuracy_score 
accuracy_score(ytest, y_model) 

Out[17]: 0.97368421052631582 

With an accuracy topping 97%, we see that even this very naive classification algo‐ 
rithm is effective for this particular dataset! 

Unsupervised learning example: Iris dimensionality 

As an example of an unsupervised learning problem, let’s take a look at reducing the 
dimensionality of the Iris data so as to more easily visualize it. Recall that the Iris data is four 
dimensional: there are four features recorded for each sample. 

The task of dimensionality reduction is to ask whether there is a suitable lower- dimensional 
representation that retains the essential features of the data. Often dimensionality reduction 
is used as an aid to visualizing data; after all, it is much eas‐ ier to plot data in two dimensions 
than in four dimensions or higher! 

Here we will use principal component analysis (PCA; see “In Depth: Principal Com‐ ponent 
Analysis” on page 433), which is a fast linear dimensionality reduction techni‐ que. We will ask 
the model to return two components—that is, a two-dimensional representation of the data. 

Following the sequence of steps outlined earlier, we have: 

In[18]: 

from sklearn.decomposition import PCA # 1. Choose the model class 

model = PCA(n_components=2) # 2. Instantiate the model with hyperparameters 

model.fit(X_iris) # 3. Fit to data. Notice y is not specified! 

X_2D = model.transform(X_iris) # 4. Transform the data to two dimensions 

Now let’s plot the results. A quick way to do this is to insert the results into the origi‐ 

nal Iris DataFrame, and use Seaborn’s lmplot to show the results (Figure 5-16): 

In[19]: iris['PCA1'] = X_2D[:, 0] 

iris['PCA2'] = X_2D[:, 1] 

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False); 

We see that in the two-dimensional representation, the species are fairly well separa‐ ted, 
even though the PCA algorithm had no knowledge of the species labels! This indicates to us 
that a relatively straightforward classification will probably be effective on the dataset, as we 
saw before. 
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Figure 5-16. The Iris data projected to two dimensions 

Unsupervised learning: Iris clustering 

Let’s next look at applying clustering to the Iris data. A clustering algorithm attempts to find 
distinct groups of data without reference to any labels. Here we will use a powerful clustering 
method called a Gaussian mixture model (GMM), discussed in more detail in “In Depth: 
Gaussian Mixture Models” on page 476. A GMM attempts to model the data as a collection of 
Gaussian blobs. 

We can fit the Gaussian mixture model as follows: 

In[20]: 

from sklearn.mixture import GMM # 1. Choose the model class 

model = GMM(n_components=3, 

covariance_type='full') # 2. Instantiate the model w/ hyperparameters 

model.fit(X_iris) # 3. Fit to data. Notice y is  not  specified! 

y_gmm = model.predict(X_iris) # 4. Determine cluster labels 

As before, we will add the cluster label to the Iris DataFrame and use Seaborn to 
plot the results (Figure 5-17): 

In[21]: 

iris['cluster'] = y_gmm 

sns.lmplot("PCA1", "PCA2", data=iris, hue='species', 
col='cluster', fit_reg=False); 

By splitting the data by cluster number, we see exactly how well the GMM algorithm has 
recovered the underlying label: the setosa species is separated perfectly within cluster 0, 
while there remains a small amount of mixing between versicolor and vir‐ ginica. This means 
that even without an expert to tell us the species labels of the indi‐ vidual flowers, the 
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measurements of these flowers are distinct enough that we could automatically identify the 
presence of these different groups of species with a simple clustering algorithm! This sort of 
algorithm might further give experts in the field clues as to the relationship between the 
samples they are observing. 
 

Figure 5-17. k-means clusters within the Iris data 

Application: Exploring Handwritten Digits 

To demonstrate these principles on a more interesting problem, let’s consider one piece of the 
optical character recognition problem: the identification of handwritten digits. In the wild, 
this problem involves both locating and identifying characters in an image. Here we’ll take a 
shortcut and use Scikit-Learn’s set of preformatted digits, which is built into the library. 

Loading and visualizing the digits data 

We’ll use Scikit-Learn’s data access interface and take a look at this data: 

In[22]: from sklearn.datasets import load_digits 
digits = load_digits() 
digits.images.shape 

Out[22]: (1797, 8, 8) 

The images data is a three-dimensional array: 1,797 samples, each consisting of an 8×8 grid of 
pixels. Let’s visualize the first hundred of these (Figure 5-18): 

In[23]: import matplotlib.pyplot as plt 

 

fig, axes = plt.subplots(10, 10, figsize=(8, 8), 

subplot_kw={'xticks':[], 'yticks':[]}, 
gridspec_kw=dict(hspace=0.1, wspace=0.1)) 

 

for i, ax in enumerate(axes.flat): 

ax.imshow(digits.images[i], cmap='binary', interpolation='nearest') 
ax.text(0.05, 0.05, str(digits.target[i]), 

transform=ax.transAxes, color='green') 
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Figure 5-18. The handwritten digits data; each sample is represented by one 8×8 grid of 

pixels 

In order to work with this data within Scikit-Learn, we need a two-dimensional, [n_samples, 

n_features] representation. We can accomplish this by treating each pixel in the image as a 

feature—that is, by flattening out the pixel arrays so that we have a length-64 array of pixel 
values representing each digit. Additionally, we need the target array, which gives the 
previously determined label for each digit. These two quantities are built into the digits 

dataset under the data and target attributes, respectively: 

In[24]: X = digits.data 
X.shape 

Out[24]: (1797, 64) 

In[25]: y = digits.target 
y.shape 

Out[25]: (1797,) 

We see here that there are 1,797 samples and 64 features. 

Unsupervised learning: Dimensionality reduction 

We’d like to visualize our points within the 64-dimensional parameter space, but it’s difficult 
to effectively visualize points in such a high-dimensional space. Instead we’ll reduce the 
dimensions to 2, using an unsupervised method. Here, we’ll make use of a manifold learning 
algorithm called Isomap (see “In-Depth: Manifold Learning” on page 445), and transform the 
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data to two dimensions: 

In[26]: from sklearn.manifold import Isomap 
iso = Isomap(n_components=2) 
iso.fit(digits.data) 

data_projected = iso.transform(digits.data) 
data_projected.shape 

Out[26]: (1797, 2) 

We see that the projected data is now two-dimensional. Let’s plot this data to see if 
we can learn anything from its structure (Figure 5-19): 

In[27]: plt.scatter(data_projected[:, 0], data_projected[:, 1], c=digits.target, 
edgecolor='none', alpha=0.5, 
cmap=plt.cm.get_cmap('spectral', 10)) 

plt.colorbar(label='digit label', ticks=range(10)) 
plt.clim(-0.5, 9.5); 

Figure 5-19. An Isomap embedding of the digits data 

This plot gives us some good intuition into how well various numbers are separated in the 
larger 64-dimensional space. For example, zeros (in black) and ones (in purple) have very 
little overlap in parameter space. Intuitively, this makes sense: a zero is empty in the middle 
of the image, while a one will generally have ink in the middle. On the other hand, there seems 
to be a more or less continuous spectrum between ones and fours: we can understand this by 
realizing that some people draw ones with “hats” on them, which cause them to look similar to 
fours. 

Overall, however, the different groups appear to be fairly well separated in the param‐ eter 
space: this tells us that even a very straightforward supervised classification algo‐ rithm 
should perform suitably on this data. Let’s give it a try. 
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Classification on digits 

Let’s apply a classification algorithm to the digits. As with the Iris data previously, we 
will split the data into a training and test set, and fit a Gaussian naive Bayes model: 

In[28]: Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0) 

In[29]: from sklearn.naive_bayes import GaussianNB 
model = GaussianNB() 

model.fit(Xtrain, ytrain) 
y_model = model.predict(Xtest) 

Now that we have predicted our model, we can gauge its accuracy by comparing the true 
values of the test set to the predictions: 

In[30]: from sklearn.metrics import accuracy_score 
accuracy_score(ytest, y_model) 

Out[30]: 0.83333333333333337 

With even this extremely simple model, we find about 80% accuracy for classification of the 
digits! However, this single number doesn’t tell us where we’ve gone wrong— one nice way to 
do this is to use the confusion matrix, which we can compute with Scikit-Learn and plot with 
Seaborn (Figure 5-20): 

In[31]: from sklearn.metrics import confusion_matrix 

mat = confusion_matrix(ytest, y_model) 

sns.heatmap(mat, square=True, annot=True, cbar=False) 
plt.xlabel('predicted value') 

plt.ylabel('true value'); 

Figure 5-20. A confusion matrix showing the frequency of misclassifications by our 
classifier 
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This shows us where the mislabeled points tend to be: for example, a large number of twos 
here are misclassified as either ones or eights. Another way to gain intuition into the 
characteristics of the model is to plot the inputs again, with their predicted labels. We’ll use 
green for correct labels, and red for incorrect labels (Figure 5-21): 

In[32]: fig, axes = plt.subplots(10, 10, figsize=(8, 8), 

subplot_kw={'xticks':[], 'yticks':[]}, 
gridspec_kw=dict(hspace=0.1, wspace=0.1)) 

 

for i, ax in enumerate(axes.flat): 

ax.imshow(digits.images[i], cmap='binary', interpolation='nearest') 
ax.text(0.05, 0.05, str(y_model[i]), 

transform=ax.transAxes, 

color='green' if (ytest[i] == y_model[i]) else 'red') 

Figure 5-21. Data showing correct (green) and incorrect (red) labels; for a color version of 

this plot, see the online appendix 

Examining this subset of the data, we can gain insight regarding where the algorithm might not 
be performing optimally. To go beyond our 80% classification rate, we might move to a more 
sophisticated algorithm, such as support vector machines (see “In-Depth: Support Vector 
Machines” on page 405) or random forests (see “In- Depth: Decision Trees and Random 
Forests” on page 421), or another classification approach. 
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Week 4- Data visualization using Matplotlib 

Day-01: Data visualization using Matplotlib  

Introduction and brief histroy 

Matplotlib is a multiplatform data visualization library built on NumPy arrays, and designed 

to work with the broader SciPy stack. It was conceived by John Hunter in 2002, originally 

as a patch to IPython for enabling interactive MATLAB-style plotting via gnuplot from the 

IPython command line. IPython’s creator, Fernando Perez, was at the time scrambling to 

finish his PhD, and let John know he wouldn’t have time to review the patch for several 

months. John took this as a cue to set out on his own, and   the Matplotlib package was born, 

with version 0.1 released in 2003. It received an early boost when it was adopted as the 

plotting package of choice of the Space Tele‐ scope Science Institute (the folks behind the 

Hubble Telescope), which financially supported Matplotlib’s development and greatly 

expanded its capabilities. 

One of Matplotlib’s most important features is its ability to play well with many operating 

systems and graphics backends. Matplotlib supports dozens of backends and output types, 

which means you can count on it to work regardless of which operating system you are 

using or which output format you wish. This cross-platform, everything-to-everyone 

approach has been one of the great strengths of Matplotlib. It has led to a large userbase, 

which in turn has led to an active developer base and Mat‐ plotlib’s powerful tools and 

ubiquity within the scientific Python world. 

Importing matplotlib 

Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will use 
some standard shorthands for Matplotlib imports: 

In[1]: import matplotlib as mpl 

import matplotlib.pyplot as plt 

The plt interface is what we will use most often, as we’ll see throughout this chapter. 

Setting Styles 

We will use the plt.style directive to choose appropriate aesthetic styles for our fig‐ ures. 
Here we will set the classic style, which ensures that the plots we create use the classic 
Matplotlib style: 

In[2]: plt.style.use('classic') 

show() or No show()? How to Display Your Plots 

A visualization you can’t see won’t be of much use, but just how you view your Mat‐ 
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plotlib plots depends on the context. The best use of Matplotlib differs depending on 

how you are using it; roughly, the three applicable contexts are using Matplotlib in a 

script, in an IPython terminal, or in an IPython notebook. 

Plotting from a script 

If you are using Matplotlib from within a script, the function plt.show() is your friend. 
plt.show() starts an event loop, looks for all currently active figure objects, and opens 
one or more interactive windows that display your figure or figures. 

So, for example, you may have a file called myplot.py containing the following: 

# ------- file: myplot.py ------ 

import matplotlib.pyplot as plt import 

nump as np 

x = np.linspace(0, 10, 100) 

plt.plot(x, np.sin(x)) 

plt.plot(x, np.cos(x)) 

plt.show() 

You can then run this script from the command-line prompt, which will result in a window 

opening with your figure displayed: 

$ python myplot.py 

The plt.show() command does a lot under the hood, as it must interact with your system’s 

interactive graphical backend. The details of this operation can vary greatly from system 
to system and even installation to installation, but Matplotlib does its best to hide all these 

details from you. 

One thing to be aware of: the plt.show() command should be used only once per Python 
session, and is most often seen at the very end of the script. Multiple show() commands 
can lead to unpredictable backend-dependent behavior, and should mostly be avoided. 

Plotting from an IPython shell 

It can be very convenient to use Matplotlib interactively within an IPython shell (see 

Chapter 1). IPython is built to work well with Matplotlib if you specify Matplotlib mode. To 

enable this mode, you can use the %matplotlib magic command after start‐ ing ipython: 

In [1]: %matplotlib 

Using matplotlib backend: TkAgg 
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In [2]: import matplotlib.pyplot as plt 

At this point, any plt plot command will cause a figure window to open, and further 

commands can be run to update the plot. Some changes (such as modifying proper‐ ties 

of lines that are already drawn) will not draw automatically; to force an update, use 

plt.draw(). Using plt.show() in Matplotlib mode is not required. 

Plotting from an IPython notebook 

Plotting interactively within an IPython notebook can be done with the %matplotlib 
command, and works in a similar way to the IPython shell. In the IPython notebook, you 

also have the option of embedding graphics directly in the notebook, with two possible 

options: 

• %matplotlib notebook will lead to interactive plots embedded within the notebook 

• %matplotlib inline will lead to static images of your plot embedded in the 

notebook 

For this book, we will generally opt for %matplotlib inline: 

In[3]: %matplotlib inline 

After you run this command (it needs to be done only once per kernel/session), any cell 

within the notebook that creates a plot will embed a PNG image of the resulting graphic 

(Figure 4-1): 

In[4]: import numpy as np 

x = np.linspace(0, 10, 100) 

Saving Figures to File 

One nice feature of Matplotlib is the ability to save figures in a wide variety of for‐ mats. 

You can save a figure using the savefig() command. For example, to save the previous 

figure as a PNG file, you can run this: 

In[5]: fig.savefig('my_figure.png') 

We now have a file called my_figure.png in the current working directory: 

In[6]: !ls -lh my_figure.png 

-rw-r--r-- 1 jakevdp staff 16K Aug 11 10:59 my_figure.png 

To confirm that it contains what we think it contains, let’s use the IPython Image 
object to display the contents of this file . 
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In[7]: from IPython.display import Image 
Image('my_figure.png') 

Figure. PNG rendering of the basic plot 

 
In savefig(), the file format is inferred from the extension of the given filename. 

Depending on what backends you have installed, many different file formats are 

available. You can find the list of supported file types for your system by using the 

following method of the figure canvas object: 

In[8]: fig.canvas.get_supported_filetypes() Out[8]: 

{'eps': 'Encapsulated Postscript', 

'jpeg': 'Joint Photographic Experts Group', 'jpg': 
'Joint Photographic Experts Group', 'pdf': 
'Portable Document Format', 

'pgf': 'PGF code for LaTeX', 

'png': 'Portable Network Graphics', 'ps': 
'Postscript', 

'raw': 'Raw RGBA bitmap', 'rgba': 
'Raw RGBA bitmap', 

'svg': 'Scalable Vector Graphics', 'svgz': 
'Scalable Vector Graphics', 'tif': 'Tagged 
Image File Format', 'tiff': 'Tagged Image 
File Format'} 

Note that when saving your figure, it’s not necessary to use plt.show() or related 
commands discussed earlier. 
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Two Interfaces for the Price of One 

A potentially confusing feature of Matplotlib is its dual interfaces: a convenient MATLAB-

style state-based interface, and a more powerful object-oriented interface. We’ll quickly 

highlight the differences between the two here. 

MATLAB-style interface 

Matplotlib was originally written as a Python alternative for MATLAB users, and much of 

its syntax reflects that fact. The MATLAB-style tools are contained in the pyplot (plt) 

interface. For example, the following code will probably look quite familiar to MATLAB 

users (Figure ): 

In[9]: plt.figure() # create a plot figure 

# create the first of two panels and set current axis 
plt.subplot(2, 1, 1) # (rows, columns, panel number) 
plt.plot(x, np.sin(x)) 

# create the second panel and set current axis 

plt.subplot(2, 1, 2) plt.plot(x,np.cos(x)); 

Figure. Subplots using the MATLAB-style interface 

It’s important to note that this interface is stateful: it keeps track of the “current” figure 

and axes, which are where all plt commands are applied. You can get a reference to 

these using the plt.gcf() (get current figure) and plt.gca() (get current axes) routines. 

While this stateful interface is fast and convenient for simple plots, it is easy to run into 

problems. For example, once the second panel is created, how can we go back and add 

something to the first? This is possible within the MATLAB-style interface, but a bit 

clunky. Fortunately, there is a better way. 
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Object-oriented interface 

The object-oriented interface is available for these more complicated situations, and for 

when you want more control over your figure. Rather than depending on some notion of 

an “active” figure or axes, in the object-oriented interface the plotting func‐ tions are 

methods of explicit Figure and Axes objects. To re-create the previous plot using this style 

of plotting, you might do the following  

In[10]: # First create a grid of plots 

# ax will be an array of two Axes objects 

fig, ax = plt.subplots(2) 

 
# Call plot() method on the appropriate object 

ax[0].plot(x, np.sin(x)) 

ax[1].plot(x, np.cos(x)); 

Figure. Subplots using the object-oriented interface 

For more simple plots, the choice of which style to use is largely a matter of prefer‐ ence, 

but the object-oriented approach can become a necessity as plots become more 

complicated. Throughout this chapter, we will switch between the MATLAB-style and 

object-oriented interfaces, depending on what is most convenient. In most cases, the 

difference is as small as switching plt.plot() to ax.plot(), but there are a few gotchas that we 

will highlight as they come up in the following sections. 

Simple Line Plots 

Perhaps the simplest of all plots is the visualization of a single function y = f x . Here we 

will take a first look at creating a simple plot of this type. As with all the following sections, 

we’ll start by setting up the notebook for plotting and importing the func‐ tions we will 

use: 
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In[1]: %matplotlib inline 

import matplotlib.pyplot as plt 
plt.style.use('seaborn-whitegrid') import 
numpy as np 

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest form, a 

figure and axes can be created as follows (Figure 4-5): 

In[2]: fig = plt.figure() ax = 
plt.axes() 

Figure. An empty gridded axes 

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a single 

container that contains all the objects representing axes, graphics, text, and labels. The 

axes (an instance of the class plt.Axes) is what we see above: a bounding box with ticks 

and labels, which will eventually contain the plot elements that make up our 
visualization. Throughout this book, we’ll commonly use the variable name fig to refer to 

a figure instance, and ax to refer to an axes instance or group of axes instances. 

Once we have created an axes, we can use the ax.plot function to plot some data. Let’s 
start with a simple sinusoid . 

In[3]: fig = plt.figure() ax 
= plt.axes() 

x = np.linspace(0, 10, 
1000) ax.plot(x, np.sin(x)); 

In[4]: plt.plot(x, np.sin(x)); 
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Figure . Over-plotting multiple lines 

That’s all there is to plotting simple functions in Matplotlib! We’ll now dive into some more 
details about how to control the appearance of the axes and lines. 

Adjusting the Plot: Line Colors and Styles 

The first adjustment you might wish to make to a plot is to control the line colors and 
styles. The plt.plot() function takes additional arguments that can be used to spec‐ ify 

these. To adjust the color, you can use the color keyword, which accepts a string 

argument representing virtually any imaginable color. The color can be specified in a 

variety of ways (Figure : 

In[6]: 
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plt.plot(x, np.sin(x - 0), color='blue') # specify color by name 
plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk) 
plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1 
plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to 
FF) plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1 

plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names 
supported 

Figure . Controlling the color of plot elements 

If no color is specified, Matplotlib will automatically cycle through a set of default 

colors for multiple lines. 

Similarly, you can adjust the line style using the linestyle keyword (Figure 4-10): 

In[7]: plt.plot(x, x + 0, linestyle='solid') 
plt.plot(x, x + 1, linestyle='dashed') 
plt.plot(x, x + 2, linestyle='dashdot') 
plt.plot(x, x + 3, linestyle='dotted'); 

 
# For short, you can use the following 
codes: plt.plot(x, x + 4, linestyle='-') # solid 
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plt.plot(x, x + 5, linestyle='--') # dashed 
plt.plot(x, x + 6, linestyle='-.') # dashdot 
plt.plot(x, x + 7, linestyle=':'); # dotted 

Figure . Example of various line styles 

 
If you would like to be extremely terse, these linestyle and color codes can be com‐ bined 
into a single nonkeyword argument to the plt.plot() function (Figure) : 

In[8]: plt.plot(x, x + 0, '-g') # solid green 
plt.plot(x, x + 1, '--c') # dashed cyan 
plt.plot(x, x + 2, '-.k') # dashdot black 
plt.plot(x, x + 3, ':r'); # dotted red 

 

 
Figure . Controlling colors and styles with the shorthand syntax 

These single-character color codes reflect the standard abbreviations in the RGB 

(Red/Green/Blue) and CMYK (Cyan/Magenta/Yellow/blacK) color systems, com‐ monly 

used for digital color graphics. 

There are many other keyword arguments that can be used to fine-tune the appear‐ ance 

of the plot; for more details, I’d suggest viewing the docstring of the plt.plot() function 

using IPython’s help tools (see “Help and Documentation in IPython” ). 

Adjusting the Plot: Axes Limits 

Matplotlib does a decent job of choosing default axes limits for your plot, but some‐ 

times it’s nice to have finer control. The most basic way to adjust axis limits is to use the 

plt.xlim() and plt.ylim() methods (Figure 4-12): 

In[9]: plt.plot(x, np.sin(x)) 
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plt.xlim(-1, 11) 

plt.ylim(-1.5, 1.5); 

Figure 4-12. Example of setting axis limits 

If for some reason you’d like either axis to be displayed in reverse, you can simply 

reverse the order of the arguments (Figure ): 

In[10]: plt.plot(x, np.sin(x)) 

plt.xlim(10, 0) 

plt.ylim(1.2, -1.2); 

Figure . Example of reversing the y-axis 

 
A useful related method is plt.axis() (note here the potential confusion between 
axes with an e, and axis with an i). The plt.axis() method allows you to set the x 
and y limits with a single call, by passing a list that specifies [xmin, xmax, ymin, 
ymax]  

In[11]: plt.plot(x, np.sin(x)) 
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plt.axis([-1, 11, -1.5, 1.5]); 

Figure .Setting the axis limits with plt.axis 

 
The plt.axis() method goes even beyond this, allowing you to do things like auto‐ 
matically tighten the bounds around the current plot (Figure 4-15): 

In[12]: plt.plot(x, np.sin(x)) 
plt.axis('tight'); 

 
Figure . Example of a “tight” layout 

It allows even higher-level specifications, such as ensuring an equal aspect ratio so that 

on your screen, one unit in x is equal to one unit in y (Figure) : 
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In[13]: plt.plot(x, np.sin(x)) 
plt.axis('equal'); 

Figure . Example of an “equal” layout, with units matched to the output resolution 

 
For more information on axis limits and the other capabilities of the plt.axis() 
method, refer to the plt.axis() docstring. 

Labeling Plots 

As the last piece of this section, we’ll briefly look at the labeling of plots: titles, 

axis labels, and simple legends. 

Titles and axis labels are the simplest such labels—there are methods that can be used to 

quickly set them . 

In[14]: plt.plot(x, np.sin(x)) 
plt.title("A Sine Curve") 

plt.xlabel("x") 
plt.ylabel("sin(x)"); 

Figure . Examples of axis labels and title 
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You can adjust the position, size, and style of these labels using optional arguments to the 

function. For more information, see the Matplotlib documentation and the doc‐ strings of 

each of these functions. 

When multiple lines are being shown within a single axes, it can be useful to create a plot 

legend that labels each line type. Again, Matplotlib has a built-in way of quickly creating 

such a legend. It is done via the (you guessed it) plt.legend() method. Though there are 

several valid ways of using this, I find it easiest to specify the label of each line using the 

label keyword of the plot function (Figure ): 

In[15]: plt.plot(x, np.sin(x), '-g', label='sin(x)') 

plt.plot(x, np.cos(x), ':b', label='cos(x)') 
plt.axis('equal') 

 
plt.legend(); 

Figure . Plot legend example 

 

As you can see, the plt.legend() function keeps track of the line style and color, and 
matches these with the correct label. More information on specifying and formatting plot 
legends can be found in the plt.legend() docstring;  
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Simple Scatter Plots 

Another commonly used plot type is the simple scatter plot, a close cousin of the line 

plot. Instead of points being joined by line segments, here the points are represented 

 

While most plt functions translate directly to ax methods (such as plt.plot() → 

ax.plot(), plt.legend() → ax.legend(), etc.), this is not the case for all com‐ 

mands. In particular, functions to set limits, labels, and titles are slightly modified. 

For transitioning between MATLAB-style functions and object-oriented methods, 

make the following changes: 

  

  

 

 

 

In the object-oriented interface to plotting, rather than calling these functions indi‐ 

vidually, it is often more convenient to use the ax.set() method to set all these prop‐ 

erties at once (Figure 4-19): 

In[16]: ax = plt.axes() 

ax.plot(x, np.sin(x)) 
ax.set(xlim=(0, 10), ylim=(-2, 2), 

xlabel='x', ylabel='sin(x)', 
title='A Simple Plot'); 
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individually with a dot, circle, or other shape. We’ll start by setting up the notebook for 

plotting and importing the functions we will use: 

In[1]: %matplotlib inline 

import matplotlib.pyplot as plt 
plt.style.use('seaborn-
whitegrid') import numpy as np 

 

Scatter Plots with plt.plot 

In the previous section, we looked at plt.plot/ax.plot to produce line plots. It turns out 
that this same function can produce scatter plots as well (Figure ): 

In[2]: x = np.linspace(0, 10, 30) 
y = np.sin(x) 

 
plt.plot(x, y, 'o', color='black'); 

Figure . Scatter plot example 

The third argument in the function call is a character that represents the type of sym‐ bol 

used for the plotting. Just as you can specify options such as '-' and '--' to con‐ trol the line 

style, the marker style has its own set of short string codes. The full list of available 

symbols can be seen in the documentation of plt.plot, or in Matplotlib’s online 

documentation. Most of the possibilities are fairly intuitive, and we’ll show a number of 

the more common ones here (Figure ): 

In[3]: rng = np.random.RandomState(0) 

for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']: 



 

Page 252 of 580  

plt.plot(rng.rand(5), rng.rand(5), marker, 
label="marker='{0}'".format(mark
er)) 

 

plt.legend(numpoints
=1) plt.xlim(0, 1.8); 

Figure. Demonstration of point numbers 

 

For even more possibilities, these character codes can be used together with 

line and color codes to plot points along with a line connecting them (Figure ): 

In[4]: plt.plot(x, y, '-ok'); # line (-), circle marker (o), black (k) 

Figure . Combining line and point markers 

 
Additional keyword arguments to plt.plot specify a wide range of properties of 
the lines and markers (Figure ): 

In[5]: plt.plot(x, y, '-p', color='gray', 
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markersize=15, 
linewidth=4, 
markerfacecolor='white', 
markeredgecolor='gray', 
markeredgewidth=2) 

plt.ylim(-1.2, 1.2); 

 
Figure . Customizing line and point numbers 

 
This type of flexibility in the plt.plot function allows for a wide variety of possible visualization 

options. For a full description of the options available, refer to the plt.plot 

documentation. 

Scatter Plots with plt.scatter 

A second, more powerful method of creating scatter plots is the plt.scatter func‐ tion, 

which can be used very similarly to the plt.plot function (Figure ): 

In[6]: plt.scatter(x, y, marker='o'); 

Figure . A simple scatter plot 
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The primary difference of plt.scatter from plt.plot is that it can be used to create scatter 
plots where the properties of each individual point (size, face color, edge color, etc.) can 
be individually controlled or mapped to data. 

Let’s show this by creating a random scatter plot with points of many colors and sizes. In 

order to better see the overlapping results, we’ll also use the alpha keyword to adjust the 

transparency level  

In[7]: rng = 
np.random.RandomState(0) 
x = rng.randn(100) 

y = rng.randn(100) 
colors = 
rng.rand(100) 

sizes = 1000 * rng.rand(100) 

 
plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, 

cmap='viridis') 

plt.colorbar(); # show color scale 

Figure . Changing size, color, and transparency in scatter points 

Notice that the color argument is automatically mapped to a color scale (shown here by 

the colorbar() command), and the size argument is given in pixels. In this way, the color 

and size of points can be used to convey information in the visualization, in order to 

illustrate multidimensional data. 

For example, we might use the Iris data from Scikit-Learn, where each sample is one of 

three types of flowers that has had the size of its petals and sepals carefully meas‐ ured. 

In[8]: from sklearn.datasets import 
load_iris iris = load_iris() 
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features = iris.data.T 

 
plt.scatter(features[0], features[1], alpha=0.2, 

s=100*features[3], c=iris.target, 
cmap='viridis') 

plt.xlabel(iris.feature_names[0]) 
plt.ylabel(iris.feature_names[1])
; 

 

 
Figure . Using point properties to encode features of the Iris data 

We can see that this scatter plot has given us the ability to simultaneously explore four 

different dimensions of the data: the (x, y) location of each point corresponds to the 

sepal length and width, the size of the point is related to the petal width, and the color is 

related to the particular species of flower. Multicolor and multifeature scatter plots like 

this can be useful for both exploration and presentation of data. 

plot Versus scatter: A Note on Efficiency 

Aside from the different features available in plt.plot and plt.scatter, why might you 

choose to use one over the other? While it doesn’t matter as much for small amounts of 

data, as datasets get larger than a few thousand points, plt.plot can be noticeably more 

efficient than plt.scatter. The reason is that plt.scatter has the capability to render a 

different size and/or color for each point, so the renderer must do the extra work of 
constructing each point individually. In plt.plot, on the other hand, the points are always 
essentially clones of each other, so the work of determin‐ ing the appearance of the 
points is done only once for the entire set of data. For large datasets, the difference 
between these two can lead to vastly different performance, and for this reason, plt.plot 
should be preferred over plt.scatter for large datasets. 
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Visualizing Errors 

For any scientific measurement, accurate accounting for errors is nearly as important, if 

not more important, than accurate reporting of the number itself. For example, imagine 

that I am using some astrophysical observations to estimate the Hubble Con‐ stant, the 

local measurement of the expansion rate of the universe. I know that the current 

literature suggests a value of around 71 (km/s)/Mpc, and I measure a value of 74 

(km/s)/Mpc with my method. Are the values consistent? The only correct answer, given 

this information, is this: there is no way to know. 

Suppose I augment this information with reported uncertainties: the current litera‐ ture 

suggests a value of around 71 ± 2.5 (km/s)/Mpc, and my method has measured a value of 

74 ± 5 (km/s)/Mpc. Now are the values consistent? That is a question that can be 

quantitatively answered. 

In visualization of data and results, showing these errors effectively can make a plot 

convey much more complete information. 

Basic Errorbars 

A basic errorbar can be created with a single Matplotlib function call (Figure 4-27): 

In[1]: %matplotlib inline 

import matplotlib.pyplot as plt 
plt.style.use('seaborn-
whitegrid') import numpy as np 

In[2]: x = np.linspace(0, 10, 50) 

dy = 0.8 

y = np.sin(x) + dy * 

np.random.randn(50) plt.errorbar(x, y, 

yerr=dy, fmt='.k'); 
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Figure . An errorbar example 

In addition to these basic options, the errorbar function has many options to fine- tune 
the outputs. Using these additional options you can easily customize the aesthet‐ ics of 
your errorbar plot. I often find it helpful, especially in crowded plots, to make the 

errorbars lighter than the points themselves  

In[3]: plt.errorbar(x, y, yerr=dy, fmt='o', color='black', 

ecolor='lightgray', elinewidth=3, capsize=0); 

 
Figure. Customizing errorbars 

 
In addition to these options, you can also specify horizontal errorbars (xerr), one- sided 

errorbars, and many other variants. For more information on the options avail‐ able, refer 

to the docstring of plt.errorbar. 

Continuous Errors 

In some situations it is desirable to show errorbars on continuous quantities. Though 
Matplotlib does not have a built-in convenience routine for this type of application, it’s 

relatively easy to combine primitives like plt.plot and plt.fill_between for a useful result. 

Here we’ll perform a simple Gaussian process regression (GPR), using the Scikit-Learn API (see 

“Introducing Scikit-Learn” on page 343 for details). This is a method of fit‐ ting a very 

flexible nonparametric function to data with a continuous measure of the uncertainty. 

We won’t delve into the details of Gaussian process regression at this point, but will focus 

instead on how you might visualize such a continuous error measurement: 

In[4]: from sklearn.gaussian_process import GaussianProcess 
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# define the model and draw some data 

model = lambda x: x * np.sin(x) 
xdata = np.array([1, 3, 5, 6, 8]) 
ydata = model(xdata) 

 
# Compute the Gaussian process fit 

gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, 
thetaU=1E-1, random_start=100) 

gp.fit(xdata[:, np.newaxis], ydata) 

 
xfit = np.linspace(0, 10, 1000) 

yfit, MSE = gp.predict(xfit[:, np.newaxis], 
eval_MSE=True) dyfit = 2 * np.sqrt(MSE) # 2*sigma ~ 
95% confidence region 

We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We could 
pass these to the plt.errorbar function as above, but we don’t really want to plot 1,000 
points with 1,000 errorbars. Instead, we can use the plt.fill_between function with a light 
color to visualize this continuous error: 

In[5]: #  Visualize  the  result 

plt.plot(xdata, ydata, 'or') 
plt.plot(xfit, yfit, '-', color='gray') 

 
plt.fill_between(xfit, yfit - dyfit, yfit + dyfit, 

color='gray', alpha=0.2) 

plt.xlim(0, 10); 
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Figure. Representing continuous uncertainty with filled regions 

Note what we’ve done here with the fill_between function: we pass an x value, then the 
lower y-bound, then the upper y-bound, and the result is that the area between these 
regions is filled. 

The resulting figure gives a very intuitive view into what the Gaussian process regres‐ sion 

algorithm is doing: in regions near a measured data point, the model is strongly 

constrained and this is reflected in the small model errors. In regions far from a measured 

data point, the model is not strongly constrained, and the model errors increase. 

For more information on the options available in plt.fill_between() (and the 
closely related plt.fill() function), see the function docstring or the Matplotlib 
documentation. 

Finally, if this seems a bit too low level for your taste, refer to “Visualization with 

Sea‐ born” , where we discuss the Seaborn package, which has a more stream‐ 

lined API for visualizing this type of continuous errorbar. 

Density and Contour Plots 

Sometimes it is useful to display three-dimensional data in two dimensions using 

contours or color-coded regions. There are three Matplotlib functions that can be helpful 

for this task: plt.contour for contour plots, plt.contourf for filled contour plots, and 

plt.imshow for showing images. This section looks at several examples of using these. We’ll 

start by setting up the notebook for plotting and importing the functions we will use: 

In[1]: %matplotlib inline 

import matplotlib.pyplot as 
plt plt.style.use('seaborn-
white') import numpy as np 

 

Day-02: Visualizing a Three-Dimensional Function 

We’ll start by demonstrating a contour plot using a function z = f x, y , using the 

fol‐ lowing particular choice for f (we’ve seen this before in “Computation on 

Arrays: Broadcasting” on page 63, when we used it as a motivating example for 

array broadcasting): 

In[2]: def f(x, y): 

return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) 

A contour plot can be created with the plt.contour function. It takes three argu‐ ments: a 
grid of x values, a grid of y values, and a grid of z values. The x and y values represent 
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positions on the plot, and the z values will be represented by the contour levels. Perhaps 

the most straightforward way to prepare such data is to use the np.meshgrid function, 
which builds two-dimensional grids from one-dimensional arrays: 

In[3]: x = np.linspace(0, 5, 50) 

y = np.linspace(0, 5, 40) 

 
X, Y = np.meshgrid(x, 
y) Z = f(X, Y) 

Now let’s look at this with a standard line-only contour plot (Figure 4-30): 

In[4]: plt.contour(X, Y, Z, colors='black'); 

A contour plot can be created with the plt.contour function. It takes three argu‐ ments: a 

grid of x values, a grid of y values, and a grid of z values. The x and y values represent 
positions on the plot, and the z values will be represented by the contour levels. Perhaps 
the most straightforward way to prepare such data is to use the np.meshgrid function, 

which builds two-dimensional grids from one-dimensional arrays: 

In[3]: x = np.linspace(0, 5, 50) 

y = np.linspace(0, 5, 40) 

 
X, Y = np.meshgrid(x, 
y) Z = f(X, Y) 

Now let’s look at this with a standard line-only contour plot (Figure 4-30): 

In[4]: plt.contour(X, Y, Z, colors='black'); 

 
Figure . Visualizing three-dimensional data with contours 

Notice that by default when a single color is used, negative values are represented by 
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dashed lines, and positive values by solid lines. Alternatively, you can color-code the lines 

by specifying a colormap with the cmap argument. Here, we’ll also specify that we want 

more lines to be drawn—20 equally spaced intervals within the data range (Figure ): 

In[5]: plt.contour(X, Y, Z, 20, cmap='RdGy'); 

Figure . Visualizing three-dimensional data with colored contours 

 
Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for 

centered data. Matplotlib has a wide range of colormaps available, which you can easily 

browse in IPython by doing a tab completion on the plt.cm module: 

plt.cm.<TAB> 

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We 

can change this by switching to a filled contour plot using the plt.contourf() function 

(notice the f at the end), which uses largely the same syntax as plt.con tour(). 

Additionally, we’ll add a plt.colorbar() command, which automatically creates an 
additional axis with labeled color information for the plot (Figure ): 

In[6]: plt.contourf(X, Y, Z, 20, 
cmap='RdGy') plt.colorbar(); 
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Figure. Visualizing three-dimensional data with filled contours 

The colorbar makes it clear that the black regions are “peaks,” while the red regions are 

“valleys.” 

One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps are 

discrete rather than continuous, which is not always what is desired. You could remedy 

this by setting the number of contours to a very high number, but this results in a rather 

inefficient plot: Matplotlib must render a new polygon for each step in the level. A better 

way to handle this is to use the plt.imshow() function, which inter‐ prets a two-

dimensional grid of data as an image. 

Figure . shows the result of the following code: 

In[7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower', 

cmap='RdGy'
) plt.colorbar() 
plt.axis(aspect='image')
; 

There are a few potential gotchas with imshow(), however: 

• plt.imshow() doesn’t accept an x and y grid, so you must manually specify the 

extent [xmin, xmax, ymin, ymax] of the image on the plot. 

• plt.imshow() by default follows the standard image array definition where 
the origin is in the upper left, not in the lower left as in most contour 
plots. This must be changed when showing gridded data. 

• plt.imshow() will automatically adjust the axis aspect ratio to match the input 
data; you can change this by setting, for example, plt.axis(aspect='image') to 
make x and y units match. 
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Figure 4-33. Representing three-dimensional data as an image 

Finally, it can sometimes be useful to combine contour plots and image plots. For 

example, to create the effect shown in Figure , we’ll use a partially transparent 

background image (with transparency set via the alpha parameter) and over-plot 

contours with labels on the contours themselves (using the plt.clabel() function): 

In[8]: contours = plt.contour(X, Y, Z, 3, colors='black') 
plt.clabel(contours, inline=True, fontsize=8) 

 
plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower', 

cmap='RdGy', alpha=0.5) 

plt.colorbar(); 

Figure 4-34. Labeled contours on top of an image 

 
The combination of these three functions—plt.contour, plt.contourf, and plt.imshow—
gives nearly limitless possibilities for displaying this sort of three- dimensional data 
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within a two-dimensional plot. For more information on theoptions available in these 
functions, refer to their docstrings. If you are interested in three-dimensional 
visualizations of this type of data, see “Three-Dimensional Plotting in Matplotlib” . 

Histograms, Binnings, and Density 

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a 
preview of Matplotlib’s histogram function (see “Comparisons, Masks, and Boolean 

Logic” ), which creates a basic histogram in one line, once the normal boilerplate imports 

are done (Figure ): 

In[1]: %matplotlib inline 

import numpy as np 

import matplotlib.pyplot as plt 

plt.style.use('seaborn-white') 

 
data = 

np.random.randn(1000) In[2]: 

plt.hist(data); 

 
Figure . A simple histogram 

 
The hist() function has many options to tune both the calculation and the 
display; here’s an example of a more customized histogram . 

In[3]: plt.hist(data, bins=30, normed=True, alpha=0.5, 
histtype='stepfilled', color='steelblue', 
edgecolor='none'); 
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Figure . A customized histogram 

 
The plt.hist docstring has more information on other customization options avail‐ able. I 
find this combination of histtype='stepfilled' along with some transpar‐ ency alpha to be 
very useful when comparing histograms of several distributions: 

In[4]: x1 = np.random.normal(0, 0.8, 1000) 

x2 = np.random.normal(-2, 1, 1000) 

x3 = np.random.normal(3, 2, 1000) 

kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, 

bins=40) plt.hist(x1, **kwargs) 

plt.hist(x2, **kwargs) 
plt.hist(x3, **kwargs); 

Figure  Over-plotting multiple histograms 

If you would like to simply compute the histogram (that is, count the 

number of points in a given bin) and not display it, the np.histogram() function is 

available: 
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In[5]: counts, bin_edges = np.histogram(data, bins=5) 

print(counts) 

[ 12 190 468 301 

29] 

Day-03: Two-Dimensional Histograms and Binnings 

Just as we create histograms in one dimension by dividing the number line into bins, we 

can also create histograms in two dimensions by dividing points among two- dimensional 

bins. We’ll take a brief look at several ways to do this here. We’ll start by defining some 

data—an x and y array drawn from a multivariate Gaussian distribution: 

In[6]: mean = [0, 0] 

cov = [[1, 1], [1, 2]] 

x, y = np.random.multivariate_normal(mean, cov, 10000).T 

 

plt.hist2d: Two-dimensional histogram 

One straightforward way to plot a two-dimensional histogram is to use Matplotlib’s 

plt.hist2d function (Figure ): 

In[12]: plt.hist2d(x, y, bins=30, 
cmap='Blues') cb = plt.colorbar() 
cb.set_label('counts in bin') 

Figure . A two-dimensional histogram with plt.hist2d 

 
Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot 

and the binning, which are nicely outlined in the function docstring. Further, just 
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as plt.hist has a counterpart in np.histogram, plt.hist2d has a counterpart in 

np.histogram2d, which can be used as follows: 

In[8]: counts, xedges, yedges = np.histogram2d(x, y, bins=30) 

For the generalization of this histogram binning in dimensions higher than two, see the 

np.histogramdd function. 

plt.hexbin: Hexagonal binnings 

The two-dimensional histogram creates a tessellation of squares across the axes. Another 

natural shape for such a tessellation is the regular hexagon. For this purpose, Matplotlib 

provides the plt.hexbin routine, which represents a two-dimensional dataset binned 

within a grid of hexagons. 

In[9]: plt.hexbin(x, y, gridsize=30, cmap='Blues') 
cb = plt.colorbar(label='count in bin') 

Figure 4-39. A two-dimensional histogram with plt.hexbin 

 
plt.hexbin has a number of interesting options, including the ability to specify weights for 
each point, and to change the output in each bin to any NumPy aggregate (mean of 
weights, standard deviation of weights, etc.). 

Kernel density estimation 

Another common method of evaluating densities in multiple dimensions is kernel density 

estimation (KDE). We’ll simply mention that KDE can be thought of as a way to “smear 

out” the points in space and add up the result to obtain a smooth function. One 

extremely quick and simple KDE implementation exists in the scipy.stats package. Here is 

a quick example of using the KDE on this data: 

In[10]: from scipy.stats import gaussian_kde 

 
# fit an array of size [Ndim, Nsamples] 
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data = np.vstack([x, y]) 
kde = 
gaussian_kde(data) 

 
# evaluate on a regular grid 

xgrid = np.linspace(-3.5, 3.5, 40) 

ygrid = np.linspace(-6, 6, 40) 

Xgrid, Ygrid = np.meshgrid(xgrid, ygrid) 

Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()])) 

# Plot the result as an image 

plt.imshow(Z.reshape(Xgrid.shape), 

origin='lower', 
aspect='auto', extent=[-3.5, 
3.5, -6, 6], 

cmap='Blue
s')         cb = 

plt.colorbar() 
cb.set_label("density") 

Figure . A kernel density representation of a distribution 

KDE has a smoothing length that effectively slides the knob between detail and 

smoothness (one example of the ubiquitous bias–variance trade-off). The literature on 

choosing an appropriate smoothing length is vast: gaussian_kde uses a rule of thumb to 

attempt to find a nearly optimal smoothing length for the input data. 

Other KDE implementations are available within the SciPy ecosystem, each with its own 

various strengths and weaknesses; see, for example, sklearn.neighbors.Kernel Density and 
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statsmodels.nonparametric.kernel_density.KDEMultivariate. For visualizations based on 

KDE, using Matplotlib tends to be overly verbose. The Sea‐ born library, discussed in 

“Visualization with Seaborn” on page 311, provides a much more terse API for creating 

KDE-based visualizations. 

Customizing Plot Legends 

Plot legends give meaning to a visualization, assigning labels to the various plot ele‐ 
ments. We previously saw how to create a simple legend; here we’ll take a look at cus‐ 

tomizing the placement and aesthetics of the legend in Matplotlib. 

The simplest legend can be created with the plt.legend() command, which auto‐ 
matically creates a legend for any labeled plot elements (Figure 4-41): 

In[1]: import matplotlib.pyplot as plt 

plt.style.use('classic') 

In[2]: %matplotlib inline 

import numpy as np 

In[3]: x = np.linspace(0, 10, 1000) 
fig, ax = plt.subplots() 

ax.plot(x, np.sin(x), '-b', label='Sine') 

ax.plot(x, np.cos(x), '--r', label='Cosine') 
ax.axis('equal') 

leg = ax.legend(); 

Figure. A default plot legend 

But there are many ways we might want to customize such a legend. For example, we can 

specify the location and turn off the frame . 
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In[4]: ax.legend(loc='upper left', 
frameon=False) fig 

Figure . A customized plot legend 

 
We can use the ncol command to specify the number of columns in the 
legend  

In[5]: ax.legend(frameon=False, loc='lower center', 
ncol=2) fig 

 
Figure . A two-column plot legend 

 
We can use a rounded box (fancybox) or add a shadow, change the transparency 
(alpha value) of the frame, or change the padding around the text. 
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In[6]: ax.legend(fancybox=True, framealpha=1, shadow=True, 
borderpad=1) fig 

Figure . A fancybox plot legend 

 
For more information on available legend options, see the plt.legend docstring. 

Choosing Elements for the Legend 

As we’ve already seen, the legend includes all labeled elements by default. If this is not 
what is desired, we can fine-tune which elements and labels appear in the legend by 

using the objects returned by plot commands. The plt.plot() command is able to create 

multiple lines at once, and returns a list of created line instances. Passing any of these to 

plt.legend() will tell it which to identify, along with the labels we’d like to specify. 

In[7]: y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5)) 
lines = plt.plot(x, y) 

# lines is a list of plt.Line2D instances 

plt.legend(lines[:2], ['first', 'second']); 

Figure . Customization of legend elements 

I generally find in practice that it is clearer to use the first method, applying labels to the 
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plot elements you’d like to show on the legend. 

In[8]: plt.plot(x, y[:, 0], label='first') 

plt.plot(x, y[:, 1], label='second') 

plt.plot(x, y[:, 2:]) 
plt.legend(framealpha=1, 

frameon=True); 

Figure 4-46. Alternative method of customizing legend elements 

 
Notice that by default, the legend ignores all elements without a label attribute set. 

Legend for Size of Points 

Sometimes the legend defaults are not sufficient for the given visualization. For exam‐ ple, 

perhaps you’re using the size of points to mark certain features of the data, and want to 

create a legend reflecting this. Here is an example where we’ll use the size of points to 

indicate populations of California cities. We’d like a legend that specifies the 

scale of the sizes of the points, and we’ll accomplish this by plotting some labeled data with 

no entries. 

In[9]: import pandas as pd 

cities = pd.read_csv('data/california_cities.csv') 

 
# Extract the data we're interested in 

lat, lon = cities['latd'], cities['longd'] 

population, area = cities['population_total'], cities['area_total_km2'] 

 
# Scatter the points, using size and color but no label 

plt.scatter(lon, lat, label=None, 
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c=np.log10(population), 
cmap='viridis', s=area, linewidth=0, 
alpha=0.5) 

plt.axis(aspect='equal') 
plt.xlabel('longitude') plt.ylabel('latitude') 
plt.colorbar(label='log$_{10}$(population
)') plt.clim(3, 7) 

 
# Here we create a legend: 

# we'll plot empty lists with the desired size and label 

for area in [100, 300, 500]: 

plt.scatter([], [], c='k', alpha=0.3, s=area, 
label=str(area) + ' km$^2$') 

plt.legend(scatterpoints=1, 
frameon=False, labelspacing=1, 
title='City Area') 

 
plt.title('California Cities: Area and Population'); 

Figure . Location, geographic size, and population of California cities 

The legend will always reference some object that is on the plot, so if we’d like to dis‐ play 

a particular shape we need to plot it. In this case, the objects we want (gray cir‐ cles) are 

not on the plot, so we fake them by plotting empty lists. Notice too that the legend only 

lists plot elements that have a label specified. 

By plotting empty lists, we create labeled plot objects that are picked up by the legend, and 

now our legend tells us some useful information. This strategy can be useful for creating 
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more sophisticated visualizations. 

Finally, note that for geographic data like this, it would be clearer if we could show state 

boundaries or other map-specific elements. For this, an excellent choice of tool is 

Matplotlib’s Basemap add-on toolkit. 

Multiple Legends 

Sometimes when designing a plot you’d like to add multiple legends to the same axes. 

Unfortunately, Matplotlib does not make this easy: via the standard legend interface, it is 

only possible to create a single legend for the entire plot. If you try to create a second 

legend using plt.legend() or ax.legend(), it will simply override the first one. We can work 

around this by creating a new legend artist from scratch, and then using the lower-level 

ax.add_artist() method to manually add the second artist to the plot (Figure ): 

In[10]: fig, ax = plt.subplots() 

 
lines = [] 

styles = ['-', '--', '-.', ':'] 

x = np.linspace(0, 10, 1000) 

 
for i in range(4): 

lines += ax.plot(x, np.sin(x - i * np.pi / 2), 

styles[i], color='black') 

ax.axis('equal') 

 
# specify the lines and labels of the first legend 

ax.legend(lines[:2], ['line A', 'line B'], 
loc='upper right', 
frameon=False) 

 
# Create the second legend and add the artist manually. 

from matplotlib.legend import Legend 

leg = Legend(ax, lines[2:], ['line C', 'line D'], 
loc='lower right', frameon=False) 

ax.add_artist(leg); 
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Figure . A split plot legend 

This is a peek into the low-level artist objects that compose any Matplotlib plot. If you 

examine the source code of ax.legend() (recall that you can do this within the IPy‐ thon 

notebook using ax.legend??) you’ll see that the function simply consists of some logic to 
create a suitable Legend artist, which is then saved in the legend_ attribute and added to 

the figure when the plot is drawn. 

Customizing Colorbars 

Plot legends identify discrete labels of discrete points. For continuous labels based on the 

color of points, lines, or regions, a labeled colorbar can be a great tool. In Mat‐ plotlib, a 

colorbar is a separate axes that can provide a key for the meaning of colors in a plot. 

Because the book is printed in black and white, this section has an accompa‐ nying online 

appendix where you can view the figures in full color. We’ll start by setting up the note‐ 

book for plotting and importing the functions we will use: 

In[1]: import matplotlib.pyplot as plt 

plt.style.use('classic') 

In[2]: %matplotlib inline 

import numpy as np 

As we have seen several times throughout this section, the simplest colorbar can be 

created with the plt.colorbar function. 

In[3]: x = np.linspace(0, 10, 1000) 

I = np.sin(x) * np.cos(x[:, np.newaxis]) 

 
plt.imshow(I) 
plt.colorbar(); 
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Figure . A simple colorbar legend 

We’ll now discuss a few ideas for customizing these colorbars and using them effec‐ 

tively in various situations. 

Customizing Colorbars 

We can specify the colormap using the cmap argument to the plotting function 
that is creating the visualization. 

In[4]: plt.imshow(I, cmap='gray'); 

Figure . A grayscale colormap 

 
All the available colormaps are in the plt.cm namespace; using IPython’s tab- completion 
feature will give you a full list of built-in possibilities: 

plt.cm.<TAB> 

But being able to choose a colormap is just the first step: more important is how to 

decide among the possibilities! The choice turns out to be much more subtle than you 

might initially expect. 
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Choosing the colormap 

A full treatment of color choice within visualization is beyond the scope of this book, but 

for entertaining reading on this subject and others, see the article “Ten Simple Rules for 

Better Figures”. Matplotlib’s online documentation also has an interesting discussion of 

colormap choice. 

Broadly, you should be aware of three different categories of colormaps: 

Sequential colormaps 

These consist of one continuous sequence of colors (e.g., binary or viridis). 

Divergent colormaps 

These usually contain two distinct colors, which show positive and negative 

devi‐ ations from a mean (e.g., RdBu or PuOr). 

Qualitative colormaps 

These mix colors with no particular sequence (e.g., rainbow or jet). 

The jet colormap, which was the default in Matplotlib prior to version 2.0, is an example 

of a qualitative colormap. Its status as the default was quite unfortunate, because 
qualitative maps are often a poor choice for representing quantitative data. Among the 

problems is the fact that qualitative maps usually do not display any uni‐ form 

progression in brightness as the scale increases. 

We can see this by converting the jet colorbar into black and white (Figure ): 

In[5]: 

from matplotlib.colors import LinearSegmentedColormap 

 
def grayscale_cmap(cmap): 

"""Return a grayscale version of the given colormap""" 

cmap = 
plt.cm.get_cmap(cmap) colors 
= cmap(np.arange(cmap.N)) 

 
# convert RGBA to perceived grayscale 
luminance # cf.  
http://alienryderflex.com/hsp.html 
RGB_weight = [0.299, 0.587, 0.114] 
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luminance = np.sqrt(np.dot(colors[:, :3] ** 2, 
RGB_weight)) colors[:, :3] = luminance[:, np.newaxis] 

 
return LinearSegmentedColormap.from_list(cmap.name + "_gray", colors, 

cmap.N) 

def view_colormap(cmap): 

"""Plot a colormap with its grayscale equivalent""" 

cmap = 
plt.cm.get_cmap(cmap) colors 
= cmap(np.arange(cmap.N)) 

cmap = grayscale_cmap(cmap) 
grayscale = 
cmap(np.arange(cmap.N)) 

fig, ax = plt.subplots(2, figsize=(6, 2), 

subplot_kw=dict(xticks=[], 
yticks=[])) ax[0].imshow([colors], extent=[0, 10, 0, 1]) 

ax[1].imshow([grayscale], extent=[0, 10, 0, 1]) 

In[6]: view_colormap('jet') 

Figure . The jet colormap and its uneven luminance scale 

Notice the bright stripes in the grayscale image. Even in full color, this uneven bright‐ ness 

means that the eye will be drawn to certain portions of the color range, which will 

potentially emphasize unimportant parts of the dataset. It’s better to use a color‐ map 

such as viridis (the default as of Matplotlib 2.0), which is specifically construc‐ ted to have 

an even brightness variation across the range. Thus, it not only plays well with our color 

perception, but also will translate well to grayscale printing. 
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In[7]: view_colormap('viridis') 

Figure . The viridis colormap and its even luminance scale 

If you favor rainbow schemes, another good option for continuous data is the 

cubehelix colormap. 

In[8]: view_colormap('cubehelix') 

Figure. The cubehelix colormap and its luminance 

For other situations, such as showing positive and negative deviations from 

some mean, dual-color colorbars such as RdBu (short for Red-Blue) can be useful. 

However, 

as you can see in Figure , it’s important to note that the positive-negative 

information will be lost upon translation to grayscale! 

In[9]: view_colormap('RdBu') 

Figure . The RdBu (Red-Blue) colormap and its luminance 

We’ll see examples of using some of these color maps as we continue. 

There are a large number of colormaps available in Matplotlib; to see a list of them, you 

can use IPython to explore the plt.cm submodule. For a more principled approach to 

colors in Python, you can refer to the tools and documentation within the Seaborn 

library (see “Visualization with Seaborn” ). 
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Color limits and extensions 

Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply 

an instance of plt.Axes, so all of the axes and tick formatting tricks we’ve learned are 

applicable. The colorbar has some interesting flexibility; for example, we can narrow the 

color limits and indicate the out-of-bounds values with a triangular arrow at the top and 

bottom by setting the extend property. This might come in handy, for example, if you’re 

displaying an image that is subject to noise (Figure ): 

In[10]: # make noise in 1% of the image pixels 

speckles = (np.random.random(I.shape) < 0.01) 

I[speckles] = np.random.normal(0, 3, 

np.count_nonzero(speckles)) plt.figure(figsize=(10, 3.5)) 

plt.subplot(1, 2, 1) 
plt.imshow(I, 
cmap='RdBu') 
plt.colorbar() 

 
plt.subplot(1, 2, 2) 
plt.imshow(I, 
cmap='RdBu') 
plt.colorbar(extend='bot
h') plt.clim(-1, 1); 
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Figure . Specifying colormap extensions 

Notice that in the left panel, the default color limits respond to the noisy pixels, and the 

range of the noise completely washes out the pattern we are interested in. In the right 

panel, we manually set the color limits, and add extensions to indicate values that are 

above or below those limits. The result is a much more useful visualization of our data. 

Discrete colorbars 

Colormaps are by default continuous, but sometimes you’d like to represent discrete 

values. The easiest way to do this is to use the plt.cm.get_cmap() function, and pass the 

name of a suitable colormap along with the number of desired bins (Figure 4-56): 

In[11]: plt.imshow(I, cmap=plt.cm.get_cmap('Blues', 
6)) plt.colorbar() 

plt.clim(-1, 1); 

Figure . A discretized colormap 

The discrete version of a colormap can be used just like any other colormap. 



 

Page 282 of 580  

Handwritten Digits 

For an example of where this might be useful, let’s look at an interesting visualization of 

some handwritten digits data. This data is included in Scikit-Learn, and consists of nearly 

2,000 8×8 thumbnails showing various handwritten digits. 

For now, let’s start by downloading the digits data and visualizing several of the 

exam‐ ple images with plt.imshow() (Figure 4-57): 

In[12]: # load images of the digits 0 through 5 and visualize several of them 

from sklearn.datasets import 
load_digits digits = 
load_digits(n_class=6) 

 
fig, ax = plt.subplots(8, 8, figsize=(6, 6)) 

for i, axi in enumerate(ax.flat): 
axi.imshow(digits.images[i], 

cmap='binary') axi.set(xticks=[], yticks=[]) 

Figure . Sample of handwritten digit data 

Because each digit is defined by the hue of its 64 pixels, we can consider each digit to be a 

point lying in 64-dimensional space: each dimension represents the brightness of one pixel. 

But visualizing relationships in such high-dimensional spaces can be extremely difficult. One 

way to approach this is to use a dimensionality reduction technique such as manifold 

learning to reduce the dimensionality of the data while maintaining the relationships of 

interest. Dimensionality reduction is an example of unsupervised machine learning.  
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Deferring the discussion of these details, let’s take a look at a two-dimensional 

mani‐ fold learning projection of this digits data. 

 

In[13]: # project the digits into 2 dimensions using IsoMap 

from sklearn.manifold import 
Isomap iso = 
Isomap(n_components=2) 

projection = iso.fit_transform(digits.data) 

We’ll use our discrete colormap to view the results, setting the ticks and clim to 
improve the aesthetics of the resulting colorbar. 

In[14]: # plot the results 

plt.scatter(projection[:, 0], projection[:, 1], lw=0.1, 

c=digits.target, cmap=plt.cm.get_cmap('cubehelix', 
6)) plt.colorbar(ticks=range(6), label='digit value') 

plt.clim(-0.5, 5.5) 

Figure. Manifold embedding of handwritten digit pixels 

The projection also gives us some interesting insights on the relationships within the 

dataset: for example, the ranges of 5 and 3 nearly overlap in this projection, indicating 

that some handwritten fives and threes are difficult to distinguish, and therefore 

more likely to be confused by an automated classification algorithm. Other values, like 0 

and 1, are more distantly separated, and therefore much less likely to be con‐ fused. This 

observation agrees with our intuition, because 5 and 3 look much more similar than do 0 

and 1. 

Multiple Subplots 

Sometimes it is helpful to compare different views of data side by side. To this end, 
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Matplotlib has the concept of subplots: groups of smaller axes that can exist together 

within a single figure. These subplots might be insets, grids of plots, or other more 

complicated layouts. In this section, we’ll explore four routines for creating subplots in 

Matplotlib. We’ll start by setting up the notebook for plotting and importing the 

functions we will use: 

 

In[1]: %matplotlib inline 

import matplotlib.pyplot as 
plt plt.style.use('seaborn-
white') import numpy as np 

 

plt.axes: Subplots by Hand 

The most basic method of creating an axes is to use the plt.axes function. As we’ve seen 
previously, by default this creates a standard axes object that fills the entire fig‐ ure. 

plt.axes also takes an optional argument that is a list of four numbers in the figure 

coordinate system. These numbers represent [bottom, left, width, height] in the 

figure coordinate system, which ranges from 0 at the bottom left of the figure to 1 at the 
top right of the figure. 

For example, we might create an inset axes at the top-right corner of another axes by 

setting the x and y position to 0.65 (that is, starting at 65% of the width and 65% of the 

height of the figure) and the x and y extents to 0.2 (that is, the size of the axes is 20% of 

the width and 20% of the height of the figure). Figure 4-59 shows the result of this code: 

In[2]: ax1 = plt.axes() # standard axes 

ax2 = plt.axes([0.65, 0.65, 0.2, 0.2]) 

Figure . Example of an inset axes 

The equivalent   of   this   command   within   the   object-oriented   interface   is 
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fig.add_axes(). Let’s use this to create two vertically stacked axes (Figure 4-60): 

In[3]: fig = plt.figure() 

ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4], 

xticklabels=[], ylim=(-1.2, 1.2)) 

ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4], 

ylim=(-1.2, 1.2)) 

 
x = np.linspace(0, 10) 
ax1.plot(np.sin(x)) 

ax2.plot(np.cos(x)); 

 
Figure . Vertically stacked axes example 

We now have two axes (the top with no tick labels) that are just touching: the bottom of 

the upper panel (at position 0.5) matches the top of the lower panel (at position 0.1 

+ 0.4). 

plt.subplot: Simple Grids of Subplots 

Aligned columns or rows of subplots are a common enough need that Matplotlib has 

several convenience routines that make them easy to create. The lowest level of these is 

plt.subplot(), which creates a single subplot within a grid. As you can see, this command 

takes three integer arguments—the number of rows, the number of col‐ umns, and the 

index of the plot to be created in this scheme, which runs from the upper left to the 

bottom right . 

In[4]: for i in range(1, 7): 

plt.subplot(2, 3, i) 
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plt.text(0.5, 0.5, str((2, 3, i)), 
fontsize=18, 

ha='center') 

Figure. A plt.subplot() example 

The command plt.subplots_adjust can be used to adjust the spacing between these 

plots. The following cod uses the equivalent object-oriented command, fig.add_subplot(): 

In[5]: fig = plt.figure() 
fig.subplots_adjust(hspace=0.4, 
wspace=0.4) for i in range(1, 7): 

ax = fig.add_subplot(2, 3, i) 
ax.text(0.5, 0.5, str((2, 3, i)), 

fontsize=18, ha='center') 

Figure  plt.subplot() with adjusted margins 

 
We’ve used the hspace and wspace arguments of plt.subplots_adjust, which spec‐ ify the 
spacing along the height and width of the figure, in units of the subplot size (in this case, 
the space is 40% of the subplot width and height). 
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plt.subplots: The Whole Grid in One Go 

The approach just described can become quite tedious when you’re creating a large grid 

of subplots, especially if you’d like to hide the x- and y-axis labels on the inner plots. For 

this purpose, plt.subplots() is the easier tool to use (note the s at the end of subplots). 

Rather than creating a single subplot, this function creates a full grid of subplots in a 

single line, returning them in a NumPy array. The arguments are the number of rows and 

number of columns, along with optional keywords sharex and sharey, which allow you to 

specify the relationships between different axes. 

Here we’ll create a 2×3 grid of subplots, where all axes in the same row share their y-axis 

scale, and all axes in the same column share their x-axis scale (Figure ): 

In[6]: fig, ax = plt.subplots(2, 3, sharex='col', sharey='row') 

 

 
Figure .Shared x and y axis in plt.subplots() 

 
Note that by specifying sharex and sharey, we’ve automatically removed inner labels on the 
grid to make the plot cleaner. The resulting grid of axes instances is returned within a 
NumPy array, allowing for convenient specification of the desired axes using standard 
array indexing notation. 

In[7]: # axes are in a two-dimensional array, indexed by [row, col] 

for i in range(2): 

for j in range(3): 

ax[i, j].text(0.5, 0.5, str((i, j)), 

fontsize=18, ha='center') 
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fig 

Figure . Identifying plots in a subplot grid 

 
In comparison to plt.subplot(), plt.subplots() is more consistent with Python’s 

conventional 0-based indexing. 

plt.GridSpec: More Complicated Arrangements 

To go beyond a regular grid to subplots that span multiple rows and columns, 

plt.GridSpec() is the best tool. The plt.GridSpec() object does not create a plot by 

itself; it is simply a convenient interface that is recognized by the plt.subplot() command. 
For example, a gridspec for a grid of two rows and three columns with some specified 
width and height space looks like this: 

In[8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3) 

From this we can specify subplot locations and extents using the familiar Python 

slic‐ ing syntax (Figure 4-65): 

In[9]: plt.subplot(grid[0, 0]) 

plt.subplot(grid[0, 1:]) 

plt.subplot(grid[1, :2]) 
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plt.subplot(grid[1, 2]); 

Figure . Irregular subplots with plt.GridSpec 

This type of flexible grid alignment has a wide range of uses. I most often use it 

when creating multi-axes histogram plots like the one shown here (Figure 4-66): 

In[10]: # Create some normally distributed data 

mean = [0, 0] 

cov = [[1, 1], [1, 2]] 

x, y = np.random.multivariate_normal(mean, cov, 3000).T 

 
# Set up the axes with gridspec 

fig = plt.figure(figsize=(6, 6)) 

grid = plt.GridSpec(4, 4, hspace=0.2, 
wspace=0.2) main_ax = fig.add_subplot(grid[:-
1, 1:]) 

y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], 
sharey=main_ax) x_hist = fig.add_subplot(grid[-1, 1:], 
yticklabels=[], sharex=main_ax) 

 
# scatter points on the main axes 

main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2) 

 
# histogram on the attached axes 

x_hist.hist(x, 40, histtype='stepfilled', 
orientation='vertical', color='gray') 

x_hist.invert_yaxis() 
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y_hist.hist(y, 40, histtype='stepfilled', 
orientation='horizontal', color='gray') 

y_hist.invert_xaxis() 

Figure 4-66. Visualizing multidimensional distributions with plt.GridSpec 

This type of distribution plotted alongside its margins is common enough that it has its 

own plotting API in the Seaborn package; see “Visualization with Seaborn” for more 

details. 

Day-04: Text and Annotation 

Creating a good visualization involves guiding the reader so that the figure tells a story. In 

some cases, this story can be told in an entirely visual manner, without the need for 

added text, but in others, small textual cues and labels are necessary. Perhaps the most 

basic types of annotations you will use are axes labels and titles, but the options go 

beyond this. Let’s take a look at some data and how we might visualize and annotate it to 

help convey interesting information. We’ll start by setting up the note‐ book for plotting 

and importing the functions we will use: 

In[1]: %matplotlib inline 

import matplotlib.pyplot as plt 
import matplotlib as mpl 
plt.style.use('seaborn-
whitegrid') import numpy as np 

import pandas as pd 
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Example: Effect of Holidays on US Births 

Let’s return to some data we worked with earlier in “Example: Birthrate Data” on 

page 174, where we generated a plot of average births over the course of the 

calendar year; as already mentioned, this data can be downloaded at 

https://raw.githubusercon tent.com/jakevdp/data-CDCbirths/master/births.csv. 

We’ll start with the same cleaning procedure we used there, and plot the results 

(Figure 4-67): 

In[2]: 

births = pd.read_csv('births.csv') 

 
quartiles = np.percentile(births['births'], [25, 50, 75]) mu, 
sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0]) 

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') 

births['day'] = births['day'].astype(int) 

births.index = pd.to_datetime(10000 * 

births.year + 

100 * births.month + 
births.day, 
format='%Y%m%d') 

births_by_date = births.pivot_table('births', 

[births.index.month, 
births.index.day]) births_by_date.index = [pd.datetime(2012, month, 
day) 

for (month, day) in births_by_date.index]  



 

Page 292 of 580  

In[3]: fig, ax = plt.subplots(figsize=(12, 4)) 
births_by_date.plot(ax=ax); 

Figure . Average daily births by date 

When we’re communicating data like this, it is often useful to annotate certain fea‐ tures 

of the plot to draw the reader’s attention. This can be done manually with the 

plt.text/ax.text command, which will place text at a particular x/y value: 

In[4]: fig, ax = plt.subplots(figsize=(12, 4)) 
births_by_date.plot(ax=ax) 

 
# Add labels to the plot 

style = dict(size=10, color='gray') 

 
ax.text('2012-1-1', 3950, "New Year's Day", **style) 

ax.text('2012-7-4', 4250, "Independence Day", ha='center', 
**style) ax.text('2012-9-4', 4850, "Labor Day", ha='center', 
**style) ax.text('2012-10-31', 4600, "Halloween", ha='right', 
**style) ax.text('2012-11-25', 4450, "Thanksgiving", 
ha='center', **style) ax.text('2012-12-25', 3850, "Christmas ", 
ha='right', **style) 

 
# Label the axes 

ax.set(title='USA births by day of year (1969-1988)', 
ylabel='average daily births') 
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# Format the x axis with centered month labels 
ax.xaxis.set_major_locator(mpl.dates.MonthLocator()) 
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymont
hday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter()) 

ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')
); 

Figure . Annotated average daily births by date 

 
The ax.text method takes an x position, a y position, a string, and then optional 
key‐ words specifying the color, size, style, alignment, and other properties of the 

text. Here we used ha='right' and ha='center', where ha is short for horizonal 
align‐ ment. See the docstring of plt.text() and of mpl.text.Text() for more 

information on available options. 

Transforms and Text Position 

In the previous example, we anchored our text annotations to data locations. Some‐ 

times it’s preferable to anchor the text to a position on the axes or figure, independent of 

the data. In Matplotlib, we do this by modifying the transform. 

Any graphics display framework needs some scheme for translating between coordi‐ nate 

systems. For example, a data point at x, y = 1, 1 needs to somehow be repre‐ sented at a 

certain location on the figure, which in turn needs to be represented in pixels on the 

screen. Mathematically, such coordinate transformations are relatively straightforward, 

and Matplotlib has a well-developed set of tools that it uses inter‐ nally to perform them 

(the tools can be explored in the matplotlib.transforms sub‐ module). 

The average user rarely needs to worry about the details of these transforms, 

but it is helpful knowledge to have when considering the placement of text on a 

figure. There are three predefined transforms that can be useful in this situation: 
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ax.transData 

Transform associated with data coordinates 

ax.transAxes 

Transform associated with the axes (in units of axes dimensions) 

fig.transFigure 

Transform associated with the figure (in units of figure dimensions) 

Here let’s look at an example of drawing text at various locations using these 

trans‐ forms (Figure ): 

In[5]: fig, ax = plt.subplots(facecolor='lightgray') 
ax.axis([0, 10, 0, 10]) 

 
# transform=ax.transData is the default, but we'll specify it anyway 

ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData) 

ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes) 

ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure); 

Figure . Comparing Matplotlib’s coordinate systems 

Note that by default, the text is aligned above and to the left of the specified coordi‐ 

nates; here the “.” at the beginning of each string will approximately mark the given 

coordinate location. 

The transData coordinates give the usual data coordinates associated with the x- and y-
axis labels. The transAxes coordinates give the location from the bottom-left cor‐ ner of 

the axes (here the white box) as a fraction of the axes size. The transFigure coordinates 
are similar, but specify the position from the bottom left of the figure (here the gray box) 
as a fraction of the figure size. 
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Notice now that if we change the axes limits, it is only the transData coordinates that will 
be affected, while the others remain stationary . 

In[6]: ax.set_xlim(0, 2) 

ax.set_ylim(-6, 6) 
fig 

Figure . Comparing Matplotlib’s coordinate systems 

You can see this behavior more clearly by changing the axes limits interactively; if 
you are executing this code in a notebook, you can make that happen by 
changing %mat plotlib inline to %matplotlib notebook and using each plot’s 

menu to interact with the plot. 

Arrows and Annotation 

Along with tick marks and text, another useful annotation mark is the simple arrow. 

Drawing arrows in Matplotlib is often much harder than you might hope. While 

there is a plt.arrow() function available, I wouldn’t suggest using it; the arrows it creates are 

SVG objects that will be subject to the varying aspect ratio of your plots, and the result is 

rarely what the user intended. Instead, I’d suggest using the plt.anno tate() function. This 

function creates some text and an arrow, and the arrows can be very flexibly specified. 

Here we’ll use annotate with several of its options: 

In[7]: %matplotlib inline 

 
fig, ax = plt.subplots() 

 
x = np.linspace(0, 20, 
1000) ax.plot(x, np.cos(x)) 

ax.axis('equal') 
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ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 

4), arrowprops=dict(facecolor='black', 
shrink=0.05)) 

 
ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -

6), arrowprops=dict(arrowstyle="->", 

connectionstyle="angle3,angleA=0,angleB=-90")); 

Figure .Annotation examples 

 
The arrow style is controlled through the arrowprops dictionary, which has numer‐ ous 
options available. These options are fairly well documented in Matplotlib’s online 

documentation, so rather than repeating them here I’ll quickly show some of the pos‐ 
sibilities. Let’s demonstrate several of the possible options using the birthrate plot from 

before. 

In[8]: 

fig, ax = plt.subplots(figsize=(12, 4)) 
births_by_date.plot(ax=ax) 

 
# Add labels to the plot 

ax.annotate("New Year's Day", xy=('2012-1-1', 4100), 
xycoords='data', xytext=(50, -30), textcoords='offset 
points', arrowprops=dict(arrowstyle="->", 

connectionstyle="arc3,rad=-0.2")) 
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ax.annotate("Independence Day", xy=('2012-7-4', 4250), 
xycoords='data', bbox=dict(boxstyle="round", fc="none", 
ec="gray"), 

xytext=(10, -40), textcoords='offset points', 
ha='center', arrowprops=dict(arrowstyle="->")) 

 
ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data', 

ha='center', xytext=(0, -20), textcoords='offset points') 

ax.annotate('', xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850), 

xycoords='data', textcoords='data', 
arrowprops={'arrowstyle': '|-
|,widthA=0.2,widthB=0.2', }) 

 
ax.annotate('Halloween', xy=('2012-10-31', 4600), 

xycoords='data', xytext=(-80, -40), textcoords='offset 
points', arrowprops=dict(arrowstyle="fancy", 

fc="0.6", ec="none", 
connectionstyle="angle3,angleA=0,angleB=
-90")) 

 
ax.annotate('Thanksgiving', xy=('2012-11-25', 4500), 

xycoords='data', xytext=(-120, -60), textcoords='offset 
points', bbox=dict(boxstyle="round4,pad=.5", 
fc="0.9"), arrowprops=dict(arrowstyle="->", 

connectionstyle="angle,angleA=0,angleB=80,rad=20")) 

ax.annotate('Christmas', xy=('2012-12-25', 3850), 
xycoords='data', xytext=(-30, 0), textcoords='offset 
points', 

size=13, ha='right', va="center", 
bbox=dict(boxstyle="round", 
alpha=0.1), 

arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1)); 

# Label the axes 

ax.set(title='USA births by day of year (1969-1988)', 
ylabel='average daily births') 
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# Format the x axis with centered month labels 
ax.xaxis.set_major_locator(mpl.dates.MonthLocator()) 
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymont
hday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter()) 
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')
); 

ax.set_ylim(3600, 5400);

 

Figure. Annotated average birth rates by day 

You’ll notice that the specifications of the arrows and text boxes are very detailed: this 

gives you the power to create nearly any arrow style you wish. Unfortunately, it also 

means that these sorts of features often must be manually tweaked, a process that can be 

very time-consuming when one is producing publication-quality graphics! Finally, I’ll note 

that the preceding mix of styles is by no means best practice for presenting data, but 

rather included as a demonstration of some of the available options. 

More discussion and examples of available arrow and annotation styles can be 

found in the Matplotlib gallery, in particular 

http://matplotlib.org/examples/pylab_examples/ annotation_demo2.html. 

Customizing Ticks 

Matplotlib’s default tick locators and formatters are designed to be generally sufficient in 

many common situations, but are in no way optimal for every plot. This section will give 

several examples of adjusting the tick locations and formatting for the par‐ ticular plot 

type you’re interested in. 

Before we go into examples, it will be best for us to understand further the object 

hierarchy of Matplotlib plots. Matplotlib aims to have a Python object representing 

everything that appears on the plot: for example, recall that the figure is the bound‐ ing 



 

Page 299 of 580  

box within which plot elements appear. Each Matplotlib object can also act as a container 

of sub-objects; for example, each figure can contain one or more axes objects, each of 

which in turn contain other objects representing plot contents. 

The tick marks are no exception. Each axes has attributes xaxis and yaxis, which in turn 
have attributes that contain all the properties of the lines, ticks, and labels that make up 
the axes. 

Major and Minor Ticks 

Within each axis, there is the concept of a major tick mark and a minor tick mark. As the 

names would imply, major ticks are usually bigger or more pronounced, while minor ticks 

are usually smaller. By default, Matplotlib rarely makes use of minor ticks, but one place 

you can see them is within logarithmic plots (Figure): 

In[1]: %matplotlib inline 

import matplotlib.pyplot as plt 
plt.style.use('seaborn-
whitegrid') import numpy as np  

In[2]: ax = plt.axes(xscale='log', yscale='log') 

Figure . Example of logarithmic scales and labels 

We see here that each major tick shows a large tick mark and a label, while each 

minor tick shows a smaller tick mark with no label. 

We can customize these tick properties—that is, locations and labels—by 

setting the formatter and locator objects of each axis. Let’s examine these for the x 

axis of the plot just shown: 

In[3]: 
print(ax.xaxis.get_major_locator(
)) 
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print(ax.xaxis.get_minor_locator
()) 

<matplotlib.ticker.LogLocator object at 0x107530cc0> 

<matplotlib.ticker.LogLocator object at 0x107530198> 

In[4]: 
print(ax.xaxis.get_major_formatter
()) 
print(ax.xaxis.get_minor_formatte
r()) 

<matplotlib.ticker.LogFormatterMathtext object at 0x107512780> 

<matplotlib.ticker.NullFormatter object at 0x10752dc18> 

We see that both major and minor tick labels have their locations specified by a 

LogLocator (which makes sense for a logarithmic plot). Minor ticks, though, have 

their labels formatted by a NullFormatter; this says that no labels will be shown. 

 

We’ll now show a few examples of setting these locators and formatters for various plots. 

Hiding Ticks or Labels 

Perhaps the most common tick/label formatting operation is the act of hiding ticks or 

labels. We can do this using plt.NullLocator() and plt.NullFormatter(), as shown here. 

In[5]: ax = plt.axes() 

ax.plot(np.random.rand(50)) 

 
ax.yaxis.set_major_locator(plt.NullLocator()) 
ax.xaxis.set_major_formatter(plt.NullFormattr()) 

 

Figure . Plot with hidden tick labels (x-axis) and hidden ticks (y-axis) 
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Notice that we’ve removed the labels (but kept the ticks/gridlines) from the x axis, and 

removed the ticks (and thus the labels as well) from the y axis. Having no ticks at all can 

be useful in many situations—for example, when you want to show a grid of images. For 

instance, consider Figure below, which includes images of different faces, an example 

often used in supervised machine learning problems.  

In[6]: fig, ax = plt.subplots(5, 5, figsize=(5, 5)) 
fig.subplots_adjust(hspace=0, wspace=0) 

 
# Get some face data from scikit-learn 

from sklearn.datasets import fetch_olivetti_faces faces = 
fetch_olivetti_faces().images 

 
for i in range(5): 

for j in range(5): 

ax[i, j].xaxis.set_major_locator(plt.NullLocator()) 
ax[i, j].yaxis.set_major_locator(plt.NullLocator()) 
ax[i, j].imshow(faces[10 * i + j], cmap="bone") 

 
Figure. Hiding ticks within image plots 

Notice that each image has its own axes, and we’ve set the locators to null because the 

tick values (pixel number in this case) do not convey relevant information for this 

particular visualization. 

Reducing or Increasing the Number of Ticks 

One common problem with the default settings is that smaller subplots can end up with 
crowded labels. We can see this in the plot grid shown in Figure . 
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In[7]: fig, ax = plt.subplots(4, 4, sharex=True, sharey=True) 

Figure 4-76. A default plot with crowded ticks 

Particularly for the x ticks, the numbers nearly overlap, making them quite difficult to 

decipher. We can fix this with the plt.MaxNLocator(), which allows us to specify the 

maximum number of ticks that will be displayed. Given this maximum number, Mat‐ 

plotlib will use internal logic to choose the particular tick locations (Figure ) 

In[8]: # For every axis, set the x and y major locator 

for axi in ax.flat: 
axi.xaxis.set_major_locator(plt.MaxNLocator
(3)) 
axi.yaxis.set_major_locator(plt.MaxNLocator
(3)) 

fig 

Figure . Customizing the number of ticks 

This makes things much cleaner. If you want even more control over the 

locations of regularly spaced ticks, you might also use plt.MultipleLocator, which 

we’ll discuss in the following section. 
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Fancy Tick Formats 

Matplotlib’s default tick formatting can leave a lot to be desired; it works well as a broad 

default, but sometimes you’d like to do something more. Consider the plot shown in 

Figure below, a sine and a cosine: 

In[9]: # Plot a sine and cosine curve 

fig, ax = plt.subplots() 

x = np.linspace(0, 3 * np.pi, 1000) 
ax.plot(x, np.sin(x), lw=3, label='Sine') 
ax.plot(x, np.cos(x), lw=3, label='Cosine') 

 
# Set up grid, legend, and 
limits ax.grid(True) 
ax.legend(frameon=False) 
ax.axis('equal') 

ax.set_xlim(0, 3 * np.pi); 

 
Figure. A default plot with integer ticks 

There are a couple changes we might like to make. First, it’s more natural for this data to 
space the ticks and grid lines in multiples of π. We can do this by setting a Multi 

pleLocator, which locates ticks at a multiple of the number you provide. For good 
measure, we’ll add both major and minor ticks in multiples of π/4: 
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In[10]: ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 
2)) 
ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 

4)) fig 

Figure. Ticks at multiples of pi/2 

But now these tick labels look a little bit silly: we can see that they are multiples of π, but 

the decimal representation does not immediately convey this. To fix this, we can change 

the tick formatter. There’s no built-in formatter for what we want to do, so we’ll instead 

use plt.FuncFormatter, which accepts a user-defined function giving fine-grained control 

over the tick outputs: 

In[11]: def format_func(value, tick_number): 

# find number of multiples of pi/2 

N = int(np.round(2 * value / np.pi)) 

if N == 0: 

return "0" 

elif N == 1: 

return r"$\pi/2$" 

elif N == 2: 

return r"$\pi$" 

elif N % 2 > 0: 

return r"${0}\pi/2$".format(N) 

else: 

return r"${0}\pi$".format(N // 2) 
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ax.xaxis.set_major_formatter(plt.FuncFormatter(format
_func)) fig 

Figure. Ticks with custom labels 

This is much better! Notice that we’ve made use of Matplotlib’s LaTeX support, speci‐ fied 

by enclosing the string within dollar signs. This is very convenient for display of 

mathematical symbols and formulae; in this case, "$\pi$" is rendered as the Greek 

character π. 

The plt.FuncFormatter() offers extremely fine-grained control over the appearance of your 
plot ticks, and comes in very handy when you’re preparing plots for presenta‐ tion or 
publication. 

Summary of Formatters and Locators 

We’ve mentioned a couple of the available formatters and locators. We’ll conclude this 

section by briefly listing all the built-in locator and formatter options. For more 

information on any of these, refer to the docstrings or to the Matplotlib online docu‐ 

mentation. Each of the following is available in the plt namespace: 

 

 

NullLocator No ticks 

FixedLocator Tick locations are fixed 

IndexLocator Locator for index plots (e.g., where x = range(len(y))) 

 
LinearLocator Evenly spaced ticks from min to max 

LogLocator Logarithmically ticks from min to max 

Locator class Description 

Locator class Description 
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MultipleLocator Ticks and range are a multiple of base 

MaxNLocator Finds up to a max number of ticks at nice 

locations AutoLocator (Default) MaxNLocator with 

simple defaults AutoMinorLocator Locator for minor ticks 

 

 

NullFormatter No labels on the ticks 

IndexFormatter Set the strings from a list of labels 

FixedFormatter Set the strings manually for the 

labels FuncFormatter User-defined function sets the 

labels FormatStrFormatter Use a format string for 

each value ScalarFormatter (Default) 

Formatter for scalar values LogFormatter

 Default formatter for log axes 

 
We’ll see additional examples of these throughout the remainder of the book. 

Customizing Matplotlib: Configurations and Stylesheets 

Matplotlib’s default plot settings are often the subject of complaint among its users. 

While much is slated to change in the 2.0 Matplotlib release, the ability to customize 

default settings helps bring the package in line with your own aesthetic preferences. 

Here we’ll walk through some of Matplotlib’s runtime configuration (rc) options, and take 
a look at the newer stylesheets feature, which contains some nice sets of default 
configurations. 

Plot Customization by Hand 

Throughout this chapter, we’ve seen how it is possible to tweak individual plot set‐ tings 

to end up with something that looks a little bit nicer than the default. It’s possi‐ ble to do 

these customizations for each individual plot. For example, here is a fairly drab default 

histogram: 

In[1]: import matplotlib.pyplot as plt 

plt.style.use('classic') 

import numpy as np 

Formatter class Description 
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%matplotlib inline 

In[2]: x = 
np.random.randn(1000

) plt.hist(x); 

Figure . A histogram in Matplotlib’s default style 

We can adjust this by hand to make it a much more visually pleasing plot, 

shown in  Figure: 

In[3]: # use a gray background 

ax = 
plt.axes(axisbg='#E6E6E6') 
ax.set_axisbelow(True) 

 
# draw solid white grid lines 

plt.grid(color='w', linestyle='solid') 

 
# hide axis spines 

for spine in  
ax.spines.values(): 
spine.set_visible(False) 

 
# hide top and right ticks 
ax.xaxis.tick_bottom() 
ax.yaxis.tick_left() 
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# lighten ticks and labels 
ax.tick_params(colors='gray', 
direction='out') for tick in 
ax.get_xticklabels(): 

tick.set_color('gray') 

for tick in  ax.get_yticklabels(): 
tick.set_color('gray') 

 
# control face and edge color of histogram 

ax.hist(x, edgecolor='#E6E6E6', color='#EE6666'); 

 

 
Figure . A histogram with manual customizations 

This looks better, and you may recognize the look as inspired by the look of the R 

language’s ggplot visualization package. But this took a whole lot of effort! We defi‐ nitely do 

not want to have to do all that tweaking each time we create a plot. Fortu‐ nately, there 

is a way to adjust these defaults once in a way that will work for all plots. 

Changing the Defaults: rcParams 

Each time Matplotlib loads, it defines a runtime configuration (rc) containing the default 
styles for every plot element you create. You can adjust this configuration at any time 

using the plt.rc convenience routine. Let’s see what it looks like to modify the rc 
parameters so that our default plot will look similar to what we did before. 

We’ll start by saving a copy of the current rcParams dictionary, so we can easily reset these 
changes in the current session: 

In[4]: IPython_default = plt.rcParams.copy() 
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Now we can use the plt.rc function to change some of these settings: 

In[5]: from matplotlib import 
cycler colors = cycler('color', 

['#EE6666', '#3388BB', '#9988DD', 

'#EECC55', '#88BB44', '#FFBBBB']) 

plt.rc('axes', facecolor='#E6E6E6', 
edgecolor='none', axisbelow=True, 
grid=True, prop_cycle=colors) 

plt.rc('grid', color='w', linestyle='solid') 
plt.rc('xtick', direction='out', color='gray') 
plt.rc('ytick', direction='out', color='gray') 
plt.rc('patch', edgecolor='#E6E6E6') 
plt.rc('lines', linewidth=2) 

With these settings defined, we can now create a plot and see our settings in action. 

In[6]: plt.hist(x);

 

Figure 4-83. A customized histogram using rc settings 

 
Let’s see what simple line plots look like with these rc parameters: 

In[7]: for i in range(4): 
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plt.plot(np.random.rand(10)) 

Figure. A line plot with customized styles 

Stylesheets 

The version 1.4 release of Matplotlib in August 2014 added a very convenient style 
module, which includes a number of new default stylesheets, as well as the ability to 

create and package your own styles. These stylesheets are formatted similarly to the 
.matplotlibrc files mentioned earlier, but must be named with a .mplstyle extension. 

Even if you don’t create your own style, the stylesheets included by default are extremely 

useful. The available styles are listed in plt.style.available—here I’ll list only the first five for 

brevity: 

In[8]: plt.style.available[:5] 

Out[8]: ['fivethirtyeight', 

'seaborn-pastel', 
'seaborn-
whitegrid', 'ggplot', 
'grayscale'] 

The basic way to switch to a stylesheet is to call: 

plt.style.use('stylename') 

But keep in mind that this will change the style for the rest of the session! Alterna‐ tively, 

you can use the style context manager, which sets a style temporarily: 

with 
plt.style.context('stylename'): 
make_a_plot() 

Let’s create a function that will make two basic types of plot: 

In[9]: def hist_and_lines(): 
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np.random.seed(0) 

fig, ax = plt.subplots(1, 2, figsize=(11, 4)) 
ax[0].hist(np.random.randn(1000)) 

for i in range(3): 
ax[1].plot(np.random.rand(1
0)) 

ax[1].legend(['a', 'b', 'c'], loc='lower left') 

We’ll use this to explore how these plots look using the various built-in styles. 

Default style 

The default style is what we’ve been seeing so far throughout the book; we’ll 

start with that. First, let’s reset our runtime configuration to the notebook 

default: 

In[10]: # reset rcParams 

plt.rcParams.update(IPython_default); 

Now let’s see how it looks: 

In[11]: hist_and_lines() 

 
Figure. Matplotlib’s default style 

FiveThirtyEight style 

The FiveThirtyEight style mimics the graphics found on the popular FiveThirtyEight 

website. As you can see in Figure , it is typified by bold colors, thick lines, and transparent 

axes. 
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In[12]: with plt.style.context('fivethirtyeight'): 
hist_and_lines() 

Figure. The FiveThirtyEight style 

ggplot 

The ggplot package in the R language is a very popular visualization tool. 
Matplot‐ lib’s ggplot style mimics the default styles from that package: 

In[13]: with plt.style.context('ggplot'): 
hist_and_lines() 

 

Figure. The ggplot style 

Bayesian Methods for Hackers style 

There is a very nice short online book called Probabilistic Programming and 

Bayesian Methods for Hackers; it features figures created with Matplotlib, and 

uses a nice set of rc parameters to create a consistent and visually appealing style 

throughout the book. This style is reproduced in the bmh stylesheet: 
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In[14]: with 
plt.style.context('bmh'): 

hist_and_lines() 

Figure. The bmh style 

Dark background 

For figures used within presentations, it is often useful to have a dark rather than light background. 

The dark_background style provides this: 

In[15]: with 
plt.style.context('dark_background'
): hist_and_lines() 

 

 
Figure . The dark_background style 

Grayscale 

Sometimes you might find yourself preparing figures for a print publication that does not 

accept color figures. For this, the grayscale style, shown in Figure, can be very useful: 
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In[16]: with plt.style.context('grayscale'): 
hist_and_lines() 

Figure 4-90. The grayscale style 

Seaborn style 

Matplotlib also has stylesheets inspired by the Seaborn library (discussed more fully in 

“Visualization with Seaborn” ). As we will see, these styles are loaded automatically when 

Seaborn is imported into a notebook. I’ve found these settings to be very nice, and tend 

to use them as defaults in my own data exploration: 

In[17]: import seaborn 

hist_and_lines() 

 

 

 

 

 

 

 

 

 

Figure. Seaborn’s plotting style 

With all of these built-in options for various plot styles, Matplotlib becomes much more 

useful for both interactive visualization and creation of figures for publication. 

Throughout this book, I will generally use one or more of these style conventions when 
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creating plots. 

Day-05: Three-Dimensional Plotting in Matplotlib 

Matplotlib was initially designed with only two-dimensional plotting in mind. Around the 

time of the 1.0 release, some three-dimensional plotting utilities were built on top of 

Matplotlib’s two-dimensional display, and the result is a convenient (if somewhat limited) 

set of tools for three-dimensional data visualization. We enable three-dimensional plots 

by importing the mplot3d toolkit, included with the main Matplotlib installation: 

In[1]: from mpl_toolkits import mplot3d 

Once this submodule is imported, we can create a three-dimensional axes by passing the 

keyword projection='3d' to any of the normal axes creation routines: 

In[2]: %matplotlib inline 

import numpy as np 

import matplotlib.pyplot as plt 

In[3]: fig = plt.figure() 

ax = plt.axes(projection='3d') 

 

 
Figure. An empty three-dimensional axes 

With this 3D axes enabled, we can now plot a variety of three-dimensional plot types. 

Three-dimensional plotting is one of the functionalities that benefits immensely from 

viewing figures interactively rather than statically in the notebook; recall that to use 

interactive figures, you can use %matplotlib notebook rather than %matplotlib inline 

when running this code. 

Three-Dimensional Points and Lines 

The most basic three-dimensional plot is a line or scatter plot created from sets of (x, y, z) 
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triples. In analogy with the more common two-dimensional plots discussed ear‐ lier, we 

can create these using the ax.plot3D and ax.scatter3D functions. The call signature for 

these is nearly identical to that of their two-dimensional counterparts, so you can refer 

to “Simple Line Plots” and for more information on controlling the output. Here we’ll plot 

a trigono‐ metric spiral, along with some points drawn randomly near the line: 

In[4]: ax = plt.axes(projection='3d') 

# Data for a three-dimensional 
line zline = np.linspace(0, 15, 1000) 
xline = np.sin(zline) 

yline = np.cos(zline) 

ax.plot3D(xline, yline, zline, 'gray') 

#  Data  for  three-dimensional  scattered  points 

zdata = 15 * np.random.random(100) 

xdata = np.sin(zdata) + 0.1 * 
np.random.randn(100) ydata = np.cos(zdata) + 
0.1 * np.random.randn(100) 

ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens'); 

 

 
Figure. Points and lines in three dimensions 

Notice that by default, the scatter points have their transparency adjusted to give a sense 

of depth on the page. While the three-dimensional effect is sometimes difficult to see 

within a static image, an interactive view can lead to some nice intuition about the layout 

of the points. 

Three-Dimensional Contour Plots 

Analogous to the contour plots we explored in “Density and Contour Plots” , mplot3d 
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contains tools to create three-dimensional relief plots using the same inputs. Like two-

dimensional ax.contour plots, ax.contour3D requires all the input data to be in the form of 

two-dimensional regular grids, with the Z data evaluated at each point. Here we’ll show a 

three-dimensional contour diagram of a three- dimensional sinusoidal function: 

In[5]: def f(x, y): 

return np.sin(np.sqrt(x ** 2 + y ** 2)) 

 
x = np.linspace(-6, 6, 30) 

y = np.linspace(-6, 6, 30) 

 
X, Y = np.meshgrid(x, 
y) Z = f(X, Y) 

In[6]: fig = plt.figure() 

ax = plt.axes(projection='3d') 
ax.contour3D(X, Y, Z, 50, 
cmap='binary') ax.set_xlabel('x') 

ax.set_ylabel('y') 
ax.set_zlabel('z'); 
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Figure. A three-dimensional contour plot 

Sometimes the default viewing angle is not optimal, in which case we can use the 

view_init method to set the elevation and azimuthal angles. In this example (the result of 

which is shown in Figure ), we’ll use an elevation of 60 degrees (that is, 60 degrees above 

the x-y plane) and an azimuth of 35 degrees (that is, rotated 35 degrees counter-

clockwise about the z-axis): 

In[7]: ax.view_init(60, 35) 
fig 

Figure. Adjusting the view angle for a three-dimensional plot 

Again, note that we can accomplish this type of rotation interactively by clicking 

and dragging when using one of Matplotlib’s interactive backends. 

Wireframes and Surface Plots 

Two other types of three-dimensional plots that work on gridded data are wireframes 

and surface plots. These take a grid of values and project it onto the specified three- 

dimensional surface, and can make the resulting three-dimensional forms quite easy to 

visualize. Here’s an example using a wireframe (Figure ): 

In[8]: fig = plt.figure() 
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ax = plt.axes(projection='3d') 
ax.plot_wireframe(X, Y, Z, 
color='black') ax.set_title('wireframe'); 

Figure. A wireframe plot 

A surface plot is like a wireframe plot, but each face of the wireframe is a filled poly‐ gon. 

Adding a colormap to the filled polygons can aid perception of the topology of the 

surface being visualized . 

In[9]: ax = plt.axes(projection='3d') 
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, 

cmap='viridis', 
edgecolor='none') ax.set_title('surface'); 

Figure. A three-dimensional surface plot 

Note that though the grid of values for a surface plot needs to be two-dimensional, it 

need not be rectilinear. Here is an example of creating a partial polar grid, which when 

used with the surface3D plot can give us a slice into the function we’re visualizing . 

In[10]: r = np.linspace(0, 6, 20) 

theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40) 
r, theta = np.meshgrid(r, theta) 



 

Page 320 of 580  

X = r * np.sin(theta) 
Y = r * np.cos(theta) 
Z = f(X, Y) 

ax = plt.axes(projection='3d') 
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, 

cmap='viridis', edgecolor='none'); 

Figure. A polar surface plot 

Surface Triangulations 

For some applications, the evenly sampled grids required by the preceding routines are 

overly restrictive and inconvenient. In these situations, the triangulation-based plots can 

be very useful. What if rather than an even draw from a Cartesian or a polar grid, we 

instead have a set of random draws? 

In[11]: theta = 2 * np.pi * 
np.random.random(1000) r = 6 * 
np.random.random(1000) 

x = np.ravel(r * np.sin(theta)) 
y = np.ravel(r * np.cos(theta)) 
z = f(x, y) 

We could create a scatter plot of the points to get an idea of the surface we’re 

sampling from: 

In[12]: ax = plt.axes(projection='3d') 

ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5); 
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Figure. A three-dimensional sampled surface 

This leaves a lot to be desired. The function that will help us in this case is ax.plot_trisurf, 

which creates a surface by first finding a set of triangles formed between adjacent points 

(the result is shown in Figure ; remember that x, y, and z here are one-dimensional arrays): 

In[13]: ax = plt.axes(projection='3d') 
ax.plot_trisurf(x, y, z, 

cmap='viridis', edgecolor='none'); 

Figure. A triangulated surface plot 

The result is certainly not as clean as when it is plotted with a grid, but the flexibility of 

such a triangulation allows for some really interesting three-dimensional plots. For 

example, it is actually possible to plot a three-dimensional Möbius strip using this, as we’ll 

see next. 

Example: Visualizing a Möbius strip 

A Möbius strip is similar to a strip of paper glued into a loop with a half-twist. Topo‐ 

logically, it’s quite interesting because despite appearances it has only a single side! Here 

we will visualize such an object using Matplotlib’s three-dimensional tools. The key to 

creating the Möbius strip is to think about its parameterization: it’s a two-

dimensional strip, so we need two intrinsic dimensions. Let’s call them θ, which ranges 
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from 0 to 2π around the loop, and w which ranges from –1 to 1 across the width of the 

strip: 

In[14]: theta = np.linspace(0, 2 * np.pi, 30) 
w = np.linspace(-0.25, 0.25, 8) 

w, theta = np.meshgrid(w, theta) 

Now from this parameterization, we must determine the (x, y, z) positions of the 

embedded strip. 

Thinking about it, we might realize that there are two rotations happening: one is the 

position of the loop about its center (what we’ve called θ), while the other is the twist‐ ing 

of the strip about its axis (we’ll call this ϕ). For a Möbius strip, we must have the strip 

make half a twist during a full loop, or Δϕ = Δθ/2. 

In[15]: phi = 0.5 * theta 

Now we use our recollection of trigonometry to derive the three-dimensional embed‐ 

ding. We’ll define r, the distance of each point from the center, and use this to find the 

embedded x, y, z coordinates: 

In[16]: # radius in x-y plane 

r = 1 + w * np.cos(phi) 

x = np.ravel(r * np.cos(theta)) 
y = np.ravel(r * np.sin(theta)) 
z = np.ravel(w * np.sin(phi)) 

Finally, to plot the object, we must make sure the triangulation is correct. The best way 

to do this is to define the triangulation within the underlying parameterization, and then 

let Matplotlib project this triangulation into the three-dimensional space of the Möbius 

strip. This can be accomplished as follows: 

In[17]: # triangulate in the underlying 
parameterization 

from matplotlib.tri import Triangulation 

tri = Triangulation(np.ravel(w), np.ravel(theta)) 

 
ax = plt.axes(projection='3d') 

ax.plot_trisurf(x, y, z, triangles=tri.triangles, 

cmap='viridis', linewidths=0.2); 

ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1); 



 

Page 323 of 580  

 
Figure. Visualizing a Möbius strip 

Combining all of these techniques, it is possible to create and display a wide variety of 
three-dimensional objects and patterns in Matplotlib. 
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Week 5: Data visualization with Seaborn 

Day-01: Visualization with Seaborn 

Matplotlib has proven to be an incredibly useful and popular visualization tool, but even 

avid users will admit it often leaves much to be desired. There are several valid 

complaints about Matplotlib that often come up: 

• Prior to version 2.0, Matplotlib’s defaults are not exactly the best choices. It 
was based off of MATLAB circa 1999, and this often shows. 

• Matplotlib’s API is relatively low level. Doing sophisticated statistical 

visualiza‐ tion is possible, but often requires a lot of boilerplate code. 

• Matplotlib predated Pandas by more than a decade, and thus is not 

designed for use with Pandas DataFrames. In order to visualize data from a 

Pandas DataFrame, you must extract each Series and often concatenate 

them together into the right format. It would be nicer to have a plotting 

library that can intelligently use the DataFrame labels in a plot. 

An answer to these problems is Seaborn. Seaborn provides an API on top of Matplot‐ lib 

that offers sane choices for plot style and color defaults, defines simple high-level 

functions for common statistical plot types, and integrates with the functionality pro‐ 

vided by Pandas DataFrames. 

Seaborn Versus Matplotlib 

Here is an example of a simple random-walk plot in Matplotlib, using its classic plot 

formatting and colors. We start with the typical imports: 

In[1]: import matplotlib.pyplot as plt 

plt.style.use('classic') 

%matplotlib inline 
import numpy as 
np import pandas 
as pd 

Now we create some random walk data: 

In[2]: # Create some data 

rng = 
np.random.RandomState(0) 
x = np.linspace(0, 10, 500) 
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y = np.cumsum(rng.randn(500, 6), 0) 

And do a simple plot (Figure ): 

In[3]: # Plot the data with Matplotlib defaults 

plt.plot(x, y) 

plt.legend('ABCDEF', ncol=2, loc='upper left'); 

Figure. Data in Matplotlib’s default style 

Although the result contains all the information we’d like it to convey, it does so in a way 

that is not all that aesthetically pleasing, and even looks a bit old-fashioned in the context 

of 21st-century data visualization. 

Now let’s take a look at how it works with Seaborn. As we will see, Seaborn has many of its 

own high-level plotting routines, but it can also overwrite Matplotlib’s default 

parameters and in turn get even simple Matplotlib scripts to produce vastly superior 

output. We can set the style by calling Seaborn’s set() method. By convention, Sea‐ born is 

imported as sns: 

In[4]: import seaborn as sns 

sns.set() 

Now let’s rerun the same two lines as before (Figure): 

In[5]: # same plotting code as above! 

plt.plot(x, y) 
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plt.legend('ABCDEF', ncol=2, loc='upper left'); 

Figure. Data in Seaborn’s default style 

Exploring Seaborn Plots 

The main idea of Seaborn is that it provides high-level commands to create a 

variety of plot types useful for statistical data exploration, and even some 

statistical model fitting. 

Let’s take a look at a few of the datasets and plot types available in Seaborn. Note that all 

of the following could be done using raw Matplotlib commands (this is, in fact, what 

Seaborn does under the hood), but the Seaborn API is much more convenient. 

Histograms, KDE, and densities 

Often in statistical data visualization, all you want is to plot histograms and joint dis‐ 

tributions of variables. We have seen that this is relatively straightforward in Matplot‐ lib 

(Figure ): 

In[6]: data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]], 
size=2000) data = pd.DataFrame(data, columns=['x', 'y']) 

for col in 'xy': 

plt.hist(data[col], normed=True, alpha=0.5) 
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Figure. Histograms for visualizing distributions 

Rather than a histogram, we can get a smooth estimate of the distribution 

using a kernel density estimation, which Seaborn does with sns.kdeplot (Figure ): 

In[7]: for col in 'xy': 

sns.kdeplot(data[col], shade=True) 

 
Figure. Kernel density estimates for visualizing distributions 

Histograms and KDE can be combined using distplot (Figure ): 

In[8]: sns.distplot(data['x']) 

sns.distplot(data['y']) 
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Figure. Kernel density and histograms plotted together 

If we pass the full two-dimensional dataset to kdeplot, we will get a two-
dimensional visualization of the data (Figure ): 

In[9]: sns.kdeplot(data);

 

Figure. A two-dimensional kernel density plot 

We can see the joint distribution and the marginal distributions together using 

sns.jointplot. For this plot, we’ll set the style to a white background (Figure ): 

In[10]: with sns.axes_style('white'): 
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sns.jointplot("x", "y", data, kind='kde'); 

Figure. A joint distribution plot with a two-dimensional kernel density estimate 

There are other parameters that can be passed to jointplot—for example, we can use a 
hexagonally based histogram instead (Figure ): 

In[11]: with sns.axes_style('white'): 

sns.jointplot("x", "y", data, kind='hex') 

Figure. A joint distribution plot with a hexagonal bin representation 
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Pair plots 

When you generalize joint plots to datasets of larger dimensions, you end up 

with pair plots. This is very useful for exploring correlations between 

multidimensional data, when you’d like to plot all pairs of values against each 

other. 

We’ll demo this with the well-known Iris dataset, which lists measurements of petals and 

sepals of three iris species: 

In[12]: iris = sns.load_dataset("iris") 
iris.head() 

 
Out[12]
: 

sepal_length sepal_widt
h 

petal_lengt
h 

petal_widt
h 

specie
s 

 0 5.1 3.5 1.4 0.2 setos
a 

 1 4.9 3.0 1.4 0.2 setos
a 

 2 4.7 3.2 1.3 0.2 setos
a 

 3 4.6 3.1 1.5 0.2 setos
a 

 4 5.0 3.6 1.4 0.2 setos
a 

 

Visualizing the multidimensional relationships among the samples is as easy as call‐ ing 

sns.pairplot : 
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In[13]: sns.pairplot(iris, hue='species', size=2.5); 

Figure. A pair plot showing the relationships between four variables 

Faceted histograms 

Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid 
makes this extremely simple. We’ll take a look at some data that shows the amount that 
restaurant staff receive in tips based on various indicator data (Figure ): 

In[14]: tips = sns.load_dataset('tips') 
tips.head() 

 
Out[14]
: 

total_bill tip sex smok
er 

da
y 

time size 

 0
 16.9
9 

1.0
1 

Femal
e 

No Su
n 

Dinne
r 

2 
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 1
 10.3
4 

1.6
6 

Male No Su
n 

Dinne
r 

3 

 2
 21.0
1 

3.5
0 

Male No Su
n 

Dinne
r 

3 

3 23.68 3.31 Male No Sun Dinner 2 
4 24.59 3.61 Female No Sun Dinner 4 

In[15]: tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill'] 

 
grid = sns.FacetGrid(tips, row="sex", col="time", 
margin_titles=True) grid.map(plt.hist, "tip_pct", 

bins=np.linspace(0, 40, 15)); 

Figure. An example of a faceted histogram 

Factor plots 

Factor plots can be useful for this kind of visualization as well. This allows you to view the 

distribution of a parameter within bins defined by any other parameter (Figure ): 

In[16]: with sns.axes_style(style='ticks'): 

g = sns.factorplot("day", "total_bill", "sex", data=tips, kind="box") 
g.set_axis_labels("Day", "Total Bill"); 
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Figure. An example of a factor plot, comparing distributions given various discrete 

factors 

Joint distributions 

Similar to the pair plot we saw earlier, we can use sns.jointplot to show the joint 
distribution between different datasets, along with the associated marginal distribu‐ 
tions (Figure ): 

In[17]: with sns.axes_style('white'): 

sns.jointplot("total_bill", "tip", data=tips, kind='hex') 

Figure. A joint distribution plot 

The joint plot can even do some automatic kernel density estimation and regression 

(Figure ): 
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In[18]: sns.jointplot("total_bill", "tip", data=tips, kind='reg'); 

Figure. A joint distribution plot with a regression fit 

Bar plots 

Time series can be plotted with sns.factorplot. In the following example 
(visualized in Figure ) 

In[19]: planets = 
sns.load_dataset('planets') 
planets.head() 

 
Out[19]: method numb

er 
orbital_perio
d 

mass distance year 

0 Radial Velocity 1 269.300 7.10 77.40 200
6 

1 Radial Velocity 1 874.774 2.21 56.95 200
8 

2 Radial Velocity 1 763.000 2.60 19.84 201
1 

3 Radial Velocity 1 326.030 19.40 110.62 200
7 

4 Radial Velocity 1 516.220 10.50 119.47 200
9 

In[20]: with sns.axes_style('white'): 

g = sns.factorplot("year", data=planets, aspect=2, 
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kind="count", 
color='steelblue') g.set_xticklabels(step=5) 

 
Figure 4-124. A histogram as a special case of a factor plot 

We can learn more by looking at the method of discovery of each of these planets, as 
illustrated in following Figure: 

In[21]: with sns.axes_style('white'): 

g = sns.factorplot("year", data=planets, aspect=4.0, 
kind='count', hue='method', 
order=range(2001, 2015)) 

g.set_ylabels('Number of Planets Discovered') 

Figure . Number of planets discovered by year and type  

Example: Exploring Marathon Finishing Times 

Here we’ll look at using Seaborn to help visualize and understand finishing results from a 
marathon. I’ve scraped the data from sources on the Web, aggregated it and removed 

any identifying information, and put it on GitHub where it can be downloa‐ ded (if you 

are interested in using Python for web scraping, I would recommend Web Scraping with 

Python by Ryan Mitchell). We will start by downloading the data from the Web, and 

loading it into Pandas: 



 

 

In[22]: 

# !curl   -O   

https://raw.githubusercontent.com/jakevdp/marathon-

data/ # master/marathon-data.csv 

In[23]: data = pd.read_csv('marathon-
data.csv') data.head() 

Out[23]:  age gender split final 
0  33 M 01:05:38 
02:08:51 

1 32 M 01:06:26 02:09:28 

2 31 M 01:06:49 02:10:42 

3 38 M 01:06:16 02:13:45 

4 31 M 01:06:32 02:13:59 

By default, Pandas loaded the time columns as Python strings (type object); we can see 

this by looking at the dtypes attribute of the DataFrame: 

In[24]: data.dtypes 

Out[24]: age

 int6

4 

gender object 

split object 

final
 objec
t dtype: object 

Let’s fix this by providing a converter for the times: 

In[25]: def convert_time(s): 

h, m, s = map(int, s.split(':')) 

return pd.datetools.timedelta(hours=h, minutes=m, seconds=s) 

 
data = pd.read_csv('marathon-data.csv', 

converters={'split':convert_time, 'final':convert_time}) 

data.head() 



 

 

 
Out[25]
:  ag

e 
gender split final 

 0 3
3 

M 01:05:38 02:08:51 

 1 3
2 

M 01:06:26 02:09:28 

 2 3
1 

M 01:06:49 02:10:42 

 3 3
8 

M 01:06:16 02:13:45 

 4 3
1 

M 01:06:32 02:13:59 

In[26]: data.dtypes 

Out[26]: age int64 

gender object 

split timedelta64[ns] 
final timedelta64[ns] 
dtype: object 

That looks much better. For the purpose of our Seaborn plotting utilities, let’s 

next add columns that give the times in seconds: 

In[27]: data['split_sec'] = data['split'].astype(int) / 1E9 
data['final_sec'] = data['final'].astype(int) / 1E9 
data.head() 

Out[27]
: 

age gender split final split_sec final_sec 

 0
 3
3 

M 01:05:38 02:08:51 3938.0 7731.0 

 1
 3
2 

M 01:06:26 02:09:28 3986.0 7768.0 

 2
 3
1 

M 01:06:49 02:10:42 4009.0 7842.0 

 3
 3
8 

M 01:06:16 02:13:45 3976.0 8025.0 

 4
 3
1 

M 01:06:32 02:13:59 3992.0 8039.0 



 

 

To get an idea of what the data looks like, we can plot a jointplot over the 
data (Figure ): 

In[28]: with sns.axes_style('white'): 

g = sns.jointplot("split_sec", "final_sec", data, kind='hex') 
g.ax_joint.plot(np.linspace(4000, 16000), 

np.linspace(8000, 32000), ':k') 

Figure 4-126. The relationship between the split for the first half-marathon and the 
fin‐ ishing time for the full marathon 

The dotted line shows where someone’s time would lie if they ran the marathon at a 

perfectly steady pace. The fact that the distribution lies above this indicates (as you might 

expect) that most people slow down over the course of the marathon. If you have run 

competitively, you’ll know that those who do the opposite—run faster dur‐ ing the 

second half of the race—are said to have “negative-split” the race. 

Let’s create another column in the data, the split fraction, which measures the degree to 
which each runner negative-splits or positive-splits the race: 

In[29]: data['split_frac'] = 1 - 2 * data['split_sec'] / data['final_sec'] 
data.head() 

Out[29]
: 

age gender split final split_sec final_sec split_frac 

 0
 3

M 01:05:38 02:08:51 3938.0 7731.0 -
0.01875



 

 

3 6 
 1

 3
2 

M 01:06:26 02:09:28 3986.0 7768.0 -
0.02626

2 
 2

 3
1 

M 01:06:49 02:10:42 4009.0 7842.0 -
0.02244

3 
 3

 3
8 

M 01:06:16 02:13:45 3976.0 8025.0 0.0090
97 

 4
 3
1 

M 01:06:32 02:13:59 3992.0 8039.0 0.0068
42 

Where this split difference is less than zero, the person negative-split the race 
by that fraction. Let’s do a distribution plot of this split fraction (Figure ): 

In[30]: sns.distplot(data['split_frac'], kde=False); 
plt.axvline(0, color="k", linestyle="--"); 

Figure . The distribution of split fractions; 0.0 indicates a runner who completed the 
first and second halves in identical times 

 
In[31]: sum(data.split_frac < 

0) Out[31]: 251 

Out of nearly 40,000 participants, there were only 250 people who negative-split their 

marathon. 



 

 

Let’s see whether there is any correlation between this split fraction and other vari‐ 

ables. We’ll do this using a pairgrid, which draws plots of all these correlations (Figure ): 

In[32]: 

g = sns.PairGrid(data, vars=['age', 'split_sec', 'final_sec', 'split_frac'], 
hue='gender', palette='RdBu_r') 

g.map(plt.scatter, 
alpha=0.8) g.add_legend(); 

 
Figure . The relationship between quantities within the marathon dataset 

It looks like the split fraction does not correlate particularly with age, but does corre‐ late 

with the final time: faster runners tend to have closer to even splits on their mara‐ thon 

time. (We see here that Seaborn is no panacea for Matplotlib’s ills when it comes to plot 

styles: in particular, the x-axis labels overlap. Because the output is a simple Matplotlib 

plot, however, the methods in “Customizing Ticks” can be used to adjust such things if 



 

 

desired.) 

The difference between men and women here is interesting. Let’s look at the histo‐ gram 

of split fractions for these two groups (Figure ): 

In[33]: sns.kdeplot(data.split_frac[data.gender=='M'], label='men', 
shade=True) sns.kdeplot(data.split_frac[data.gender=='W'], 
label='women', shade=True) plt.xlabel('split_frac'); 

 
Figure . The distribution of split fractions by gender 

The interesting thing here is that there are many more men than women who are 

running close to an even split! This almost looks like some kind of bimodal distribu‐ tion 

among the men and women. Let’s see if we can suss out what’s going on by look‐ ing at the 

distributions as a function of age. 

A nice way to compare distributions is to use a violin plot (Figure : 

In[34]: 

sns.violinplot("gender", "split_frac", data=data, 

palette=["lightblue", "lightpink"]); 



 

 

 

Figure . A violin plot showing the split fraction by gender 

 

This is yet another way to compare the distributions between men and women. 

Let’s look a little deeper, and compare these violin plots as a function of age. We’ll start 

by creating a new column in the array that specifies the decade of age that each person is 

in (Figure ): 

In[35]: data['age_dec'] = data.age.map(lambda age: 10 * (age // 
10)) data.head() 

Out[35]: 

age gender split final split_sec final_sec split_frac age_dec 
0 33 M 01:05:38 02:08:51 3938.0 7731.0 -0.018756
 30 

1 32 M 01:06:26 02:09:28 3986.0 7768.0 -0.026262 30 

2 31 M 01:06:49 02:10:42 4009.0 7842.0 -0.022443 30 

3 38 M 01:06:16 02:13:45 3976.0 8025.0 0.009097 30 

4 31 M 01:06:32 02:13:59 3992.0 8039.0 0.006842 30 

In[36]: 

men = (data.gender == 'M') 
women = (data.gender == 
'W') 



 

 

with sns.axes_style(style=None): 

sns.violinplot("age_dec", "split_frac", hue="gender", 
data=data, split=True, inner="quartile", 
palette=["lightblue", "lightpink"]); 

Figure . A violin plot showing the split fraction by gender and age 

Looking at this, we can see where the distributions of men and women differ: the split 

distributions of men in their 20s to 50s show a pronounced over-density toward 

lower splits when compared to women of the same age (or of any age, for that matter). 

Also surprisingly, the 80-year-old women seem to outperform everyone in terms of their 

split time. This is probably due to the fact that we’re estimating the distribution from 

small numbers, as there are only a handful of runners in that range: 

In[38]: (data.age > 

80).sum() Out[38]: 7 

Back to the men with negative splits: who are these runners? Does this split 

fraction correlate with finishing quickly? We can plot this very easily. We’ll use 

regplot, which will automatically fit a linear regression to the data (Figure ): 

In[37]: g = sns.lmplot('final_sec', 'split_frac', col='gender', data=data, 



 

 

markers=".", 
scatter_kws=dict(color='c')) g.map(plt.axhline, y=0.1, 
color="k", ls=":"); 

Figure . Split fraction versus finishing time by gender 

Apparently the people with fast splits are the elite runners who are finishing within 

~15,000 seconds, or about 4 hours. People slower than that are much less likely to have a 

fast second split. 

Day 02- Data Visualization on World Map- Geographic Data with Basemap 

One common type of visualization in data science is that of geographic data. Matplot‐ lib’s 

main tool for this type of visualization is the Basemap toolkit, which is one of several 

Matplotlib toolkits that live under the mpl_toolkits namespace. Admittedly, Basemap 

feels a bit clunky to use, and often even simple visualizations take much longer to render 

than you might hope. More modern solutions, such as leaflet or the Google Maps API, 

may be a better choice for more intensive map visualizations. Still, Basemap is a useful 

tool for Python users to have in their virtual toolbelts. In this sec‐ tion, we’ll show several 

examples of the type of map visualization that is possible with this toolkit. 

Installation of Basemap is straightforward; if you’re using conda you can type this 

and the package will be downloaded: 

$ conda install basemap 

We add just a single new import to our standard boilerplate: 

In[1]: %matplotlib inline 

import numpy as np 



 

 

import matplotlib.pyplot as plt 

from mpl_toolkits.basemap import Basemap 

Once you have the Basemap toolkit installed and imported, geographic plots are just a 

few lines away (the graphics in Figure  also require the PIL package in Python 2, or the 

pillow package in Python 3): 

In[2]: plt.figure(figsize=(8, 8)) 

m = Basemap(projection='ortho', resolution=None, lat_0=50, 
lon_0=-100) m.bluemarble(scale=0.5); 

 
Figure. A “bluemarble” projection of the Earth 

The meaning of the arguments to Basemap will be discussed momentarily. 

The useful thing is that the globe shown here is not a mere image; it is a fully func‐ 

tioning Matplotlib axes that understands spherical coordinates and allows us to easily 

over-plot data on the map! For example, we can use a different map projection, zoom in 

to North America, and plot the location of Seattle. We’ll use an etopo image (which shows 

topographical features both on land and under the ocean) as the map back‐ ground 

(Figure ): 

In[3]: fig = plt.figure(figsize=(8, 8)) 



 

 

m = Basemap(projection='lcc', 
resolution=None, width=8E6, 
height=8E6, 

lat_0=45, lon_0=-
100,) m.etopo(scale=0.5, 
alpha=0.5) 

 
# Map (long, lat) to (x, y) for plotting 

x, y = m(-122.3, 47.6) 

plt.plot(x, y, 'ok', markersize=5) 
plt.text(x, y, ' Seattle', fontsize=12); 

 

 
Figure. Plotting data and labels on the map 

This gives you a brief glimpse into the sort of geographic visualizations that are possi‐ ble 

with just a few lines of Python. We’ll now discuss the features of Basemap in more depth, 

and provide several examples of visualizing map data. Using these brief exam‐ ples as 

building blocks, you should be able to create nearly any map visualization that you desire. 

Map Projections 

The first thing to decide when you are using maps is which projection to use. You’re 



 

 

probably familiar with the fact that it is impossible to project a spherical map, such as that 

of the Earth, onto a flat surface without somehow distorting it or breaking its continuity. 

These projections have been developed over the course of human history, and there are 

a lot of choices! Depending on the intended use of the map projection, there are certain 

map features (e.g., direction, area, distance, shape, or other consider‐ ations) that are 

useful to maintain. 

The Basemap package implements several dozen such projections, all 

referenced by a short format code. Here we’ll briefly demonstrate some of the 

more common ones. 

We’ll start by defining a convenience routine to draw our world map along with 

the longitude and latitude lines: 

 

In[4]: from itertools import  chain 

def draw_map(m, scale=0.2): 

# draw a shaded-relief image 

m.shadedrelief(scale=scale) 

# lats and longs are returned as a dictionary 

lats = m.drawparallels(np.linspace(-90, 90, 13)) 

lons = m.drawmeridians(np.linspace(-180, 180, 13)) 

# keys contain the plt.Line2D instances 

lat_lines = chain(*(tup[1][0] for tup in lats.items())) 
lon_lines = chain(*(tup[1][0] for tup in lons.items())) 
all_lines = chain(lat_lines, lon_lines) 

# cycle through these lines and set the desired style 

for line in all_lines: 

line.set(linestyle='-', alpha=0.3, color='w') 

Cylindrical projections 

The simplest of map projections are cylindrical projections, in which lines of constant 

latitude and longitude are mapped to horizontal and vertical lines, respectively. This type 

of mapping represents equatorial regions quite well, but results in extreme dis‐ tortions 

near the poles. The spacing of latitude lines varies between different cylindri‐ cal 

projections, leading to different conservation properties, and different distortion near the 

poles. In Figure 4-104, we show an example of the equidistant cylindrical pro‐ jection, which 



 

 

chooses a latitude scaling that preserves distances along meridians. Other cylindrical 

projections are the Mercator (projection='merc') and the cylin‐ drical equal-area 

(projection='cea') projections. 

In[5]: fig = plt.figure(figsize=(8, 6), edgecolor='w') m 
= Basemap(projection='cyl', 
resolution=None, 

llcrnrlat=-90, urcrnrlat=90, 
llcrnrlon=-180, urcrnrlon=180, 
)draw_map(m) 

Figure. Cylindrical equal-area projection 

The additional arguments to Basemap for this view specify the latitude (lat) and lon‐ 

gitude (lon) of the lower-left corner (llcrnr) and upper-right corner (urcrnr) for the desired 

map, in units of degrees. 

Pseudo-cylindrical projections 

Pseudo-cylindrical projections relax the requirement that meridians (lines of constant 

longitude) remain vertical; this can give better properties near the poles of the projec‐ 

tion. The Mollweide projection (projection='moll') is one common example of this, in 

which all meridians are elliptical arcs (Figure ). It is constructed so as to preserve area 

across the map: though there are distortions near the poles, the area of small patches 

reflects the true area. Other pseudo-cylindrical projections are the sinusoidal 

(projection='sinu') and Robinson (projection='robin') projections. 

In[6]: fig = plt.figure(figsize=(8, 6), edgecolor='w') m 
= Basemap(projection='moll', 
resolution=None, 

lat_0=0, lon_0=0) 



 

 

draw_map(m) 

Figure. The Molleweide projection 

The extra arguments to Basemap here refer to the central latitude (lat_0) and longi‐ tude 

(lon_0) for the desired map. 

Perspective projections 

Perspective projections are constructed using a particular choice of perspective point, 

similar to if you photographed the Earth from a particular point in space (a point which, 

for some projections, technically lies within the Earth!). One common exam‐ ple is the 

orthographic projection (projection='ortho'), which shows one side of the globe as seen 

from a viewer at a very long distance. Thus, it can show only half the globe at a time. Other 

perspective-based projections include the gnomonic projection (projection='gnom') and 

stereographic projection (projection='stere'). These are often the most useful for showing 

small portions of the map. 

Here is an example of the orthographic projection: 

In[7]: fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='ortho', 
resolution=None, lat_0=50, 
lon_0=0)draw_map(m); 

Figure. The orthographic projection 



 

 

Conic projections 

A conic projection projects the map onto a single cone, which is then unrolled. This can 

lead to very good local properties, but regions far from the focus point of the cone 

may become very distorted. One example of this is the Lambert conformal conic 

projection (projection='lcc'), which we saw earlier in the map of North America. It 

projects the map onto a cone arranged in such a way that two standard parallels 

(specified in Basemap by lat_1 and lat_2) have well-represented distances, with scale 

decreasing between them and increasing outside of them. Other useful conic projec‐ 

tions are the equidistant conic (projection='eqdc') and the Albers equal-area (pro 

jection='aea') projection (Figure 4-107). Conic projections, like perspective projections, 

tend to be good choices for representing small to medium patches of the globe. 

In[8]: fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', 
resolution=None, lon_0=0, 
lat_0=50, lat_1=45, 
lat_2=55,width=1.6E7, 
height=1.2E7) 

draw_map(m) 

Figure. The Albers equal-area projection 

Other projections 

If you’re going to do much with map-based visualizations, I encourage you to read up on 

other available projections, along with their properties, advantages, and disadvan‐ tages. 

Most likely, they are available in the Basemap package. If you dig deep enough into this 

topic, you’ll find an incredible subculture of geo-viz geeks who will be ready to argue 

fervently in support of their favorite projection for any given application! 



 

 

Drawing a Map Background 

Earlier we saw the bluemarble() and shadedrelief() methods for projecting global images 
on the map, as well as the drawparallels() and drawmeridians() methods for drawing lines 
of constant latitude and longitude. The Basemap package contains a range of useful 
functions for drawing borders of physical features like continents, oceans, lakes, and 

rivers, as well as political boundaries such as countries and US states and counties. The 
following are some of the available drawing functions that you may wish to explore using 
IPython’s help features: 

• Physical boundaries and bodies of water 

drawcoastlines() 

Draw continental coast lines 

drawlsmask() 

Draw a mask between the land and sea, for use with projecting 

images on one or the other drawmapboundary() 

Draw the map boundary, including the fill color for oceans 

drawrivers() 

Draw rivers on the map 

fillcontinents() 

Fill the continents with a given color; optionally fill lakes with another color 

• Political boundaries 

drawcountries() 

Draw country boundaries 

drawstates() 

Draw US state boundaries 

drawcounties() 

Draw US county boundaries 

• Map features 

drawgreatcircle() 

Draw a great circle between two points 



 

 

drawparallels() 

Draw lines of constant latitude 

drawmeridians() 

Draw lines of constant longitude 

drawmapscale() 

Draw a linear scale on the map 

• Whole-globe images 

bluemarble() 

Project NASA’s blue marble image onto the map 

shadedrelief() 

Project a shaded relief image onto the map 

etopo() 

Draw an etopo relief image onto the map 

warpimage() 

Project a user-provided image onto the mapFor the boundary-based features, you must set the 
desired resolution when creating a Basemap image. The resolution argument of the Basemap class 
sets the level of detail in boundaries, either 'c' (crude), 'l' (low), 'i' (intermediate), 'h' (high), 'f' (full), or 
None if no boundaries will be used. This choice is important: setting high- resolution boundaries on 
a global map, for example, can be very slow. 

Here’s an example of drawing land/sea boundaries, and the effect of the resolution 

parameter. We’ll create both a low- and high-resolution map of Scotland’s beautiful Isle 

of Skye. It’s located at 57.3°N, 6.2°W, and a map of 90,000×120,000 kilometers shows it 

well (Figure ): 

In[9]: fig, ax = plt.subplots(1, 2, figsize=(12, 8)) 

for i, res in enumerate(['l', 'h']): 



 

 

m = Basemap(projection='gnom', lat_0=57.3, lon_0=-6.2, 
width=90000, height=120000, resolution=res, 

ax=ax[i])m.fillcontinents(color="#FFDDCC", 
lake_color='#DDEEFF') 
m.drawmapboundary(fill_color="#DDEEFF") 
m.drawcoastlines() 
ax[i].set_title("resolution='{0}'".format(res)); 

Figure. Map boundaries at low and high resolution 

Notice that the low-resolution coastlines are not suitable for this level of zoom, while 

high-resolution works just fine. The low level would work just fine for a global view, 

however, and would be much faster than loading the high-resolution border data for the 

entire globe! It might require some experimentation to find the correct resolution 

parameter for a given view; the best route is to start with a fast, low-resolution plot and 

increase the resolution as needed. 

Plotting Data on Maps 

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a vari‐ ety 
of data onto a map background. For simple plotting and text, any plt function works on 
the map; you can use the Basemap instance to project latitude and longitude coordinates 

to (x, y) coordinates for plotting with plt, as we saw earlier in the Seat‐ tle example. 

In addition to this, there are many map-specific functions available as methods of the 

Basemap instance. These work very similarly to their standard Matplotlib counter‐ parts, 

but have an additional Boolean argument latlon, which if set to True allows you to pass 
raw latitudes and longitudes to the method, rather than projected (x, y) coordinates. 



 

 

Some of these map-specific methods are: 

contour()/contourf() 

Draw contour lines or filled contours 

imshow() 

Draw an image 

pcolor()/pcolormesh() 

Draw a pseudocolor plot for irregular/regular meshes 

plot() 

Draw lines and/or markers 

scatter() 

Draw points with markers 

quiver() 

Draw vectors 

barbs() 

Draw wind barbs 

drawgreatcircle() 

Draw a great circle 

We’ll see examples of a few of these as we continue. For more information on 

these functions, including several example plots, see the online Basemap 

documentation. 

Example: California Cities 

Recall that in “Customizing Plot Legends” on page 249, we demonstrated the use of size 
and color in a scatter plot to convey information about the location, size, and population 

of California cities. Here, we’ll create this plot again, but using Basemap to put the data in 

context. 

We start with loading the data, as we did before: 

In[10]: import pandas as pd 

cities = pd.read_csv('data/california_cities.csv') 



 

 

 
# Extract the data we're interested in 

lat = cities['latd'].values 
lon = cities['longd'].values 

population = 
cities['population_total'].values area = 
cities['area_total_km2'].values 

Next, we set up the map projection, scatter the data, and then create a colorbar and 

legend: 

In[11]: # 1. Draw the map background 

fig = plt.figure(figsize=(8, 8)) 

m = Basemap(projection='lcc', 
resolution='h', lat_0=37.5, 
lon_0=-119, width=1E6, 
height=1.2E6) 

m.shadedrelief() 
m.drawcoastlines(color='gra
y') 
m.drawcountries(color='gra
y') 
m.drawstates(color='gray') 

# 2.  scatter  city  data,  with  color  reflecting  

population # and size reflecting area 

m.scatter(lon, lat, latlon=True, 

c=np.log10(population), 
s=area, cmap='Reds', 
alpha=0.5) 

# 3. create colorbar and legend 
plt.colorbar(label=r'$\log_{10}({\rm 
population})$') plt.clim(3, 7) 

# make legend with dummy points 

for a in [100, 300, 500]: 

plt.scatter([], [], c='k', alpha=0.5, s=a, 
label=str(a) + ' km$^2$') 



 

 

plt.legend(scatterpoints=1, 
frameon=False, labelspacing=1, 

loc='lower left'); 

Figure. Scatter plot over a map background 

This shows us roughly where larger populations of people have settled in California: they 

are clustered near the coast in the Los Angeles and San Francisco areas, stretched along 

the highways in the flat central valley, and avoiding almost completely the mountainous 

regions along the borders of the state. 

Example: Surface Temperature Data 

As an example of visualizing some more continuous geographic data, let’s consider the 

“polar vortex” that hit the eastern half of the United States in January 2014. A great 

source for any sort of climatic data is NASA’s Goddard Institute for Space Stud‐ ies. Here 

we’ll use the GIS 250 temperature data, which we can download using shell commands 

(these commands may have to be modified on Windows machines). The data used here 

was downloaded on 6/12/2016, and the file size is approximately 9 MB: 

In[12]: # !curl   -O   
http://data.giss.nasa.gov/pub/gistemp/gistemp250.nc.gz # 
!gunzip gistemp250.nc.gz 

The data comes in NetCDF format, which can be read in Python by the netCDF4 
library. You can install this library as shown here: 



 

 

$ conda install netcdf4 

We read the data as follows: 

In[13]: from netCDF4 import 
Dataset data = 
Dataset('gistemp250.nc') 

The file contains many global temperature readings on a variety of dates; we 

need to select the index of the date we’re interested in—in this case, January 15, 

2014: 

In[14]: from netCDF4 import date2index 

from datetime import datetime 

timeindex = date2index(datetime(2014, 1, 15), 

data.variables['time']) 

Now we can load the latitude and longitude data, as well as the temperature 

anomaly for this index: 

In[15]: lat = data.variables['lat'][:] lon 
= data.variables['lon'][:] lon, 
lat = np.meshgrid(lon, lat) 

temp_anomaly = data.variables['tempanomaly'][timeindex] 

Finally, we’ll use the pcolormesh() method to draw a color mesh of the data. We’ll look 

at North America, and use a shaded relief map in the background. Note that for this data 
we specifically chose a divergent colormap, which has a neutral color at zero and two 
contrasting colors at negative and positive values (Figure ). We’ll also lightly draw the 

coastlines over the colors for reference: 

In[16]: fig = plt.figure(figsize=(10, 8)) 

m = Basemap(projection='lcc', 
resolution='c', width=8E6, 
height=8E6, 

lat_0=45, lon_0=-100,) 
m.shadedrelief(scale=0.5) 
m.pcolormesh(lon, lat, 
temp_anomaly, 

latlon=True, 
cmap='RdBu_r') plt.clim(-8, 8) 
m.drawcoastlines(color='lightgray') 



 

 

 
plt.title('January 2014 Temperature Anomaly') 
plt.colorbar(label='temperature anomaly (°C)'); 

The data paints a picture of the localized, extreme temperature anomalies that hap‐ 

pened during that month. The eastern half of the United States was much colder than 

normal, while the western half and Alaska were much warmer. Regions with no recorded 

temperature show the map background.

 
Figure. The temperature anomaly in January 2014 

Day-03: Visualization using google maps and ArcGis(Iris Data) 

Day-04: Discussion on projects and exploring other datasets  

Day-05: Mid Assessments   
 

  



 

 

Week 6: Advance Data Analytics 

Day-01: Hyperparameters and Model Validation 

In the previous section, we saw the basic recipe for applying a supervised machine learning 
model: 

1. Choose a class of model. 

2. Choose model hyperparameters. 

3. Fit the model to the training data 

4. Use the model to predict labels for new data 

The first two pieces of this—the choice of model and choice of hyperparameters—are perhaps 
the most important part of using these tools and techniques effectively. In order to make an 
informed choice, we need a way to validate that our model and our hyperparameters are a 
good fit to the data. While this may sound simple, there are some pitfalls that you must avoid 
to do this effectively. 

Thinking About Model Validation 

In principle, model validation is very simple: after choosing a model and its hyper‐ 
parameters, we can estimate how effective it is by applying it to some of the training data and 
comparing the prediction to the known value. 

The following sections first show a naive approach to model validation and why it fails, before 
exploring the use of holdout sets and cross-validation for more robust model evaluation. 

Model validation the wrong way 

Let’s demonstrate the naive approach to validation using the Iris data, which we saw in the 
previous section. We will start by loading the data: 

In[1]: from sklearn.datasets import load_iris 
iris = load_iris() 

X = iris.data 

y = iris.target 

Next we choose a model and hyperparameters. Here we’ll use a k-neighbors classifier with 

n_neighbors=1. This is a very simple and intuitive model that says “the label of an unknown 

point is the same as the label of its closest training point”: 

In[2]: from sklearn.neighbors import KNeighborsClassifier 
model = KNeighborsClassifier(n_neighbors=1) 

Then we train the model, and use it to predict labels for data we already know: 



 

 

In[3]: model.fit(X, y) 

y_model = model.predict(X) 

Finally, we compute the fraction of correctly labeled points: 

In[4]: from sklearn.metrics import accuracy_score 
accuracy_score(y, y_model) 

Out[4]: 1.0 

We see an accuracy score of 1.0, which indicates that 100% of points were correctly 
labeled by our model! But is this truly measuring the expected accuracy? Have we 
really come upon a model that we expect to be correct 100% of the time? 

As you may have gathered, the answer is no. In fact, this approach contains a funda‐ mental 
flaw: it trains and evaluates the model on the same data. Furthermore, the nearest neighbor 
model is an instance-based estimator that simply stores the training data, and predicts labels 
by comparing new data to these stored points; except in con‐ trived cases, it will get 100% 
accuracy every time! 

Model validation the right way: Holdout sets 

So what can be done? We can get a better sense of a model’s performance using what’s  known as a 
holdout set; that is, we hold back some subset of the data from the training of the model, and 
then use this holdout set to check the model performance. We can do this splitting using the 

train_test_split utility in Scikit-Learn: 

In[5]: from sklearn.cross_validation import train_test_split 

# split the data with 50% in each set 

X1, X2, y1, y2 = train_test_split(X, y, random_state=0, 

train_size=0.5) 

 

# fit the model on one set of data 

model.fit(X1, y1) 

 
# evaluate the model on the second set of data 
y2_model = model.predict(X2) 
accuracy_score(y2, y2_model) 

Out[5]: 0.90666666666666662 

We see here a more reasonable result: the nearest-neighbor classifier is about 90% accurate 
on this holdout set. The holdout set is similar to unknown data, because the model has not 
“seen” it before. 

Model validation via cross-validation 

One disadvantage of using a holdout set for model validation is that we have lost a portion of 



 

 

our data to the model training. In the previous case, half the dataset does not contribute to the 
training of the model! This is not optimal, and can cause prob‐ lems—especially if the initial 
set of training data is small. 

One way to address this is to use cross-validation—that is, to do a sequence of fits 
where each subset of the data is used both as a training set and as a validation set. 
Visually, it might look something like Figure 5-22. 

 

Figure 5-22. Visualization of two-fold cross-validation 

Here we do two validation trials, alternately using each half of the data as a holdout set. Using 
the split data from before, we could implement it like this: 

In[6]: y2_model = model.fit(X1, y1).predict(X2) 
y1_model = model.fit(X2, y2).predict(X1) 

accuracy_score(y1, y1_model), accuracy_score(y2, y2_model) 

Out[6]: (0.95999999999999996, 0.90666666666666662) 

What comes out are two accuracy scores, which we could combine (by, say, taking the mean) to 
get a better measure of the global model performance. This particular form of cross-validation 
is a two-fold cross-validation—one in which we have split the data into two sets and used each 
in turn as a validation set. 

We could expand on this idea to use even more trials, and more folds in the data—for example, 
Figure 5-23 is a visual depiction of five-fold cross-validation. 

 



 

 

 
Figure 5-23. Visualization of five-fold cross-validation 

Here we split the data into five groups, and use each of them in turn to evaluate the model fit 
on the other 4/5 of the data. This would be rather tedious to do by hand, and so we can use 

Scikit-Learn’s cross_val_score convenience routine to do it succinctly: 

In[7]: from sklearn.cross_validation import cross_val_score 
cross_val_score(model, X, y, cv=5) 

Out[7]: array([ 0.96666667, 0.96666667, 0.93333333, 0.93333333, 1. ]) 

Repeating the validation across different subsets of the data gives us an even better idea of the 
performance of the algorithm. 

Scikit-Learn implements a number of cross-validation schemes that are useful in par‐ ticular 

situations; these are implemented via iterators in the cross_validation mod‐ ule. For 

example, we might wish to go to the extreme case in which our number of folds is equal to the 
number of data points; that is, we train on all points but one in each trial. This type of cross-
validation is known as leave-one-out cross-validation, and can be used as follows: 

In[8]: from sklearn.cross_validation import LeaveOneOut 

scores = cross_val_score(model, X, y, cv=LeaveOneOut(len(X))) 
scores 
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Because we have 150 samples, the leave-one-out cross-validation yields scores for 150 trials, 
and the score indicates either successful (1.0) or unsuccessful (0.0) prediction. Taking the 
mean of these gives an estimate of the error rate: 

In[9]: scores.mean() 

Out[9]: 0.95999999999999996 

Other cross-validation schemes can be used similarly. For a description of what is available in 

Scikit-Learn, use IPython to explore the sklearn.cross_validation sub‐ module, or take a look 

at Scikit-Learn’s online cross-validation documentation. 

Selecting the Best Model 

Now that we’ve seen the basics of validation and cross-validation, we will go into a little more 
depth regarding model selection and selection of hyperparameters. These issues are some of 
the most important aspects of the practice of machine learning, and I find that this 
information is often glossed over in introductory machine learn‐ ing tutorials. 

Of core importance is the following question: if our estimator is underperforming, how 

should we move forward? There are several possible answers: 

• Use a more complicated/more flexible model 

• Use a less complicated/less flexible model 

• Gather more training samples 

• Gather more data to add features to each sample 

The answer to this question is often counterintuitive. In particular, sometimes using a more 
complicated model will give worse results, and adding more training samples may not 
improve your results! The ability to determine what steps will improve your model is what 
separates the successful machine learning practitioners from the unsuccessful. 

The bias–variance trade-off 

Fundamentally, the question of “the best model” is about finding a sweet spot in the trade-off 
between bias and variance. Consider Figure 5-24, which presents two regression fits to the 
same dataset. 



 

 

 

Figure 5-24. A high-bias and high-variance regression model 

It is clear that neither of these models is a particularly good fit to the data, but they 
fail in different ways. 

The model on the left attempts to find a straight-line fit through the data. Because the data are 
intrinsically more complicated than a straight line, the straight-line model will never be able 
to describe this dataset well. Such a model is said to underfit the data; that is, it does not have 

enough model flexibility to suitably account for all the features in the data. Another way of 
saying this is that the model has high bias. 

The model on the right attempts to fit a high-order polynomial through the data. Here 
the model fit has enough flexibility to nearly perfectly account for the fine fea‐ tures in the 
data, but even though it very accurately describes the training data, its precise form seems to 
be more reflective of the particular noise properties of the data rather than the intrinsic 
properties of whatever process generated that data. Such a model is said to overfit the data; 

that is, it has so much model flexibility that the model ends up accounting for random errors 
as well as the underlying data distribu‐ tion. Another way of saying this is that the model has 
high variance. 

To look at this in another light, consider what happens if we use these two models to predict 
the y-value for some new data. In diagrams in Figure 5-25, the red/lighter points indicate data 
that is omitted from the training set. 



 

 

 
Figure 5-25. Training and validation scores in high-bias and high-variance models 

 
The score here is the R2 score, or coefficient of determination, which measures how well a 

model performs relative to a simple mean of the target values. R2 = 1 indicates a perfect 

match, R2 = 0 indicates the model does no better than simply taking the mean of the data, and 

negative values mean even worse models. From the scores asso‐ ciated with these two models, 

we can make an observation that holds more generally: 

• For high-bias models, the performance of the model on the validation set is simi‐ 

lar to the performance on the training set. 

• For high-variance models, the performance of the model on the validation set is 

far worse than the performance on the training set. 

If we imagine that we have some ability to tune the model complexity, we would 
expect the training score and validation score to behave as illustrated in Figure 5-26. 

The diagram shown in Figure 5-26 is often called a validation curve, and we see the following 
essential features: 

• The training score is everywhere higher than the validation score. This is gener‐ 

ally the case: the model will be a better fit to data it has seen than to data it has 

not seen. 

• For very low model complexity (a high-bias model), the training data is underfit, 

which means that the model is a poor predictor both for the training data and for 

any previously unseen data. 

• For very high model complexity (a high-variance model), the training data is 

overfit, which means that the model predicts the training data very well, but fails 

for any previously unseen data. 

• For some intermediate value, the validation curve has a maximum. This level of 

complexity indicates a suitable trade-off between bias and variance. 



 

 

 
Figure 5-26. A schematic of the relationship between model complexity, training score, and 

validation score 

The means of tuning the model complexity varies from model to model; when we discuss 
individual models in depth in later sections, we will see how each model allows for such 
tuning. 

Validation curves in Scikit-Learn 

Let’s look at an example of using cross-validation to compute the validation curve for a class of 
models. Here we will use a polynomial regression model: this is a generalized linear model in 
which the degree of the polynomial is a tunable parameter. For example, a degree-1 
polynomial fits a straight line to the data; for model parameters a and b: 

 
y = ax + b 

 
A degree-3 polynomial fits a cubic curve to the data; for model parameters a, b, c, d: 

 
y = ax3 + bx2 + cx + d 

 
We can generalize this to any number of polynomial features. In Scikit-Learn, we can 
implement this with a simple linear regression combined with the polynomial pre‐ processor. 
We will use a pipeline to string these operations together (we will discuss polynomial features 
and pipelines more fully in “Feature Engineering” on page 375): 



 

 

In[10]: from sklearn.preprocessing import PolynomialFeatures 
from sklearn.linear_model import LinearRegression 
from sklearn.pipeline import make_pipeline 

 

def PolynomialRegression(degree=2, **kwargs): 

return make_pipeline(PolynomialFeatures(degree), 

LinearRegression(**kwargs)) 

Now let’s create some data to which we will fit our model: 

In[11]: import numpy as np 

 

def make_data(N, err=1.0, rseed=1): 

# randomly sample the data 

rng = np.random.RandomState(rseed) 

X = rng.rand(N, 1) ** 2 

y = 10 - 1. / (X.ravel() + 0.1) 

if err > 0: 

y += err * rng.randn(N) 

return X, y 

 

X, y = make_data(40) 

We can now visualize our data, along with polynomial fits of several degrees 
(Figure 5-27): 

In[12]: %matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn; seaborn.set() # plot formatting 

X_test = np.linspace(-0.1, 1.1, 500)[:, None] 

plt.scatter(X.ravel(), y, color='black') 

axis = plt.axis() 

for degree in [1, 3, 5]: 

y_test = PolynomialRegression(degree).fit(X, y).predict(X_test) 
plt.plot(X_test.ravel(), y_test, label='degree={0}'.format(degree)) 

plt.xlim(-0.1, 1.0) 



 

 

plt.ylim(-2, 12) 
plt.legend(loc='best'); 

The knob controlling model complexity in this case is the degree of the polynomial, which can 
be any non-negative integer. A useful question to answer is this: what degree of polynomial 
provides a suitable trade-off between bias (underfitting) and variance (overfitting)? 

 
Figure 5-27. Three different polynomial models fit to a dataset 

We can make progress in this by visualizing the validation curve for this particular data and 

model; we can do this straightforwardly using the validation_curve conve‐ nience routine 

provided by Scikit-Learn. Given a model, data, parameter name, and a range to explore, this 
function will automatically compute both the training score and validation score across the 
range (Figure 5-28): 

In[13]: 

from sklearn.learning_curve import validation_curve 
degree = np.arange(0, 21) 

train_score, val_score = validation_curve(PolynomialRegression(), X, y, 

'polynomialfeatures degree', 
degree, cv=7) 

 

plt.plot(degree, np.median(train_score, 1), color='blue', label='training score') 
plt.plot(degree, np.median(val_score, 1), color='red', label='validation score') 
plt.legend(loc='best') 

plt.ylim(0, 1) 
plt.xlabel('degree') 
plt.ylabel('score'); 

This shows precisely the qualitative behavior we expect: the training score is every‐ where 
higher than the validation score; the training score is monotonically improving with increased 
model complexity; and the validation score reaches a maximum before dropping off as the 



 

 

model becomes overfit. 

 
Figure 5-28. The validation curves for the data in Figure 5-27 (cf. Figure 5-26) 

From the validation curve, we can read off that the optimal trade-off between bias and 
variance is found for a third-order polynomial; we can compute and display this fit over the 
original data as follows (Figure 5-29): 

In[14]: plt.scatter(X.ravel(), y) 
lim = plt.axis() 

y_test = PolynomialRegression(3).fit(X, y).predict(X_test) 
plt.plot(X_test.ravel(), y_test); 

plt.axis(lim); 

Figure 5-29. The cross-validated optimal model for the data in Figure 5-27 



 

 

Notice that finding this optimal model did not actually require us to compute the training 
score, but examining the relationship between the training score and valida‐ tion score can 
give us useful insight into the performance of the model. 

Learning Curves 

One important aspect of model complexity is that the optimal model will generally depend on 
the size of your training data. For example, let’s generate a new dataset with a factor of five 
more points (Figure 5-30): 

In[15]: X2, y2 = make_data(200) 
plt.scatter(X2.ravel(), y2); 

Figure 5-30. Data to demonstrate learning curves 

We will duplicate the preceding code to plot the validation curve for this larger 
data‐ set; for reference let’s over-plot the previous results as well (Figure 5-31): 

In[16]: 

degree = np.arange(21) 

train_score2, val_score2 = validation_curve(PolynomialRegression(), X2, y2, 

'polynomialfeatures degree', 
degree, cv=7) 

 

plt.plot(degree, np.median(train_score2, 1), color='blue', 
label='training score') 

plt.plot(degree, np.median(val_score2, 1), color='red', label='validation score') 
plt.plot(degree, np.median(train_score, 1), color='blue', alpha=0.3, 

linestyle='dashed') 

plt.plot(degree, np.median(val_score, 1), color='red', alpha=0.3, 
linestyle='dashed') 



 

 

plt.legend(loc='lower center') 
plt.ylim(0, 1) 

plt.xlabel('degree') 
plt.ylabel('score'); 

Figure 5-31. Learning curves for the polynomial model fit to data in Figure 5-30 

The solid lines show the new results, while the fainter dashed lines show the results of the 
previous smaller dataset. It is clear from the validation curve that the larger data‐ set can 
support a much more complicated model: the peak here is probably around a degree of 6, but 
even a degree-20 model is not seriously overfitting the data—the vali‐ dation and training 
scores remain very close. 

Thus we see that the behavior of the validation curve has not one, but two, important inputs: 
the model complexity and the number of training points. It is often useful to explore the 
behavior of the model as a function of the number of training points, which we can do by 
using increasingly larger subsets of the data to fit our model. A plot of the training/validation 
score with respect to the size of the training set is known as a learning curve. 

The general behavior we would expect from a learning curve is this: 

• A model of a given complexity will overfit a small dataset: this means the training 
score will be relatively high, while the validation score will be relatively low. 

• A model of a given complexity will underfit a large dataset: this means that the 
training score will decrease, but the validation score will increase. 

• A model will never, except by chance, give a better score to the validation set than 

the training set: this means the curves should keep getting closer together but 

never cross. 



 

 

With these features in mind, we would expect a learning curve to look qualitatively like that 
shown in Figure 5-32. 
 

Figure 5-32. Schematic showing the typical interpretation of learning curves 

The notable feature of the learning curve is the convergence to a particular score as the 
number of training samples grows. In particular, once you have enough points that a 
particular model has converged, adding more training data will not help you! The only way to 
increase model performance in this case is to use another (often more complex) model. 

Learning curves in Scikit-Learn 

Scikit-Learn offers a convenient utility for computing such learning curves from your models; 
here we will compute a learning curve for our original dataset with a second- order 
polynomial model and a ninth-order polynomial (Figure 5-33): 

In[17]: 

from sklearn.learning_curve import learning_curve 

 

fig, ax = plt.subplots(1, 2, figsize=(16, 6)) 
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) 

 

for i, degree in enumerate([2, 9]): 

N, train_lc, val_lc = learning_curve(PolynomialRegression(degree), 

X, y, cv=7, 
train_sizes=np.linspace(0.3, 1, 25)) 

 

ax[i].plot(N, np.mean(train_lc, 1), color='blue', label='training score') 
ax[i].plot(N, np.mean(val_lc, 1), color='red', label='validation score') 
ax[i].hlines(np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1], color='gray', 

linestyle='dashed') 



 

 

ax[i].set_ylim(0, 1) 
ax[i].set_xlim(N[0], N[-1]) 
ax[i].set_xlabel('training size') 
ax[i].set_ylabel('score') 

ax[i].set_title('degree = {0}'.format(degree), size=14) 
ax[i].legend(loc='best') 

Figure 5-33. Learning curves for a low-complexity model (left) and a high-complexity 

model (right) 

This is a valuable diagnostic, because it gives us a visual depiction of how our model responds 
to increasing training data. In particular, when your learning curve has already converged 
(i.e., when the training and validation curves are already close to each other), adding more 
training data will not significantly improve the fit! This situa‐ tion is seen in the left panel, with 

the learning curve for the degree-2 model. 

The only way to increase the converged score is to use a different (usually more com‐ plicated) 
model. We see this in the right panel: by moving to a much more compli‐ cated model, we 
increase the score of convergence (indicated by the dashed line), but at the expense of higher 
model variance (indicated by the difference between the training and validation scores). If we 
were to add even more data points, the learning curve for the more complicated model would 
eventually converge. 

Plotting a learning curve for your particular choice of model and dataset can help 
you to make this type of decision about how to move forward in improving your 
analysis. 

Validation in Practice: Grid Search 

The preceding discussion is meant to give you some intuition into the trade-off between bias 
and variance, and its dependence on model complexity and training set size. In practice, 
models generally have more than one knob to turn, and thus plots of validation and learning 
curves change from lines to multidimensional surfaces. In these cases, such visualizations are 
difficult and we would rather simply find the par‐ ticular model that maximizes the validation 
score. 



 

 

Scikit-Learn provides automated tools to do this in the grid_search module. Here is an 

example of using grid search to find the optimal polynomial model. We will explore a three-
dimensional grid of model features—namely, the polynomial degree, the flag telling us 
whether to fit the intercept, and the flag telling us whether to nor‐ malize the problem. We can 

set this up using Scikit-Learn’s GridSearchCV meta- estimator: 

In[18]: from sklearn.grid_search import GridSearchCV 

param_grid = {'polynomialfeatures degree': np.arange(21), 
'linearregression fit_intercept': [True, False], 
'linearregression normalize': [True, False]} 

grid = GridSearchCV(PolynomialRegression(), param_grid, cv=7) 

Notice that like a normal estimator, this has not yet been applied to any data. Calling the fit() 

method will fit the model at each grid point, keeping track of the scores along the way: 

In[19]: grid.fit(X, y); 

Now that this is fit, we can ask for the best parameters as follows: 

In[20]: grid.best_params_ 

Out[20]: {'linearregression fit_intercept': False, 
'linearregression normalize': True, 
'polynomialfeatures degree': 4} 

Finally, if we wish, we can use the best model and show the fit to our data using code from 
before (Figure 5-34): 

In[21]: model = grid.best_estimator_ 

 

plt.scatter(X.ravel(), y) 
lim = plt.axis() 

y_test = model.fit(X, y).predict(X_test) 
plt.plot(X_test.ravel(), y_test, hold=True); 
plt.axis(lim); 

The grid search provides many more options, including the ability to specify a cus‐ tom 
scoring function, to parallelize the computations, to do randomized searches, and more. 
For information, see the examples in “In-Depth: Kernel Density Estima‐ tion” on page 491 and 
“Application: A Face Detection Pipeline” on page 506, or refer to Scikit-Learn’s grid search 
documentation. 



 

 

 
Figure 5-34. The best-fit model determined via an automatic grid-search 

Day-02: Feature Engineering 

The previous sections outline the fundamental ideas of machine learning, but all of the 

examples assume that you have numerical data in a tidy, [n_samples, n_fea tures] format. 

In the real world, data rarely comes in such a form. With this in mind, one of the more 
important steps in using machine learning in practice is feature engi‐ neering—that is, taking 
whatever information you have about your problem and turning it into numbers that you can 
use to build your feature matrix. 

In this section, we will cover a few common examples of feature engineering tasks: features 
for representing categorical data, features for representing text, and features for representing 
images. Additionally, we will discuss derived features for increasing model complexity and 
imputation of missing data. Often this process is known as vec‐ torization, as it involves 
converting arbitrary data into well-behaved vectors. 

Categorical Features 

One common type of non-numerical data is categorical data. For example, imagine you are 
exploring some data on housing prices, and along with numerical features like “price” and 
“rooms,” you also have “neighborhood” information. For example, your data might look 
something like this: 

In[1]: data = [ 

{'price': 850000, 'rooms': 4, 'neighborhood': 'Queen Anne'}, 

{'price': 700000, 'rooms': 3, 'neighborhood': 'Fremont'}, 

{'price': 650000, 'rooms': 3, 'neighborhood': 'Wallingford'}, 

{'price': 600000, 'rooms': 2, 'neighborhood': 'Fremont'} 

] 

You might be tempted to encode this data with a straightforward numerical mapping: 



 

 

In[2]: {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3}; 

It turns out that this is not generally a useful approach in Scikit-Learn: the package’s models 
make the fundamental assumption that numerical features reflect algebraic quantities. Thus 
such a mapping would imply, for example, that Queen Anne < Fre‐ mont < Wallingford, or even 
that Wallingford - Queen Anne = Fremont, which (niche demographic jokes aside) does not 
make much sense. 

In this case, one proven technique is to use one-hot encoding, which effectively creates extra 
columns indicating the presence or absence of a category with a value of 1 or 0, respectively. 

When your data comes as a list of dictionaries, Scikit-Learn’s DictVector izer will do this for 

you: 

In[3]: from sklearn.feature_extraction import DictVectorizer 
vec = DictVectorizer(sparse=False, dtype=int) 
vec.fit_transform(data) 

 

Out[3]: 
array([[ 

0, 1, 0, 850000, 4], 

[ 1, 0, 0, 700000, 3], 

[ 0, 0, 1, 650000, 3], 

[ 1, 0, 0, 600000, 2]], 
dtype=int64) 

Notice that the neighborhood column has been expanded into three separate columns, 
representing the three neighborhood labels, and that each row has a 1 in the column 
associated with its neighborhood. With these categorical features thus encoded, you can 
proceed as normal with fitting a Scikit-Learn model. 

To see the meaning of each column, you can inspect the feature names: 

In[4]: vec.get_feature_names() 

Out[4]: ['neighborhood=Fremont', 

'neighborhood=Queen Anne', 
'neighborhood=Wallingford', 
'price', 

'rooms'] 

There is one clear disadvantage of this approach: if your category has many possible values, 
this can greatly increase the size of your dataset. However, because the enco‐ ded data 
contains mostly zeros, a sparse output can be a very efficient solution: 

In[5]: vec = DictVectorizer(sparse=True, dtype=int) 
vec.fit_transform(data) 

Out[5]: <4x5 sparse matrix of type '<class 'numpy.int64'>' 

with 12 stored elements in Compressed Sparse Row format> 

Many (though not yet all) of the Scikit-Learn estimators accept such sparse inputs 

when fitting and evaluating models. sklearn.preprocessing.OneHotEncoder and 



 

 

sklearn.feature_extraction.FeatureHasher are two additional tools that Scikit- 

Learn includes to support this type of encoding. 

Text Features 

Another common need in feature engineering is to convert text to a set of representa‐ tive 
numerical values. For example, most automatic mining of social media data relies on some 
form of encoding the text as numbers. One of the simplest methods of encoding data is by 
word counts: you take each snippet of text, count the occurrences of each word within it, and 
put the results in a table. 

For example, consider the following set of three phrases: 

In[6]: sample = ['problem of evil', 

'evil queen', 
'horizon problem'] 

For a vectorization of this data based on word count, we could construct a column 
representing the word “problem,” the word “evil,” the word “horizon,” and so on. While doing 
this by hand would be possible, we can avoid the tedium by using Scikit- Learn’s 

CountVectorizer: 

In[7]: from sklearn.feature_extraction.text import CountVectorizer 

 

vec = CountVectorizer() 

X = vec.fit_transform(sample) 
X 

Out[7]: <3x5 sparse matrix of type '<class 'numpy.int64'>' 

with 7 stored elements in Compressed Sparse Row format> 

The result is a sparse matrix recording the number of times each word appears; it is easier to 

inspect if we convert this to a DataFrame with labeled columns: 

In[8]: import pandas as pd 

pd.DataFrame(X.toarray(), columns=vec.get_feature_names()) 

Out[8]
: 

evil horizo
n 

of proble
m 

quee
n 

 0 1 0 1 1 0 

 1 1 0 0 0 1 
 2 0 1 0 1 0 

There are some issues with this approach, however: the raw word counts lead to fea‐ tures 
that put too much weight on words that appear very frequently, and this can be suboptimal 
in some classification algorithms. One approach to fix this is known as term frequency–
inverse document frequency (TF–IDF), which weights the word counts by a measure of how 
often they appear in the documents. The syntax for computing these features is similar to the 
previous example: 



 

 

In[9]: from sklearn.feature_extraction.text import TfidfVectorizer 
vec = TfidfVectorizer() 

X = vec.fit_transform(sample) 

pd.DataFrame(X.toarray(), columns=vec.get_feature_names()) 

 

Out[9]
: 

evil horizo
n 

of proble
m 

queen 

 0 

0.517856 

0.00000

0 

0.68091

9 

0.51785

6 

0.00000

0 

 1 

0.605349 

0.00000

0 

0.00000

0 

0.00000

0 

0.79596

1 
 2 

0.000000 
0.79596

1 
0.00000
0 

0.60534
9 

0.00000
0 

For an example of using TF–IDF in a classification problem, see “In Depth: Naive Bayes 
Classification” on page 382. 

Image Features 

Another common need is to suitably encode images for machine learning analysis. The 
simplest approach is what we used for the digits data in “Introducing Scikit- Learn” on page 
343: simply using the pixel values themselves. But depending on the application, such 
approaches may not be optimal. 

A comprehensive summary of feature extraction techniques for images is well beyond the 
scope of this section, but you can find excellent implementations of many of the standard 
approaches in the Scikit-Image project. For one example of using Scikit- Learn and Scikit-
Image together, see “Application: A Face Detection Pipeline” on page 506. 

Derived Features 

Another useful type of feature is one that is mathematically derived from some input features. 
We saw an example of this in “Hyperparameters and Model Validation” on page 359 when we 
constructed polynomial features from our input data. We saw that we could convert a linear 
regression into a polynomial regression not by changing the model, but by transforming the 
input! This is sometimes known as basis function regression, and is explored further in “In 
Depth: Linear Regression” on page 390. 

For example, this data clearly cannot be well described by a straight line (Figure 5-35): 

In[10]: %matplotlib inline 

import numpy as np 

import matplotlib.pyplot as plt 

 

x = np.array([1, 2, 3, 4, 5]) 



 

 

y = np.array([4, 2, 1, 3, 7]) 
plt.scatter(x, y); 

Figure 5-35. Data that is not well described by a straight line 

 
Still, we can fit a line to the data using LinearRegression and get the optimal result (Figure 
5-36): 

In[11]: from sklearn.linear_model import LinearRegression 
X = x[:, np.newaxis] 

model = LinearRegression().fit(X, y) 
yfit = model.predict(X) 
plt.scatter(x, y) 

plt.plot(x, yfit); 

Figure 5-36. A poor straight-line fit 

It’s clear that we need a more sophisticated model to describe the relationship between x and 
y. We can do this by transforming the data, adding extra columns of features to drive more 
flexibility in the model. For example, we can add polynomial features to the data this way: 

In[12]: from sklearn.preprocessing import PolynomialFeatures 
poly = PolynomialFeatures(degree=3, include_bias=False) 
X2 = poly.fit_transform(X) 

print(X2) 



 

 

 

[[ 1. 1. 1.] 

[ 2. 4. 8.] 

[ 3. 9. 27.] 

[ 4. 16. 64.] 

[ 5. 25. 125.]
] 

The derived feature matrix has one column representing x, and a second column rep‐ 

resenting x2, and a third column representing x3. Computing a linear regression on this 

expanded input gives a much closer fit to our data (Figure 5-37): 

In[13]: model = LinearRegression().fit(X2, y) 
yfit = model.predict(X2) 
plt.scatter(x, y) 

plt.plot(x, yfit); 

Figure 5-37. A linear fit to polynomial features derived from the data 

This idea of improving a model not by changing the model, but by transforming the inputs, is 
fundamental to many of the more powerful machine learning methods. We explore this idea 
further in “In Depth: Linear Regression” on page 390 in the context of basis function 
regression. More generally, this is one motivational path to the pow‐ erful set of techniques 
known as kernel methods, which we will explore in “In-Depth: Support Vector Machines” on 
age 405. 

Imputation of Missing Data 

Another common need in feature engineering is handling missing data. We discussed the 

handling of missing data in DataFrames in “Handling Missing Data” on page 119, and saw that 

often the NaN value is used to mark missing values. For example, we might have a dataset that 

looks like this: 

In[14]: from numpy import nan 

X = np.array([[ nan, 0, 3 ], 
[ 
3, 

7, 9 ], 

[ 

3, 

5, 2 ], 

[ nan 6 ], 



 

 

4, , 

[ 
8, 

8, 1 ]]) 

y = np.array([14, 16, -1, 8, -5]) 

When applying a typical machine learning model to such data, we will need to first replace 
such missing data with some appropriate fill value. This is known as imputa‐ tion of missing 
values, and strategies range from simple (e.g., replacing missing values with the mean of the 
column) to sophisticated (e.g., using matrix completion or a robust model to handle such 
data). 

The sophisticated approaches tend to be very application-specific, and we won’t dive into 

them here. For a baseline imputation approach, using the mean, median, or most frequent 

value, Scikit-Learn provides the Imputer class: 

In[15]: from sklearn.preprocessing import Imputer 
imp = Imputer(strategy='mean') 

X2 = imp.fit_transform(X) 
X2 

 

Out[15]: array([[ 
4.5, 

0. 
, 

3. 
], 

[ 3. , 7. 

, 

9. 

], 

[ 3. , 5. 

, 

2. 

], 

[ 4. , 5. 

, 

6. 

], 

[ 8. , 8. 
, 

1. 
]]) 

We see that in the resulting data, the two missing values have been replaced with the mean of 

the remaining values in the column. This imputed data can then be fed directly into, for 

example, a LinearRegression estimator: 

In[16]: model = LinearRegression().fit(X2, y) 
model.predict(X2) 

Out[16]: 

array([ 13.14869292, 14.3784627 , -1.15539732, 10.96606197, -5.33782027]) 

 

Feature Pipelines 

With any of the preceding examples, it can quickly become tedious to do the transfor‐ mations 
by hand, especially if you wish to string together multiple steps. For example, we might want a 
processing pipeline that looks something like this: 

1. Impute missing values using the mean 

2. Transform features to quadratic 

3. Fit a linear regression 



 

 

To streamline this type of processing pipeline, Scikit-Learn provides a pipeline object, which can 
be used as follows: 

In[17]: from sklearn.pipeline import make_pipeline 

 

model = make_pipeline(Imputer(strategy='mean'), 

PolynomialFeatures(degree=2), 
LinearRegression()) 

This pipeline looks and acts like a standard Scikit-Learn object, and will apply all the specified 
steps to any input data. 

In[18]: model.fit(X, y) # X with missing values, from above 

print(y) 
print(model.predict(X)) 

[14 16 -1 8 -5] 

[ 14. 16. -1. 8. -5.] 

All the steps of the model are applied automatically. Notice that for the simplicity of this 
demonstration, we’ve applied the model to the data it was trained on; this is why it was able 
to perfectly predict the result (refer back to “Hyperparameters and Model Validation” on page 
359 for further discussion of this). 

For some examples of Scikit-Learn pipelines in action, see the following section on naive 
Bayes classification as well as “In Depth: Linear Regression” on page 390 and “In-Depth: 
Support Vector Machines” on page 405. 

Day-03: Linear Regression 

Just as naive Bayes (discussed earlier in “In Depth: Naive Bayes Classification” on page 382) is 
a good starting point for classification tasks, linear regression models are a good starting point 
for regression tasks. Such models are popular because they can be fit very quickly, and are 
very interpretable. You are probably familiar with the sim‐ plest form of a linear regression 
model (i.e., fitting a straight line to data), but such models can be extended to model more 
complicated data behavior. 

In this section we will start with a quick intuitive walk-through of the mathematics behind 
this well-known problem, before moving on to see how linear models can be generalized to 
account for more complicated patterns in data. We begin with the stan‐ dard imports: 

In[1]: %matplotlib inline 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set() 
import numpy as np 

 

Simple Linear Regression 

We will start with the most familiar linear regression, a straight-line fit to data. A straight-line 



 

 

fit is a model of the form y = ax + b where a is commonly known as the slope, and b is 
commonly known as the intercept. 

Consider the following data, which is scattered about a line with a slope of 2 and an intercept 
of –5 (Figure 5-42): 

In[2]: rng = np.random.RandomState(1) 
x = 10 * rng.rand(50) 

y = 2 * x - 5 + rng.randn(50) 
plt.scatter(x, y);

 

Figure 5-42. Data for linear regression 

 
We can use Scikit-Learn’s LinearRegression estimator to fit this data and construct the best-
fit line (Figure 5-43): 

In[3]: from sklearn.linear_model import LinearRegression 
model = LinearRegression(fit_intercept=True) 

model.fit(x[:, np.newaxis], y) 

xfit = np.linspace(0, 10, 1000) 



 

 

yfit = model.predict(xfit[:, np.newaxis])plt.scatter(x, y) plt.plot(xfit, yfit); 

Figure 5-43. A linear regression model 

The slope and intercept of the data are contained in the model’s fit parameters, which in 
Scikit-Learn are always marked by a trailing underscore. Here the relevant parame‐ ters are 

coef_ and intercept_: 

In[4]: print("Model slope: ", model.coef_[0]) 

print("Model intercept:", model.intercept_) 

Model slope: 2.02720881036 

Model intercept: -4.99857708555 

We see that the results are very close to the inputs, as we might hope. 

The LinearRegression estimator is much more capable than this, however—in addi‐ tion to 

simple straight-line fits, it can also handle multidimensional linear models of the form: 

 
y = a0 + a1x1 + a2x2 + ⋯ 

 
where there are multiple x values. Geometrically, this is akin to fitting a plane to 
points in three dimensions, or fitting a hyper-plane to points in higher dimensions. 

The multidimensional nature of such regressions makes them more difficult to visu‐ alize, but 
we can see one of these fits in action by building some example data, using NumPy’s matrix 
multiplication operator: 

In[5]: rng = np.random.RandomState(1) 
X = 10 * rng.rand(100, 3) 

y = 0.5 + np.dot(X, [1.5, -2., 1.]) 



 

 

 

model.fit(X, y) 
print(model.intercept_) 
print(model.coef_) 

0.5 

[ 1.5 -2. 1. ] 

Here the y data is constructed from three random x values, and the linear regression recovers 
the coefficients used to construct the data. 

In this way, we can use the single LinearRegression estimator to fit lines, planes, or 

hyperplanes to our data. It still appears that this approach would be limited to strictly linear 
relationships between variables, but it turns out we can relax this as well. 

Basis Function Regression 

One trick you can use to adapt linear regression to nonlinear relationships between variables 
is to transform the data according to basis functions. We have seen one ver‐ sion of this before, 

in the PolynomialRegression pipeline used in “Hyperparameters and Model Validation” on 

page 359 and “Feature Engineering” on page 375. The idea is to take our multidimensional 
linear model: 

 
y = a0 + a1x1 + a2x2 + a3x3 + ⋯ 

and build the x1, x2, x3, and so on from our single-dimensional input x. That is, we let 

xn = f n x , where f n    is some function that transforms our data. 

For example, if f n x = xn, our model becomes a polynomial regression: 

y = a0 + a1x + a2x2 + a3x3 + ⋯ 

Notice that this is still a linear model—the linearity refers to the fact that the coeffi‐ cients an 

never multiply or divide each other. What we have effectively done is taken our one-
dimensional x values and projected them into a higher dimension, so that a linear fit can fit 
more complicated relationships between x and y. 

Polynomial basis functions 

This polynomial projection is useful enough that it is built into Scikit-Learn, using 

the PolynomialFeatures transformer: 

In[6]: from sklearn.preprocessing import PolynomialFeatures 
x = np.array([2, 3, 4]) 

poly = PolynomialFeatures(3, include_bias=False) 
poly.fit_transform(x[:, None]) 



 

 

 

Out[6]: 
array([[ 

2.
, 

4.
, 

8.], 

[ 3.

, 

9.

, 

27.]

, 

[ 4.
, 

16.
, 

64.]]
) 

We see here that the transformer has converted our one-dimensional array into a three-
dimensional array by taking the exponent of each value. This new, higher- dimensional data 
representation can then be plugged into a linear regression. 

As we saw in “Feature Engineering” on page 375, the cleanest way to accomplish this is to use a 
pipeline. Let’s make a 7th-degree polynomial model in this way: 

In[7]: from sklearn.pipeline import make_pipeline 
poly_model = make_pipeline(PolynomialFeatures(7), 

LinearRegression()) 

With this transform in place, we can use the linear model to fit much more compli‐ cated 
relationships between x and y. For example, here is a sine wave with noise (Figure 5-44): 

 

In[8]: rng = np.random.RandomState(1) 
x = 10 * rng.rand(50) 

y = np.sin(x) + 0.1 * rng.randn(50) 

 

poly_model.fit(x[:, np.newaxis], y) 

yfit = poly_model.predict(xfit[:, np.newaxis]) 

 

plt.scatter(x, y) 
plt.plot(xfit, yfit); 

Figure 5-44. A linear polynomial fit to nonlinear training data 



 

 

Our linear model, through the use of 7th-order polynomial basis functions, can pro‐ 
vide an excellent fit to this nonlinear data! 

Gaussian basis functions 

Of course, other basis functions are possible. For example, one useful pattern is to fit 
a model that is not a sum of polynomial bases, but a sum of Gaussian bases. The 
result might look something like Figure 5-45. 

 

 
Figure 5-45. A Gaussian basis function fit to nonlinear data 

The shaded regions in the plot shown in Figure 5-45 are the scaled basis functions, and when 
added together they reproduce the smooth curve through the data. These Gaussian basis 
functions are not built into Scikit-Learn, but we can write a custom transformer that will 
create them, as shown here and illustrated in Figure 5-46 (Scikit-Learn transformers are 
implemented as Python classes; reading Scikit-Learn’s source is a good way to see how they 
can be created): 

In[9]: 

from sklearn.base import BaseEstimator, TransformerMixin 

 

class GaussianFeatures(BaseEstimator, TransformerMixin): 

"""Uniformly spaced Gaussian features for one-dimensional input""" 

 
def __init__(self, N, width_factor=2.0): 

self.N = N 

self.width_factor = width_factor 



 

 

 

@staticmethod 

def _gauss_basis(x, y, width, axis=None): 
arg = (x - y) / width 

return np.exp(-0.5 * np.sum(arg ** 2, axis)) 

 

def fit(self, X, y=None): 

# create N centers spread along the data range 

self.centers_ = np.linspace(X.min(), X.max(), self.N) 

self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0]) 

return self 

 

def transform(self, X): 

return self._gauss_basis(X[:, :, np.newaxis], self.centers_, 

self.width_, axis=1) 

 

gauss_model = make_pipeline(GaussianFeatures(20), 

LinearRegression())        
gauss_model.fit(x[:, np.newaxis], y) 

yfit = gauss_model.predict(xfit[:, np.newaxis]) 

 

plt.scatter(x, y) 
plt.plot(xfit, yfit) 
plt.xlim(0, 10); 

Figure 5-46. A Gaussian basis function fit computed with a custom transformer 



 

 

We put this example here just to make clear that there is nothing magic about poly‐ nomial 
basis functions: if you have some sort of intuition into the generating process of your data that 
makes you think one basis or another might be appropriate, you can use them as well. 

Regularization 

The introduction of basis functions into our linear regression makes the model much more 
flexible, but it also can very quickly lead to overfitting (refer back to “Hyper‐ parameters and 
Model Validation” on page 359 for a discussion of this). For example, if we choose too many 
Gaussian basis functions, we end up with results that don’t look so good (Figure 5-47): 

In[10]: model = make_pipeline(GaussianFeatures(30), 

LinearRegression()) 
model.fit(x[:, np.newaxis], y) 

 

plt.scatter(x, y) 

plt.plot(xfit, model.predict(xfit[:, np.newaxis])) 

plt.xlim(0, 10) 

plt.ylim(-1.5, 1.5); 

Figure 5-47. An overly complex basis function model that overfits the data 

With the data projected to the 30-dimensional basis, the model has far too much flex‐ ibility 
and goes to extreme values between locations where it is constrained by data. We can see the 
reason for this if we plot the coefficients of the Gaussian bases with respect to their locations 
(Figure 5-48): 

In[11]: def basis_plot(model, title=None): 

fig, ax = plt.subplots(2, sharex=True) 
model.fit(x[:, np.newaxis], y) 
ax[0].scatter(x, y) 



 

 

ax[0].plot(xfit, model.predict(xfit[:, np.newaxis])) 
ax[0].set(xlabel='x', ylabel='y', ylim=(-1.5, 1.5)) 

 

if title: 

ax[0].set_title(title) 

 

ax[1].plot(model.steps[0][1].centers_, 
model.steps[1][1].coef_) 

ax[1].set(xlabel='basis location', 
ylabel='coefficient', 
xlim=(0, 10)) 

 

model = make_pipeline(GaussianFeatures(30), LinearRegression()) 
basis_plot(model)

 

Figure 5-48. The coefficients of the Gaussian bases in the overly complex model 

The lower panel in Figure 5-48 shows the amplitude of the basis function at each location. 
This is typical overfitting behavior when basis functions overlap: the coeffi‐ cients of adjacent 
basis functions blow up and cancel each other out. We know that such behavior is 
problematic, and it would be nice if we could limit such spikes explicitly in the model by 
penalizing large values of the model parameters. Such a penalty is known as regularization, 
and comes in several forms. 

Ridge regression (L2 regularization) 

Perhaps the most common form of regularization is known as ridge regression or L2 

regularization, sometimes also called Tikhonov regularization. This proceeds by penal‐ izing the 

sum of squares (2-norms) of the model coefficients; in this case, the penalty on the model fit 

would be: 



 

 

 
P = α∑N θ2

 

n = 1  n 

 

where α is a free parameter that controls the strength of the penalty. This type of 

penalized model is built into Scikit-Learn with the Ridge estimator (Figure 5-49): 

In[12]: from sklearn.linear_model import Ridge 

model = make_pipeline(GaussianFeatures(30), Ridge(alpha=0.1)) 
basis_plot(model, title='Ridge Regression') 

 
Figure 5-49. Ridge (L2) regularization applied to the overly complex model (compare to 

Figure 5-48) 

The α parameter is essentially a knob controlling the complexity of the resulting model. In 
the limit α  0, we recover the standard linear regression result; in the limit α ∞, all model 
responses will be suppressed. One advantage of ridge regres‐ sion in particular is that it can 
be computed very efficiently—at hardly more compu‐ tational cost than the original linear 
regression model. 

Lasso regularization (L1) 

Another very common type of regularization is known as lasso, and involves 
penaliz‐ ing the sum of absolute values (1-norms) of regression coefficients: 

 
P = α∑N θ 

n = 1   n 

 



 

 

Though this is conceptually very similar to ridge regression, the results can differ 
sur‐ prisingly: for example, due to geometric reasons lasso regression tends to favor 
sparse models where possible; that is, it preferentially sets model coefficients to 
exactly zero. 

We can see this behavior in duplicating the plot shown in Figure 5-49, but using L1- 
normalized coefficients (Figure 5-50): 

In[13]: from sklearn.linear_model import Lasso 

model = make_pipeline(GaussianFeatures(30), Lasso(alpha=0.001)) 
basis_plot(model, title='Lasso Regression') 

 
Figure 5-50. Lasso (L1) regularization applied to the overly complex model (compare to 

Figure 5-48) 

With the lasso regression penalty, the majority of the coefficients are exactly zero, with the 
functional behavior being modeled by a small subset of the available basis functions. As with 
ridge regularization, the α parameter tunes the strength of the penalty, and should be 
determined via, for example, cross-validation (refer back to “Hyperparameters and Model 
Validation” on page 359 for a discussion of this). 

Example: Predicting Bicycle Traffic 

As an example, let’s take a look at whether we can predict the number of bicycle 
trips across Seattle’s Fremont Bridge based on weather, season, and other factors. 
We have seen this data already in “Working with Time Series” on page 188. 

In this section, we will join the bike data with another dataset, and try to determine the extent 
to which weather and seasonal factors—temperature, precipitation, and daylight hours—affect 
the volume of bicycle traffic through this corridor. Fortunately, the NOAA makes available their 
daily weather station data (I used station ID USW00024233) and we can easily use Pandas to 
join the two data sources. We will perform a simple linear regression to relate weather and 
other information to bicycle counts, in order to estimate how a change in any one of these 
parameters affects the number of riders on a given day. 



 

 

In particular, this is an example of how the tools of Scikit-Learn can be used in a stat‐ istical 
modeling framework, in which the parameters of the model are assumed to have interpretable 
meaning. As discussed previously, this is not a standard approach within machine learning, but 
such interpretation is possible for some models. 

Let’s start by loading the two datasets, indexing by date: 

In[14]: 

import pandas as pd 

counts = pd.read_csv('fremont_hourly.csv', index_col='Date', parse_dates=True) 
weather = pd.read_csv('599021.csv', index_col='DATE', parse_dates=True) 

Next we will compute the total daily bicycle traffic, and put this in its own DataFrame: 

In[15]: daily = counts.resample('d', how='sum') 
daily['Total'] = daily.sum(axis=1) 

daily = daily[['Total']] # remove other columns 

We saw previously that the patterns of use generally vary from day to day; let’s account for 
this in our data by adding binary columns that indicate the day of the week: 

In[16]: days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] 

for i in range(7): 

daily[days[i]] = (daily.index.dayofweek == i).astype(float) 

Similarly, we might expect riders to behave differently on holidays; let’s add an indica‐ tor of this 
as well: 

In[17]: from pandas.tseries.holiday import USFederalHolidayCalendar 
cal = USFederalHolidayCalendar() 

holidays = cal.holidays('2012', '2016') 

daily = daily.join(pd.Series(1, index=holidays, name='holiday')) 
daily['holiday'].fillna(0, inplace=True) 

We also might suspect that the hours of daylight would affect how many people ride; 
let’s use the standard astronomical calculation to add this information (Figure 5-51): 

In[18]: def hours_of_daylight(date, axis=23.44, latitude=47.61): 
"""Compute the hours of daylight for the given  date""" 

days = (date - pd.datetime(2000, 12, 21)).days 

m = (1. - np.tan(np.radians(latitude)) 

* np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25))) 

return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180. 

 

daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index)) 
daily[['daylight_hrs']].plot(); 



 

 

 
Figure 5-51. Visualization of hours of daylight in Seattle 

We can also add the average temperature and total precipitation to the data. In addi‐ tion to 
the inches of precipitation, let’s add a flag that indicates whether a day is dry (has zero 
precipitation): 

In[19]: # temperatures are in 1/10 deg C; convert to C 

weather['TMIN'] /= 10 

weather['TMAX'] /= 10 

weather['Temp (C)'] = 0.5 * (weather['TMIN'] + weather['TMAX']) 

 

# precip is in 1/10 mm; convert to inches 

weather['PRCP'] /= 254 

weather['dry day'] = (weather['PRCP'] == 0).astype(int) 

 

daily = daily.join(weather[['PRCP', 'Temp (C)', 'dry day']]) 

Finally, let’s add a counter that increases from day 1, and measures how many years have 
passed. This will let us measure any observed annual increase or decrease in daily crossings: 

In[20]: daily['annual'] = (daily.index - daily.index[0]).days / 365. 

Now our data is in order, and we can take a look at it: 

In[21]: daily.head() 

 

Out[21]: 
 

Date 

 

Tota

l 

 

Mon 

 

Tue 

 

Wed 

 

Thu 

 

Fri 

 

Sat 

 

Sun 

 

holida

y 

 

daylight_hrs 

\\ 



 

 

2012-10-

03 

352

1 

0 0 1 0 0 0 0 0 11.277359 

2012-10-

04 

347

5 

0 0 0 1 0 0 0 0 11.219142 

2012-10-

05 

314

8 

0 0 0 0 1 0 0 0 11.161038 

2012-10-
06 

200
6 

0 0 0 0 0 1 0 0 11.103056 

              2012-10-07 2142 0 0 0 0 0 0 1 0 11.045208 

 
 

Date 
PRCP Temp 

(C) 

dry 

day 

annual 

2012-10-

03 

0 13.35 1 0.00000

0 

2012-10-

04 

0 13.60 1 0.00274

0 

2012-10-

05 

0 15.30 1 0.00547

9 

2012-10-

06 

0 15.85 1 0.00821

9 

2012-10-
07 

0 15.85 1 0.01095
9 

With this in place, we can choose the columns to use, and fit a linear 

regression model to our data. We will set fit_intercept = False, because the daily 

flags essen‐ tially operate as their own day-specific intercepts: 

In[22]: 

column_names = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun', 'holiday', 
'daylight_hrs', 'PRCP', 'dry day', 'Temp (C)', 'annual'] 

X = daily[column_names] 
y = daily['Total'] 

 

model = LinearRegression(fit_intercept=False) 
model.fit(X, y) 

daily['predicted'] = model.predict(X) 



 

 

Finally, we can compare the total and predicted bicycle traffic visually (Figure 5-52):In[23]: 
daily[['Total', 'predicted']].plot(alpha=0.5); 

Figure 5-52. Our model’s prediction of bicycle traffic 

It is evident that we have missed some key features, especially during the summer time. 
Either our features are not complete (i.e., people decide whether to ride to work based on 
more than just these) or there are some nonlinear relationships that we have failed to take 
into account (e.g., perhaps people ride less at both high and low temper‐ atures). Nevertheless, 
our rough approximation is enough to give us some insights, and we can take a look at the 
coefficients of the linear model to estimate how much each feature contributes to the daily 
bicycle count: 

In[24]: params = pd.Series(model.coef_, index=X.columns) 
params 

 

Out[24]
: 

Mon 503.797330 

 Tue 612.088879 

 Wed 591.611292 

 Thu 481.250377 

 Fri 176.838999 

 Sat -

1104.32140

6 

 Sun -

1134.61032

2 

 holiday -

1187.21268

8 

 daylight_hrs 128.873251 

 PRCP -

665.185105 

 dry day 546.185613 

 Temp (C) 65.194390 



 

 

 annual 27.865349 

 dtype: 
float64 

 

These numbers are difficult to interpret without some measure of their uncertainty. We can 
compute these uncertainties quickly using bootstrap resamplings of the data: 

In[25]: from  sklearn.utils import resample 
np.random.seed(1) 

err = np.std([model.fit(*resample(X, y)).coef_ 

for i in range(1000)], 0) 

    With these errors estimated, let’s again look at the results: 

In[26]: print(pd.DataFrame({'effect': params.round(0), 

'error': err.round(0)})) 

 

 effec
t 

error 

Mon 504 85 

Tue 612 82 

Wed 592 82 

Thu 481 85 

Fri 177 81 

Sat -1104 79 

Sun -1135 82 

holiday -1187 164 

daylight_h

rs 

129 9 

PRCP -665 62 

dry day 546 33 

Temp (C) 65 4 

annual 28 18 

We first see that there is a relatively stable trend in the weekly baseline: there are many more 
riders on weekdays than on weekends and holidays. We see that for each additional hour of 
daylight, 129 ± 9 more people choose to ride; a temperature increase of one degree Celsius 
encourages 65 ± 4 people to grab their bicycle; a dry day means an average of 546 ± 33 more 
riders; and each inch of precipitation means 665 ± 62 more people leave their bike at home. 
Once all these effects are accounted for, we see a modest increase of 28 ± 18 new daily riders 
each year. 

Our model is almost certainly missing some relevant information. For example, non‐ linear 
effects (such as effects of precipitation and cold temperature) and nonlinear trends within each 
variable (such as disinclination to ride at very cold and very hot temperatures) cannot be 
accounted for in this model. Additionally, we have thrown away some of the finer-grained 
information (such as the difference between a rainy morning and a rainy afternoon), and we 
have ignored correlations between days (such as the possible effect of a rainy Tuesday on 
Wednesday’s numbers, or the effect of an unexpected sunny day after a streak of rainy days). 
These are all potentially interesting effects, and you now have the tools to begin exploring them 
if you wish! 



 

 

Day-04: Support Vector Machines 

Support vector machines (SVMs) are a particularly powerful and flexible class of supervised 
algorithms for both classification and regression. In this section, we will develop the intuition 
behind support vector machines and their use in classification problems. We begin with the 
standard imports: 

In[1]: %matplotlib inline 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import stats 

 

# use Seaborn plotting defaults 

import seaborn as sns; sns.set() 

Motivating Support Vector Machines 

As part of our discussion of Bayesian classification (see “In Depth: Naive Bayes Clas‐ sification” 
on page 382), we learned a simple model describing the distribution of each underlying class, 
and used these generative models to probabilistically deter‐ mine labels for new points. That 
was an example of generative classification; here we will consider instead discriminative 
classification: rather than modeling each class, we simply find a line or curve (in two 

dimensions) or manifold (in multiple dimensions) that divides the classes from each other. 

As an example of this, consider the simple case of a classification task, in which the two 
classes of points are well separated (Figure 5-53): 

In[2]: from sklearn.datasets.samples_generator import make_blobs 
X, y = make_blobs(n_samples=50, 
centers=2,random_state=0, cluster_std=0.60) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn'); 



 

 

Figure 5-53. Simple data for classification 

A linear discriminative classifier would attempt to draw a straight line separating the two sets 
of data, and thereby create a model for classification. For two-dimensional data like that 
shown here, this is a task we could do by hand. But immediately we see a problem: there is 
more than one possible dividing line that can perfectly discrimi‐ nate between the two classes! 

We can draw them as follows (Figure 5-54): 

In[3]: xfit = np.linspace(-1, 3.5) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 

plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10) 

 

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]: 

plt.plot(xfit, m * xfit + b, '-k') 

plt.xlim(-1, 3.5); 

 
Figure 5-54. Three perfect linear discriminative classifiers for our data 

These are three very different separators that, nevertheless, perfectly discriminate between 
these samples. Depending on which you choose, a new data point (e.g., the one marked by the 
“X” in Figure 5-54) will be assigned a different label! Evidently our simple intuition of “drawing 
a line between classes” is not enough, and we need to think a bit deeper. 

Support Vector Machines: Maximizing the Margin 

Support vector machines offer one way to improve on this. The intuition is this: rather 
than simply drawing a zero-width line between the classes, we can draw around each 
line a margin of some width, up to the nearest point. Here is an example of how this might 



 

 

look (Figure 5-55): 

In[4]: 

xfit = np.linspace(-1, 3.5) 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 

 

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]: 

yfit = m * xfit + b 
plt.plot(xfit, yfit, '-k') 

plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', color='#AAAAAA', 
alpha=0.4) 

 

plt.xlim(-1, 3.5); 

 

 
Figure 5-55. Visualization of “margins” within discriminative classifiers 

In support vector machines, the line that maximizes this margin is the one we will choose as 
the optimal model. Support vector machines are an example of such a max‐ imum margin 
estimator. 

Fitting a support vector machine 

Let’s see the result of an actual fit to this data: we will use Scikit-Learn’s support vector classifier 

to train an SVM model on this data. For the time being, we will use a linear kernel and set the C 

parameter to a very large number (we’ll discuss the meaning of these in more depth 
momentarily): 

In[5]: from sklearn.svm import SVC # "Support vector classifier" 



 

 

model = SVC(kernel='linear', C=1E10) 
model.fit(X, y) 

Out[5]: SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape=None, degree=3, gamma='auto', kernel='linear', 
max_iter=-1, probability=False, random_state=None, shrinking=True, 
tol=0.001, verbose=False) 

To better visualize what’s happening here, let’s create a quick convenience function that will 
plot SVM decision boundaries for us (Figure 5-56): 

In[6]: def plot_svc_decision_function(model, ax=None, plot_support=True): 

"""Plot the decision function for a two-dimensional SVC""" 

if ax is None: 

ax = plt.gca() 
xlim = ax.get_xlim() 
ylim = ax.get_ylim() 

 

# create grid to evaluate model 

x = np.linspace(xlim[0], xlim[1], 30) 

y = np.linspace(ylim[0], ylim[1], 30) Y, X = np.meshgrid(y, x) 

xy = np.vstack([X.ravel(), Y.ravel()]).T 

P = model.decision_function(xy).reshape(X.shape) 

 

# plot decision boundary and margins 

ax.contour(X, Y, P, colors='k', 

levels=[-1, 0, 1], alpha=0.5, 
linestyles=['--', '-', '--']) 

 

# plot support vectors 

if plot_support: 
ax.scatter(model.support_vectors_[:, 0], 

model.support_vectors_[:, 1], 

s=300, linewidth=1, facecolors='none'); 
ax.set_xlim(xlim) 

ax.set_ylim(ylim) 



 

 

In[7]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
plot_svc_decision_function(model); 

Figure 5-56. A support vector machine classifier fit to the data, with margins (dashed 

lines) and support vectors (circles) shown 

This is the dividing line that maximizes the margin between the two sets of points. Notice that 
a few of the training points just touch the margin; they are indicated by the black circles in 
Figure 5-56. These points are the pivotal elements of this fit, and are known as the support 
vectors, and give the algorithm its name. In Scikit-Learn, the identity of these points is stored in 

the support_vectors_ attribute of the classifier: 

In[8]: model.support_vectors_ 

Out[8]: array([[ 
0.44359863, 

3.11530945]
, 

[ 2.33812285, 3.43116792]

, 

[ 2.06156753, 1.96918596]
]) 

A key to this classifier’s success is that for the fit, only the position of the support vec‐ tors 
matters; any points further from the margin that are on the correct side do not modify the fit! 
Technically, this is because these points do not contribute to the loss function used to fit the 
model, so their position and number do not matter so long as they do not cross the margin. 

We can see this, for example, if we plot the model learned from the first 60 points and first 120 
points of this dataset (Figure 5-57): 

In[9]: def plot_svm(N=10, ax=None): 

X, y = make_blobs(n_samples=200, centers=2, 

random_state=0, cluster_std=0.60) 

X = X[:N] 



 

 

y = y[:N] 

model = SVC(kernel='linear', C=1E10) 
model.fit(X, y) 

ax = ax or plt.gca() 

ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
ax.set_xlim(-1, 4) 

ax.set_ylim(-1, 6) 
plot_svc_decision_function(model, ax) 

fig, ax = plt.subplots(1, 2, figsize=(16, 6)) 
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) 
for axi, N in zip(ax, [60, 120]): 

plot_svm(N, axi)   

axi.set_title('N = {0}'.format(N)) 

Figure 5-57. The influence of new training points on the SVM model 

In the left panel, we see the model and the support vectors for 60 training points. In the right 
panel, we have doubled the number of training points, but the model has not changed: the 
three support vectors from the left panel are still the support vectors from the right panel. 
This insensitivity to the exact behavior of distant points is one of the strengths of the SVM 
model. 

If you are running this notebook live, you can use IPython’s interactive widgets to view this 
feature of the SVM model interactively (Figure 5-58): 



 

 

In[10]: from ipywidgets import interact, fixed 
interact(plot_svm, N=[10, 200], ax=fixed(None)); 

Figure 5-58. The first frame of the interactive SVM visualization (see the online appen‐ dix 

for the full version) 

Beyond linear boundaries: Kernel SVM 

Where SVM becomes extremely powerful is when it is combined with kernels. We have seen a 
version of kernels before, in the basis function regressions of “In Depth: Linear Regression” on 
page 390. There we projected our data into higher-dimensional space defined by polynomials 
and Gaussian basis functions, and thereby were able to fit for nonlinear relationships with a 
linear classifier. 

In SVM models, we can use a version of the same idea. To motivate the need for ker‐ nels, let’s 
look at some data that is not linearly separable (Figure 5-59): 

In[11]: from sklearn.datasets.samples_generator import make_circles 
X, y = make_circles(100, factor=.1, noise=.1) 

 

clf = SVC(kernel='linear').fit(X, y) 

 

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
plot_svc_decision_function(clf, plot_support=False); 



 

 

 
Figure 5-59. A linear classifier performs poorly for nonlinear boundaries 

It is clear that no linear discrimination will ever be able to separate this data. But we can draw 
a lesson from the basis function regressions in “In Depth: Linear Regres‐ sion” on page 390, 
and think about how we might project the data into a higher dimension such that a linear 
separator would be sufficient. For example, one simple projection we could use would be to 
compute a radial basis function centered on the middle clump: 

In[12]: r = np.exp(-(X ** 2).sum(1)) 

We can visualize this extra data dimension using a three-dimensional plot—if you are running 
this notebook live, you will be able to use the sliders to rotate the plot (Figure 5-60): 

In[13]: from mpl_toolkits import mplot3d 

 

def plot_3D(elev=30, azim=30, X=X, y=y): 
ax = plt.subplot(projection='3d') 

ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn') 
ax.view_init(elev=elev, azim=azim) 

ax.set_xlabel('x') 
ax.set_ylabel('y') 
ax.set_zlabel('r') 

 

interact(plot_3D, elev=[-90, 90], azip=(-180, 180), 
X=fixed(X), y=fixed(y)); 



 

 

 
Figure 5-60. A third dimension added to the data allows for linear separation 

We can see that with this additional dimension, the data becomes trivially linearly separable, 
by drawing a separating plane at, say, r=0.7. 

Here we had to choose and carefully tune our projection; if we had not centered our radial 
basis function in the right location, we would not have seen such clean, linearly separable 
results. In general, the need to make such a choice is a problem: we would like to somehow 
automatically find the best basis functions to use. 

One strategy to this end is to compute a basis function centered at every point in the dataset, 
and let the SVM algorithm sift through the results. This type of basis function transformation is 
known as a kernel transformation, as it is based on a similarity rela‐ tionship (or kernel) 
between each pair of points. 

A potential problem with this strategy—projecting N points into N dimensions—is that it 
might become very computationally intensive as N grows large. However, because of a neat 
little procedure known as the kernel trick, a fit on kernel- transformed data can be done 
implicitly—that is, without ever building the full N- dimensional representation of the kernel 
projection! This kernel trick is built into the SVM, and is one of the reasons the method is so 
powerful. 

In Scikit-Learn, we can apply kernelized SVM simply by changing our linear kernel to an RBF 

(radial basis function) kernel, using the kernel model hyperparameter (Figure 5-61): 

In[14]: clf = SVC(kernel='rbf', C=1E6) 
clf.fit(X, y) 

Out[14]: SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', 
max_iter=-1, probability=False, random_state=None, shrinking=True, 
tol=0.001, verbose=False) 

In[15]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
plot_svc_decision_function(clf) 



 

 

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], 
s=300, lw=1, facecolors='none'); 

Figure 5-61. Kernel SVM fit to the data 

Using this kernelized support vector machine, we learn a suitable nonlinear decision 
boundary. This kernel transformation strategy is used often in machine learning to turn 
fast linear methods into fast nonlinear methods, especially for models in which the kernel 
trick can be used. 

Tuning the SVM: Softening margins 

Our discussion so far has centered on very clean datasets, in which a perfect decision 
boundary exists. But what if your data has some amount of overlap? For example, you may 
have data like this (Figure 5-62): 

In[16]: X, y = make_blobs(n_samples=100, centers=2, 

random_state=0, cluster_std=1.2) 
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn'); 

 
Figure 5-62. Data with some level of overlap 



 

 

To handle this case, the SVM implementation has a bit of a fudge-factor that “softens” the margin; 
that is, it allows some of the points to creep into the margin if that allows a better fit. The 
hardness of the margin is controlled by a tuning parameter, most often known as C. For very 
large C, the margin is hard, and points cannot lie in it. For smaller C, the margin is softer, and can 
grow to encompass some points. 

The plot shown in Figure 5-63 gives a visual picture of how a changing C parameter 
affects the final fit, via the softening of the margin: 

In[17]: X, y = make_blobs(n_samples=100, centers=2, 

random_state=0, cluster_std=0.8) 

 

fig, ax = plt.subplots(1, 2, figsize=(16, 6)) 
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) 

 

for axi, C in zip(ax, [10.0, 0.1]): 

model = SVC(kernel='linear', C=C).fit(X, y) 
axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn') 
plot_svc_decision_function(model, axi) 
axi.scatter(model.support_vectors_[:, 0], 

model.support_vectors_[:, 1], 
s=300, lw=1, facecolors='none'); 

axi.set_title('C = {0:.1f}'.format(C), size=14) 

 

 
Figure 5-63. The effect of the C parameter on the support vector fit 

The optimal value of the C parameter will depend on your dataset, and should be 
tuned via cross-validation or a similar procedure (refer back to 
“Hyperparameters and Model Validation” on page 359 for further information). 

Example: Face Recognition 

As an example of support vector machines in action, let’s take a look at the facial rec‐ ognition 
problem. We will use the Labeled Faces in the Wild dataset, which consists of several 



 

 

thousand collated photos of various public figures. A fetcher for the dataset is built into Scikit-
Learn: 

In[18]: from sklearn.datasets import fetch_lfw_people 
faces = fetch_lfw_people(min_faces_per_person=60) 
print(faces.target_names) 
print(faces.images.shape) 

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush' 
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair'] 
(1348, 62, 47) 

Let’s plot a few of these faces to see what we’re working with (Figure 5-64): 

In[19]: fig, ax = plt.subplots(3, 5) 

for i, axi in enumerate(ax.flat): 
axi.imshow(faces.images[i], cmap='bone') 
axi.set(xticks=[], yticks=[], 

xlabel=faces.target_names[faces.target[i]]) 

 
Figure 5-64. Examples from the Labeled Faces in the Wild dataset 

Each image contains [62×47] or nearly 3,000 pixels. We could proceed by simply using each 
pixel value as a feature, but often it is more effective to use some sort of preprocessor to 
extract more meaningful features; here we will use a principal com‐ ponent analysis (see “In 
Depth: Principal Component Analysis” on page 433) to extract 150 fundamental components 
to feed into our support vector machine classi‐ fier. We can do this most straightforwardly by 
packaging the preprocessor and the classifier into a single pipeline: 

In[20]: from sklearn.svm import SVC 

from sklearn.decomposition import RandomizedPCA 

from sklearn.pipeline import make_pipeline 



 

 

 

pca = RandomizedPCA(n_components=150, whiten=True, random_state=42) 
svc = SVC(kernel='rbf', class_weight='balanced') 

model = make_pipeline(pca, svc) 

For the sake of testing our classifier output, we will split the data into a training and 
testing set: 

In[21]: from sklearn.cross_validation import train_test_split 

Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target, 

random_state=42) 

Finally, we can use a grid search cross-validation to explore combinations of parame‐ ters. 

Here we will adjust C (which controls the margin hardness) and gamma (which controls the 

size of the radial basis function kernel), and determine the best model: 

In[22]: from sklearn.grid_search import GridSearchCV 
param_grid = {'svc C': [1, 5, 10, 50], 

'svc gamma': [0.0001, 0.0005, 0.001, 0.005]} 

grid = GridSearchCV(model, param_grid) 

%time grid.fit(Xtrain, ytrain) 

print(grid.best_params_) 

CPU times: user 47.8 s, sys: 4.08 s, total: 51.8 s 
Wall time: 26 s 

{'svc gamma': 0.001, 'svc C': 10} 

The optimal values fall toward the middle of our grid; if they fell at the edges, we 
would want to expand the grid to make sure we have found the true optimum. 

Now with this cross-validated model, we can predict the labels for the test data, 
which the model has not yet seen: 

In[23]: model = grid.best_estimator_ 
yfit = model.predict(Xtest) 

Let’s take a look at a few of the test images along with their predicted values (Figure 
5-65): 

In[24]: fig, ax = plt.subplots(4, 6) 

for i, axi in enumerate(ax.flat): 
axi.imshow(Xtest[i].reshape(62, 47), cmap='bone') 
axi.set(xticks=[], yticks=[]) 
axi.set_ylabel(faces.target_names[yfit[i]].split()[-1], 



 

 

color='black' if yfit[i] == ytest[i] else 'red') 
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14); 

Figure 5-65. Labels predicted by our model 

Out of this small sample, our optimal estimator mislabeled only a single face (Bush’s face in the 
bottom row was mislabeled as Blair). We can get a better sense of our esti‐ mator’s 
performance using the classification report, which lists recovery statistics label by label: 

In[25]: from sklearn.metrics import classification_report 

print(classification_report(ytest, yfit, 

target_names=faces.target_names)) 

 

 precisio

n 

recall f1-

score 

support 

Ariel Sharon 0.65 0.73 0.69 15 

Colin Powell 0.81 0.87 0.84 68 

Donald 

Rumsfeld 

0.75 0.87 0.81 31 

George W Bush 0.93 0.83 0.88 126 

Gerhard 

Schroeder 

0.86 0.78 0.82 23 

Hugo Chavez 0.93 0.70 0.80 20 

Junichiro 

Koizumi 

0.80 1.00 0.89 12 

Tony Blair 0.83 0.93 0.88 42 

avg / total 0.85 0.85 0.85 337 

We might also display the confusion matrix between these classes (Figure 5-66): 

In[26]: from sklearn.metrics import confusion_matrix 
mat = confusion_matrix(ytest, yfit) 



 

 

sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False, 
xticklabels=faces.target_names, 

yticklabels=faces.target_names)plt.xlabel('true 
label') plt.ylabel('predicted label'); 

Figure 5-66. Confusion matrix for the faces data 

This helps us get a sense of which labels are likely to be confused by the estimator. 

For a real-world facial recognition task, in which the photos do not come precropped into nice 
grids, the only difference in the facial classification scheme is the feature selection: you would 
need to use a more sophisticated algorithm to find the faces, and extract features that are 
independent of the pixellation. For this kind of application, one good option is to make use of 
OpenCV, which among other things, includes pre‐ trained implementations of state-of-the-art 
feature extraction tools for images in gen‐ eral and faces in particular. 

Day-05: Decision Trees and Random Forests 

Previously we have looked in depth at a simple generative classifier (naive Bayes; see “In Depth: 
Naive Bayes Classification” on page 382) and a powerful discriminative classifier (support 
vector machines; see “In-Depth: Support Vector Machines” on page 405). Here we’ll take a 
look at motivating another powerful algorithm—a non‐ parametric algorithm called random 
forests. Random forests are an example of an ensemble method, a method that relies on 
aggregating the results of an ensemble of simpler estimators. The somewhat surprising result 
with such ensemble methods is that the sum can be greater than the parts; that is, a majority 
vote among a number of estimators can end up being better than any of the individual 
estimators doing the voting! We will see examples of this in the following sections. We begin with 
the stan‐ dard imports: 

In[1]: %matplotlib inline 



 

 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set() 

 

Motivating Random Forests: Decision Trees 

Random forests are an example of an ensemble learner built on decision trees. For 
this reason we’ll start by discussing decision trees themselves. 

Decision trees are extremely intuitive ways to classify or label objects: you simply ask a series 
of questions designed to zero in on the classification. For example, if you wanted to build a 
decision tree to classify an animal you come across while on a hike, you might construct the 
one shown in Figure 5-67. 
 

Figure 5-67. An example of a binary decision tree 

The binary splitting makes this extremely efficient: in a well-constructed tree, each question 
will cut the number of options by approximately half, very quickly narrow‐ ing the options 
even among a large number of classes. The trick, of course, comes in deciding which questions 
to ask at each step. In machine learning implementations of decision trees, the questions 
generally take the form of axis-aligned splits in the data; that is, each node in the tree splits 
the data into two groups using a cutoff value within one of the features. Let’s now take a 
look at an example. 

Creating a decision tree 

Consider the following two-dimensional data, which has one of four class labels (Figure 5-68): 

In[2]: from sklearn.datasets import make_blobs 

 



 

 

X, y = make_blobs(n_samples=300, centers=4,random_state=0, cluster_std=1.0) 
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow'); 

Figure 5-68. Data for the decision tree classifier 

A simple decision tree built on this data will iteratively split the data along one or the other 
axis according to some quantitative criterion, and at each level assign the label of the new 
region according to a majority vote of points within it. Figure 5-69 presents a visualization of 
the first four levels of a decision tree classifier for this data. 

 
Figure 5-69. Visualization of how the decision tree splits the data 

Notice that after the first split, every point in the upper branch remains unchanged, so there 
is no need to further subdivide this branch. Except for nodes that contain all of one color, at 
each level every region is again split along one of the two features. 

This process of fitting a decision tree to our data can be done in Scikit-Learn with the 

DecisionTreeClassifier estimator: 

In[3]: from sklearn.tree import DecisionTreeClassifier 
tree = DecisionTreeClassifier().fit(X, y) 

Let’s write a quick utility function to help us visualize the output of the classifier: 

In[4]: def visualize_classifier(model, X, y, ax=None, cmap='rainbow'): 
ax = ax or plt.gca() 

 

# Plot the training points 



 

 

ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=cmap, 

clim=(y.min(), y.max()), zorder=3) 
ax.axis('tight') 

ax.axis('off') 

xlim = ax.get_xlim() 
ylim = ax.get_ylim() 

 

# fit the estimator 

model.fit(X, y) 

xx, yy = np.meshgrid(np.linspace(*xlim, num=200), 

np.linspace(*ylim, num=200)) 

Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape) 

 

# Create a color plot with the results 

n_classes = len(np.unique(y)) 

contours = ax.contourf(xx, yy, Z, alpha=0.3, 

levels=np.arange(n_classes + 1) - 0.5, 
cmap=cmap, clim=(y.min(), y.max()), 
zorder=1) 

 

ax.set(xlim=xlim, ylim=ylim) 

Now we can examine what the decision tree classification looks like (Figure 5-70): 

In[5]: visualize_classifier(DecisionTreeClassifier(), X, y) 

 
Figure 5-70. Visualization of a decision tree classification 

If you’re running this notebook live, you can use the helpers script included in the online 



 

 

appendix to bring up an interactive visualization of the decision tree building process (Figure 
5-71): 

In[6]: # helpers_05_08 is found in the online appendix 

# (https://github.com/jakevdp/PythonDataScienceHandbook) 
import helpers_05_08 

helpers_05_08.plot_tree_interactive(X, y); 

Figure 5-71. First frame of the interactive decision tree widget; for the full version, see 

the online appendix 

Notice that as the depth increases, we tend to get very strangely shaped classification regions; 
for example, at a depth of five, there is a tall and skinny purple region between the yellow 
and blue regions. It’s clear that this is less a result of the true, intrinsic data distribution, and 
more a result of the particular sampling or noise prop‐ erties of the data. That is, this decision 
tree, even at only five levels deep, is clearly overfitting our data. 

Decision trees and overfitting 

Such overfitting turns out to be a general property of decision trees; it is very easy to go too 
deep in the tree, and thus to fit details of the particular data rather than the overall properties 
of the distributions they are drawn from. Another way to see this overfitting is to look at models 
trained on different subsets of the data—for example, in Figure 5-72 we train two different 
trees, each on half of the original data. 
 

Figure 5-72. An example of two randomized decision trees 



 

 

It is clear that in some places, the two trees produce consistent results (e.g., in the four 
corners), while in other places, the two trees give very different classifications (e.g., in the 
regions between any two clusters). The key observation is that the incon‐ sistencies tend to 
happen where the classification is less certain, and thus by using information from both of 
these trees, we might come up with a better result! 

If you are running this notebook live, the following function will allow you to interac‐ 
tively display the fits of trees trained on a random subset of the data (Figure 5-73): 

In[7]: # helpers_05_08 is found in the online appendix 

# (https://github.com/jakevdp/PythonDataScienceHandbook) 
import helpers_05_08 

helpers_05_08.randomized_tree_interactive(X, y)

 

Figure 5-73. First frame of the interactive randomized decision tree widget; for the full 
version, see the online appendix 

Just as using information from two trees improves our results, we might expect that using 
information from many trees would improve our results even further. 

Ensembles of Estimators: Random Forests 

This notion—that multiple overfitting estimators can be combined to reduce the effect of 
this overfitting—is what underlies an ensemble method called bagging. Bag‐ ging makes use of 
an ensemble (a grab bag, perhaps) of parallel estimators, each of which overfits the data, and 
averages the results to find a better classification. An ensemble of randomized decision trees 
is known as a random forest. 

We can do this type of bagging classification manually using Scikit-Learn’s Bagging 

Classifier meta-estimator as shown here (Figure 5-74): 

In[8]: from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import BaggingClassifier 



 

 

 

tree = DecisionTreeClassifier() 

bag = BaggingClassifier(tree, n_estimators=100, max_samples=0.8, 
random_state=1) 

 

bag.fit(X, y) 
visualize_classifier(bag, X, y) 

 

 
Figure 5-74. Decision boundaries for an ensemble of random decision trees 

In this example, we have randomized the data by fitting each estimator with a ran‐ dom 
subset of 80% of the training points. In practice, decision trees are more effec‐ tively 
randomized when some stochasticity is injected in how the splits are chosen; this way, all the 
data contributes to the fit each time, but the results of the fit still have the desired 
randomness. For example, when determining which feature to split on, the randomized tree 
might select from among the top several features. You can read more technical details about 
these randomization strategies in the Scikit-Learn docu‐ mentation and references within. 

In Scikit-Learn, such an optimized ensemble of randomized decision trees is imple‐ mented in 

the RandomForestClassifier estimator, which takes care of all the ran‐ domization 

automatically. All you need to do is select a number of estimators, and it will very quickly (in 
parallel, if desired) fit the ensemble of trees (Figure 5-75): 

In[9]: from sklearn.ensemble import RandomForestClassifier 

 

model = RandomForestClassifier(n_estimators=100, random_state=0) 
visualize_classifier(model, X, y); 



 

 

 
Figure 5-75. Decision boundaries for a random forest, which is an optimized ensemble of 

decision trees 

We see that by averaging over 100 randomly perturbed models, we end up with an overall 
model that is much closer to our intuition about how the parameter space should be split. 

Random Forest Regression 

In the previous section we considered random forests within the context of classifica‐ tion. 
Random forests can also be made to work in the case of regression (that is, con‐ tinuous 
rather than categorical variables). The estimator to use for this is the 

RandomForestRegressor, and the syntax is very similar to what we saw earlier. 

Consider the following data, drawn from the combination of a fast and slow oscilla‐ 
tion (Figure 5-76): 

In[10]: rng = np.random.RandomState(42) 
x = 10 * rng.rand(200) 

 

def model(x, sigma=0.3): 
fast_oscillation = np.sin(5 * x) 
slow_oscillation = np.sin(0.5 * x) 
noise = sigma * rng.randn(len(x)) 

return slow_oscillation + fast_oscillation + noise 

y = model(x) 

plt.errorbar(x, y, 0.3, fmt='o'); 



 

 

 
Figure 5-76. Data for random forest regression 

Using the random forest regressor, we can find the best-fit curve as follows (Figure 5-77): 

In[11]: from sklearn.ensemble import RandomForestRegressor 
forest = RandomForestRegressor(200) 
forest.fit(x[:, None], y) 

 

xfit = np.linspace(0, 10, 1000) 

yfit = forest.predict(xfit[:, None]) 
ytrue = model(xfit, sigma=0) 

 

plt.errorbar(x, y, 0.3, fmt='o', alpha=0.5) 
plt.plot(xfit, yfit, '-r'); 

plt.plot(xfit, ytrue, '-k', alpha=0.5); 

Here the true model is shown by the smooth curve, while the random forest model is shown 
by the jagged curve. As you can see, the nonparametric random forest model is flexible 
enough to fit the multiperiod data, without us needing to specify a multi‐ period model! 



 

 

 
Figure 5-77. Random forest model fit to the data 

Example: Random Forest for Classifying Digits 

Earlier we took a quick look at the handwritten digits data (see “Introducing Scikit- Learn” on 
page 343). Let’s use that again here to see how the random forest classifier can be used in this 
context. 

In[12]: from sklearn.datasets import load_digits 
digits = load_digits() 

digits.keys() 

Out[12]: dict_keys(['target', 'data', 'target_names', 'DESCR', 'images']) 

To remind us what we’re looking at, we’ll visualize the first few data points 
(Figure 5-78): 

In[13]: 

# set up the figure 

fig = plt.figure(figsize=(6, 6)) # figure size in inches 

fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) 

 

# plot the digits: each image is 8x8 pixels 

for i in range(64): 

ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) 
ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest') 

 

# label the image with the target value 

ax.text(0, 7, str(digits.target[i])) 



 

 

 
Figure 5-78. Representation of the digits data 

We can quickly classify the digits using a random forest as follows (Figure 5-79): 

In[14]: 

from sklearn.cross_validation import train_test_split 

 

Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target, 

random_state=0) 
model = RandomForestClassifier(n_estimators=1000) 
model.fit(Xtrain, ytrain) 

ypred = model.predict(Xtest) 

We can take a look at the classification report for this classifier: 

In[15]: from sklearn import metrics 

print(metrics.classification_report(ypred, ytest)) 

 

 precisio
n 

recall f1-
score 

support 

0 1.00 0.97 0.99 38 

1 1.00 0.98 0.99 44 

2 0.95 1.00 0.98 42 

3 0.98 0.96 0.97 46 

4 0.97 1.00 0.99 37 

5 0.98 0.96 0.97 49 

6 1.00 1.00 1.00 52 

7 1.00 0.96 0.98 50 



 

 

8 0.94 0.98 0.96 46 

9 0.96 0.98 0.97 46 

avg / 

total 

0.98 0.98 0.98 450 

 

And for good measure, plot the confusion matrix (Figure 5-79): 

In[16]: from sklearn.metrics import confusion_matrix 
mat = confusion_matrix(ytest, ypred) 

sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False) 
plt.xlabel('true label') 

plt.ylabel('predicted label'); 

Figure 5-79. Confusion matrix for digit classification with random forests 

We find that a simple, untuned random forest results in a very accurate 
classification of the digits data. 

Summary of Random Forests 

This section contained a brief introduction to the concept of ensemble estimators, 
and in particular the random forest model—an ensemble of randomized decision 
trees. Random forests are a powerful method with several advantages: 

• Both training and prediction are very fast, because of the simplicity of the under‐ 

lying decision trees. In addition, both tasks can be straightforwardly parallelized, 

because the individual trees are entirely independent entities. 

• The multiple trees allow for a probabilistic classification: a majority vote among 

estimators gives an estimate of the probability (accessed in Scikit-Learn with the 

predict_proba() method). 



 

 

• The nonparametric model is extremely flexible, and can thus perform well on tasks 

that are underfit by other estimators. 

 

A primary disadvantage of random forests is that the results are not easily interpreta‐ ble; 
that is, if you would like to draw conclusions about the meaning of the classifica‐ tion model, 
random forests may not be the best choice. 

In Depth: Principal Component Analysis 

Up until now, we have been looking in depth at supervised learning estimators: those 
estimators that predict labels based on labeled training data. Here we begin looking at several 
unsupervised estimators, which can highlight interesting aspects of the data without 
reference to any known labels. 

In this section, we explore what is perhaps one of the most broadly used of unsuper‐ vised 
algorithms, principal component analysis (PCA). PCA is fundamentally a dimensionality 
reduction algorithm, but it can also be useful as a tool for visualiza‐ tion, for noise filtering, for 
feature extraction and engineering, and much more. After a brief conceptual discussion of the 
PCA algorithm, we will see a couple examples of these further applications. We begin with the 
standard imports: 

In[1]: %matplotlib inline 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns; sns.set() 

 

Introducing Principal Component Analysis 

Principal component analysis is a fast and flexible unsupervised method for dimen‐ sionality 
reduction in data, which we saw briefly in “Introducing Scikit-Learn” on page 343. Its 
behavior is easiest to visualize by looking at a two-dimensional dataset. Consider the 
following 200 points (Figure 5-80): 

In[2]: rng = np.random.RandomState(1) 

X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T 

plt.scatter(X[:, 0], X[:, 1]) 
plt.axis('equal'); 

By eye, it is clear that there is a nearly linear relationship between the x and y vari‐ ables. This 
is reminiscent of the linear regression data we explored in “In Depth: Lin‐ ear Regression” on 
page 390, but the problem setting here is slightly different: rather than attempting to predict 
the y values from the x values, the unsupervised learning problem attempts to learn about the 
relationship between the x and y values. 



 

 

 
Figure 5-80. Data for demonstration of PCA 

In principal component analysis, one quantifies this relationship by finding a list of the 

principal axes in the data, and using those axes to describe the dataset. Using Scikit-Learn’s PCA 

estimator, we can compute this as follows: 

In[3]: from sklearn.decomposition import PCA 
pca = PCA(n_components=2) 

pca.fit(X) 

Out[3]: PCA(copy=True, n_components=2, whiten=False) 

The fit learns some quantities from the data, most importantly the “components” 
and “explained variance”: 

In[4]: print(pca.components_) 

[[ 0.94446029 0.32862557] 

[ 0.32862557 -0.94446029]] 

In[5]: print(pca.explained_variance_) 

[ 0.75871884 0.01838551] 

To see what these numbers mean, let’s visualize them as vectors over the input data, using the 
“components” to define the direction of the vector, and the “explained var‐ iance” to define the 
squared-length of the vector (Figure 5-81): 

In[6]: def draw_vector(v0, v1, ax=None): 
ax = ax or plt.gca() 

arrowprops=dict(arrowstyle='->', 

linewidth=2, 
shrinkA=0, shrinkB=0) 



 

 

ax.annotate('', v1, v0, arrowprops=arrowprops) 

 

# plot data 

plt.scatter(X[:, 0], X[:, 1], alpha=0.2) 

for length, vector in zip(pca.explained_variance_, pca.components_): 
v = vector * 3 * np.sqrt(length) 

draw_vector(pca.mean_, pca.mean_ + v) 
plt.axis('equal'); 

Figure 5-81. Visualization of the principal axes in the data 

These vectors represent the principal axes of the data, and the length shown in Figure 
5-81 is an indication of how “important” that axis is in describing the distribu‐ tion of the 
data—more precisely, it is a measure of the variance of the data when pro‐ jected onto that 
axis. The projection of each data point onto the principal axes are the “principal components” 
of the data. 

If we plot these principal components beside the original data, we see the plots shown in 
Figure 5-82. 
 

Figure 5-82. Transformed principal axes in the data 



 

 

This transformation from data axes to principal axes is as an affine transformation, which 
basically means it is composed of a translation, rotation, and uniform scaling. 

While this algorithm to find principal components may seem like just a 
mathematical curiosity, it turns out to have very far-reaching applications in the 
world of machine learning and data exploration. 

PCA as dimensionality reduction 

Using PCA for dimensionality reduction involves zeroing out one or more of the smallest 
principal components, resulting in a lower-dimensional projection of the data that 
preserves the maximal data variance. 

Here is an example of using PCA as a dimensionality reduction transform: 

In[7]: pca = PCA(n_components=1) 
pca.fit(X) 

X_pca = pca.transform(X) 

print("original shape: ", X.shape) 

print("transformed shape:", X_pca.shape) 

original shape: (200, 2) 

transformed shape: (200, 1) 

The transformed data has been reduced to a single dimension. To understand the effect of this 
dimensionality reduction, we can perform the inverse transform of this reduced data and plot 
it along with the original data (Figure 5-83): 

In[8]: X_new = pca.inverse_transform(X_pca) 
plt.scatter(X[:, 0], X[:, 1], alpha=0.2) 

plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8) 
plt.axis('equal'); 

Figure 5-83. Visualization of PCA as dimensionality reduction 



 

 

The light points are the original data, while the dark points are the projected version. This 
makes clear what a PCA dimensionality reduction means: the information along the least 
important principal axis or axes is removed, leaving only the component(s) of the data with the 
highest variance. The fraction of variance that is cut out (propor‐ tional to the spread of points 
about the line formed in Figure 5-83) is roughly a meas‐ ure of how much “information” is 
discarded in this reduction of dimensionality. 

This reduced-dimension dataset is in some senses “good enough” to encode the most important 
relationships between the points: despite reducing the dimension of the data by 50%, the 
overall relationship between the data points is mostly preserved. 

PCA for visualization: Handwritten digits 

The usefulness of the dimensionality reduction may not be entirely apparent in only two 
dimensions, but becomes much more clear when we look at high-dimensional data. To see this, 
let’s take a quick look at the application of PCA to the digits data we saw in “In-Depth: Decision 
Trees and Random Forests” on page 421. 

We start by loading the data: 

In[9]: from sklearn.datasets import load_digits 
digits = load_digits() 

digits.data.shape 

Out[9]: 

(1797, 64) 

Recall that the data consists of 8×8 pixel images, meaning that they are 64- 
dimensional. To gain some intuition into the relationships between these points, we 
can use PCA to project them to a more manageable number of dimensions, say two: 

In[10]: pca = PCA(2) # project from 64 to 2 dimensions 

projected = pca.fit_transform(digits.data) 
print(digits.data.shape) 

print(projected.shape) 

(1797, 64) 

(1797, 2) 

We can now plot the first two principal components of each point to learn about the data 
(Figure 5-84): 

In[11]: plt.scatter(projected[:, 0], projected[:, 1], 

c=digits.target, edgecolor='none', alpha=0.5, 
cmap=plt.cm.get_cmap('spectral', 10)) 

plt.xlabel('component 1') plt.ylabel('component 2') plt.colorbar(); 



 

 

 
Figure 5-84. PCA applied to the handwritten digits data 

Recall what these components mean: the full data is a 64-dimensional point cloud, and these 
points are the projection of each data point along the directions with the largest variance. 
Essentially, we have found the optimal stretch and rotation in 64- dimensional space that 
allows us to see the layout of the digits in two dimensions, and have done this in an 
unsupervised manner—that is, without reference to the labels. 

What do the components mean? 

We can go a bit further here, and begin to ask what the reduced dimensions mean. This 
meaning can be understood in terms of combinations of basis vectors. For example, each 
image in the training set is defined by a collection of 64 pixel values, which we will call the 
vector x: 

 
x = x1, x2, x3⋯x64 

One way we can think about this is in terms of a pixel basis. That is, to construct the image, we 
multiply each element of the vector by the pixel it describes, and then add the results together 
to build the image: 

 
image x = x1 · pixel 1 + x2 · pixel 2 + x3 · pixel 3 ⋯x64 · pixel 64 

One way we might imagine reducing the dimension of this data is to zero out all but a few of 
these basis vectors. For example, if we use only the first eight pixels, we get an eight-
dimensional projection of the data (Figure 5-85), but it is not very reflective of the whole 
image: we’ve thrown out nearly 90% of the pixels! 



 

 

 
Figure 5-85. A naive dimensionality reduction achieved by discarding pixels 

The upper row of panels shows the individual pixels, and the lower row shows the cumulative 
contribution of these pixels to the construction of the image. Using only eight of the pixel-
basis components, we can only construct a small portion of the 64- pixel image. Were we to 
continue this sequence and use all 64 pixels, we would recover the original image. 

But the pixel-wise representation is not the only choice of basis. We can also use other basis 
functions, which each contain some predefined contribution from each pixel, and write 
something like: 

 
image x = mean + x1 · basis 1 + x2 · basis 2 + x3 · basis 3 ⋯ 

 
PCA can be thought of as a process of choosing optimal basis functions, such that adding 
together just the first few of them is enough to suitably reconstruct the bulk of the elements in 
the dataset. The principal components, which act as the low- dimensional representation of 
our data, are simply the coefficients that multiply each of the elements in this series. Figure 5-
86 is a similar depiction of reconstructing this digit using the mean plus the first eight PCA 
basis functions. 
 

Figure 5-86. A more sophisticated dimensionality reduction achieved by discarding the 

least important principal components (compare to Figure 5-85) 

Unlike the pixel basis, the PCA basis allows us to recover the salient features of the input 
image with just a mean plus eight components! The amount of each pixel in each component 
is the corollary of the orientation of the vector in our two- dimensional example. This is the 
sense in which PCA provides a low-dimensional representation of the data: it discovers a set 
of basis functions that are more efficient than the native pixel-basis of the input data. 



 

 

Choosing the number of components 

A vital part of using PCA in practice is the ability to estimate how many components 
are needed to describe the data. We can determine this by looking at the cumulative 
explained variance ratio as a function of the number of components (Figure 5-87): 

In[12]: pca = PCA().fit(digits.data) 
plt.plot(np.cumsum(pca.explained_variance_ratio_)) 
plt.xlabel('number of components') 
plt.ylabel('cumulative explained variance'); 

Figure 5-87. The cumulative explained variance, which measures how well PCA pre‐ serves 

the content of the data 

This curve quantifies how much of the total, 64-dimensional variance is contained within the 
first N components. For example, we see that with the digits the first 10 components contain 
approximately 75% of the variance, while you need around 50 components to describe close 
to 100% of the variance. 

Here we see that our two-dimensional projection loses a lot of information (as meas‐ ured by 
the explained variance) and that we’d need about 20 components to retain 90% of the 
variance. Looking at this plot for a high-dimensional dataset can help you understand the level 
of redundancy present in multiple observations. 

PCA as Noise Filtering 

PCA can also be used as a filtering approach for noisy data. The idea is this: any com‐ ponents 
with variance much larger than the effect of the noise should be relatively unaffected by the 
noise. So if you reconstruct the data using just the largest subset of principal components, you 
should be preferentially keeping the signal and throwing out the noise. 



 

 

Let’s see how this looks with the digits data. First we will plot several of the input noise-
free data (Figure 5-88): 

In[13]: def plot_digits(data): 

fig, axes = plt.subplots(4, 10, figsize=(10, 4), 

subplot_kw={'xticks':[], 'yticks':[]}, 
gridspec_kw=dict(hspace=0.1, wspace=0.1)) 

for i, ax in enumerate(axes.flat): 
ax.imshow(data[i].reshape(8, 8), 

cmap='binary', interpolation='nearest', 
clim=(0, 16)) 

plot_digits(digits.data) 

Figure 5-88. Digits without noise 

Now let’s add some random noise to create a noisy dataset, and replot it (Figure 5-89): 

In[14]: np.random.seed(42) 

noisy = np.random.normal(digits.data, 4) 
plot_digits(noisy) 

Figure 5-89. Digits with Gaussian random noise added 

It’s clear by eye that the images are noisy, and contain spurious pixels. Let’s train a PCA on 
the noisy data, requesting that the projection preserve 50% of the variance: 



 

 

In[15]: pca = PCA(0.50).fit(noisy) 
pca.n_components_ 

Out[15]: 12 

Here 50% of the variance amounts to 12 principal components. Now we compute these 
components, and then use the inverse of the transform to reconstruct the fil‐ tered digits 
(Figure 5-90): 

In[16]: components = pca.transform(noisy) 

filtered = pca.inverse_transform(components) 
plot_digits(filtered) 

Figure 5-90. Digits “denoised” using PCA 

This signal preserving/noise filtering property makes PCA a very useful feature selec‐ tion 
routine—for example, rather than training a classifier on very high-dimensional data, you 
might instead train the classifier on the lower-dimensional representation, which will 
automatically serve to filter out random noise in the inputs. 

Example: Eigenfaces 

Earlier we explored an example of using a PCA projection as a feature selector for facial 
recognition with a support vector machine (“In-Depth: Support Vector Machines” on page 
405). Here we will take a look back and explore a bit more of what went into that. Recall that 
we were using the Labeled Faces in the Wild dataset made available through Scikit-Learn: 

In[17]: from sklearn.datasets import fetch_lfw_people 
faces = fetch_lfw_people(min_faces_per_person=60) 
print(faces.target_names) 
print(faces.images.shape) 

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush' 
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair'] 
(1348, 62, 47) 

Let’s take a look at the principal axes that span this dataset. Because this is a large 

dataset, we will use RandomizedPCA—it contains a randomized method to 

approxi‐ 



 

 

mate the first N principal components much more quickly than the standard PCA esti‐ mator, 

and thus is very useful for high-dimensional data (here, a dimensionality of nearly 3,000). We 
will take a look at the first 150 components: 

In[18]: from sklearn.decomposition import RandomizedPCA 
pca = RandomizedPCA(150) 

pca.fit(faces.data) 

Out[18]: RandomizedPCA(copy=True, iterated_power=3, n_components=150, 
random_state=None, whiten=False) 

In this case, it can be interesting to visualize the images associated with the first sev‐ eral 
principal components (these components are technically known as “eigenvec‐ tors,” so these 
types of images are often called “eigenfaces”). As you can see in Figure 5-91, they are as creepy 
as they sound: 

In[19]: fig, axes = plt.subplots(3, 8, figsize=(9, 4), 

subplot_kw={'xticks':[], 'yticks':[]}, 
gridspec_kw=dict(hspace=0.1, wspace=0.1)) 

for i, ax in enumerate(axes.flat): 
ax.imshow(pca.components_[i].reshape(62, 47), cmap='bone') 

Figure 5-91. A visualization of eigenfaces learned from the LFW dataset 

The results are very interesting, and give us insight into how the images vary: for example, the 
first few eigenfaces (from the top left) seem to be associated with the angle of lighting on the 
face, and later principal vectors seem to be picking out certain features, such as eyes, noses, 
and lips. Let’s take a look at the cumulative variance of these components to see how much of 
the data information the projection is preserv‐ ing (Figure 5-92): 

In[20]: plt.plot(np.cumsum(pca.explained_variance_ratio_)) 
plt.xlabel('number of components') 
plt.ylabel('cumulative explained variance'); 
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Figure 5-92. Cumulative explained variance for the LFW data 

We see that these 150 components account for just over 90% of the variance. That would lead 
us to believe that using these 150 components, we would recover most of the essential 
characteristics of the data. To make this more concrete, we can compare the input images with 
the images reconstructed from these 150 components (Figure 5-93): 

In[21]: # Compute the components and projected faces 

pca = RandomizedPCA(150).fit(faces.data) 
components = pca.transform(faces.data) 
projected = pca.inverse_transform(components) 

In[22]: # Plot the  results 

fig, ax = plt.subplots(2, 10, figsize=(10, 2.5), 

subplot_kw={'xticks':[], 'yticks':[]}, 
gridspec_kw=dict(hspace=0.1, wspace=0.1)) 

for i in range(10): 

ax[0, i].imshow(faces.data[i].reshape(62, 47), cmap='binary_r') 
ax[1, i].imshow(projected[i].reshape(62, 47), cmap='binary_r') 

 

ax[0, 0].set_ylabel('full-dim\ninput') 

ax[1, 0].set_ylabel('150-dim\nreconstruction'); 

Figure 5-93. 150-dimensional PCA reconstruction of the LFW data 

The top row here shows the input images, while the bottom row shows the recon‐ struction of 
the images from just 150 of the ~3,000 initial features. This visualization makes clear why the 
PCA feature selection used in “In-Depth: Support Vector Machines” on page 405 was so 
successful: although it reduces the dimensionality of the data by nearly a factor of 20, the 
projected images contain enough information that we might, by eye, recognize the individuals 
in the image. What this means is that our classification algorithm needs to be trained on 150-
dimensional data rather than 3,000-dimensional data, which depending on the particular 
algorithm we choose, can lead to a much more efficient classification. 
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Week 7: Creating Reports and Dashboards 

Day-01 : Introduction to Dashboards 

A dashboard for data analytics is a tool used to multi-task, organize, visualize, analyze, and track 
data. The overall purpose of a data analytics dashboard is to make it easier for data analysts, 
decision makers, and average users to understand their data, gain deeper insights, and make better 
data-driven decisions.  

Data dashboards are designed to connect and help extract important information from a wide 
variety of different data sources, services, and APIs. This information is displayed in a single, unified 
view via visuals such as charts, figures, graphs, and tables. An organization can have a different 
customizable dashboard for each department and even a dashboard for each individual project, 
which helps provide granular monitoring of very specific KPIs. 

“Smart” data analytics dashboard software uses AI and Machine Learning to save time and automate 
processes like data collection, discovery, preparation, replication, and reporting, which is crucial for 
big data sets where manual processing is impractical. Advanced interactive dashboards will provide 
compelling storytelling through attractive designs and real-time, interactive dynamic data 
visualizations that empower team members to quickly and easily reveal hidden insights and draw 
valuable conclusions that can help answer business questions and informa business decisions. 

Data Analytics Dashboard Benefits 

There are many different benefits to be gained from the many different kinds of data analytics 
dashboards. Some of the most common benefits include: data visibility and accessibility, measuring 
performance, business forecasting abilities, and agile responses: 

Visibility and Accessibility: One of the primary benefits of a dashboard is its ability to display all of 
the most relevant, important data in a way that is intuitive, digestible, and useful for the average 
user. Dashboards should be a place where users can easily access key metrics and insights in a 
unified space so that anyone in the organization can derive value from it. 

Measuring Performance: Dashboards will help measure and keep track of the performance of 
different teams, departments, products, and services. When analyzing the performance of an 
organization as a whole, it is crucial to set KPIs and have access to specific performance data in order 
to be able to hone in on processes that are creating inefficiencies and develop new strategies. 

Agility: Dashboards help users detect changes in data quickly, in turn empowering users to react 
quickly. Real-time updates enable users to immediately correct course in the moment, or even get a 
jump on forthcoming trends. 

Forecasting: AI and machine learning algorithms take historical data and current, real-time data in 
order to identify trends and anomalies, and forecast potential issues before they become problems. 
Forecasting can help direct things like demand planning, financial operations, future production, risk 
reduction, and digital marketing operations. 
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What are some Data Analytics Dashboard Examples? 

Big data analytics is leveraged in nearly every modern industry. Some big data analytics examples 
include retail, manufacturing, oil and gas, government, healthy industries, education, sports, 
sciences, airlines, banking, business analytics dashboards, and marketing analytics dashboards. All of 
these industries can benefit enormously from data analytics dashboards tailored to their specific 
needs. Read on to see some data analytics dashboard examples and data analytics demos. 

Example1: Oil and Gas Data Analytics Dashboard 

Companies throughout the oil and gas industry can derive enormous value from big data 
analytics dashboards. Industry professionals can interact with spatiotemporal data analytics 
in energy to determine things like productivity drivers, assess suitable land, and understand 
benchmark performance.  
 
Oil industry professionals can visually analyze data and conclude why wells are over or 
underperforming, forecast their estimated potential, compare daily drill and well 
performance, manage fleets, and identify production trends across basins. Dashboards for 
data analytics can help renewable energy industry professionals visualize and interact with 
massive multi-sourced datasets to determine where their customers should make wind, 
solar, biomass, hydroelectric, or geothermal energy investments. 
 
In this oil and gas demo, visualizations for 250 million well production records across the 
entire United States are available for analysis. Research scenarios and quickly analyze 
production decline performance, correlations, and rate of change with a few clicks. 
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Example2: Covid-19 Pandemic Data Analytics Dashboard 

Covid-19 data maps updated with real-time information were crucial for tracking the spread of the 
pandemic, recovery rates, and monitoring the effectiveness of quarantine orders and mask 
mandates. Covid-19 data analytics dashboards provided a simple, unified view of cases around the 
world filtered across location and time, informing decisions made by hospital administrators and 
lawmakers, such as office, school and business closure orders; mask mandated spaces; travel bans; 
PPE inventory forecasts; and more.  

Government data analytics dashboards compile data from a wide variety of sources, like hospitals, 
government agencies, the CDC, World Health Organization, and make it easier for users to quickly 
identify patterns and draw conclusions.  

In this Covid-19 demo, visualize the spread of the virus using maps and charts, compare the growth 
of cases across various countries and US states, and analyze the recovery rate in various regions of 
the world. 

 

What are the Best Analytics Dashboard Tools? 

The quality, variety, and volume of data analytics dashboard tools has increased in recent years. The 
best option for your organization depends on a number of factors, such as budget, deployment, 
client, and the specific goals and objectives of the project at hand. There are three main types of 
dashboard software: operational, strategic, tactical, and analytical. Analytical dashboard software 
functionality is prevalent in many business intelligence tools as they provide the greatest value to 
data analysts and data scientists. Learn how to make the most out of your business intelligence 
dashboard here.  
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The best data analytics dashboard tools will offer: the ability to connect your data from multiple 
sources, embedding capabilities, self-service reporting, automated real-time updates, streaming and 
predictive analytics driven by AI, filtering across time and location, interactive visual analytics, full 
customization, and at-a-click exploration. Some examples of popular enterprise analytics dashboard 
software include: HEAVY’s visual analytics platform, Izenda, Periscope Data, Dundas BI analytics 
dashboard, Microsoft Power BI, IBM Cognos, TIBCO Spotfire, Looker, and Sisense.   

Every data analytics dashboard will look different depending on each different project’s goals and 
objectives. The best option will be one that empowers you to be at one with your data and to interact 
with it instantly and effortlessly. See the key capabilities that OmniSci’s converged analytics platform 
provides to help users achieve insights from your largest datasets at the speed of curiosity. 

 Building interactive dashboards with libraries like Dash or Streamlit 

What’s a real-time live dashboard? 

A real-time live dashboard is a web app used to display Key Performance Indicators (KPIs). 

If you want to build a dashboard to monitor the stock market, IoT Sensor Data, AI Model Training, or 
anything else with streaming data, then this tutorial is for you. 

1. How to import the required libraries and read input data 
Here are the libraries that you’ll need for this dashboard: 

Streamlit (st). As you might’ve guessed, you’ll be using Streamlit for building the web 

app/dashboard. 

Time, NumPy (np). Because you don’t have a data source, you’ll need to simulate a live data feed. 

Use NumPy to generate data and make it live (looped) with the Time library (unless you already have 

a live data feed). 

Pandas (pd). You’ll use pandas to read the input data source. In this case, you’ll use a Comma 

Separated Values (CSV) file. 

Go ahead and import all the required libraries: 

import time  # to simulate a real time data, time loop 
import numpy as np  # np mean, np random 
import pandas as pd  # read csv, df manipulation 
import plotly.express as px  # interactive charts 
import streamlit as st  # data web app development 

You can read your input data in a CSV by using pd.read_csv(). But remember, this data source could 

be streaming from an API, a JSON or an XML object, or even a CSV that gets updated at regular 

intervals. 

Next, add the pd.read_csv() call within a new function get_data() so that it gets properly cached. 

What's caching? It's simple. Adding the decorator @st.experimental_memo will make the function 

get_data() run once. Then every time you rerun your app, the data will stay memoized! This way you 

can avoid downloading the dataset again and again. Read more about caching in Streamlit docs. 

dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-

analysis/master/bank.csv" 

# read csv from a URL 
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@st.experimental_memo 

def get_data() -> pd.DataFrame: 

    return pd.read_csv(dataset_url) 

df = get_data() 

table-1 

 

2. How to do a basic dashboard setup 
Now let’s set up a basic dashboard. Use st.set_page_config() with parameters serving the following 

purpose: 

The web app title page_title in the HTML tag <title> and in the browser tab 

The favicon that uses the argument page_icon (also in the browser tab) 

The layout = "wide" that renders the web app/dashboard with a wide-screen layout 

st.set_page_config( 
    page_title="Real-Time Data Science Dashboard", 

    page_icon="✅", 
    layout="wide", 
) 

3. How to design a user interface 
A typical dashboard contains the following basic UI design components: 

 

• A page title 

• A top-level filter 

• KPIs/summary cards 

• Interactive charts 

• A data table 

Let’s drill into them in detail. 

Page title 
The title is rendered as the <h1> tag. To display the title, use st.title(). It’ll take the string “Real-Time / 

Live Data Science Dashboard” and display it in the Page Title. 

# dashboard title 
st.title("Real-Time / Live Data Science Dashboard") 

Top-level filter 
First, create the filter by using st.selectbox(). It’ll display a dropdown with a list of options. To 

generate it, take the unique elements of the job column from the dataframe df. The selected item is 

saved in an object named job_filter: 

# top-level filters 

job_filter = st.selectbox("Select the Job", pd.unique(df["job"])) 

Now that your filter UI is ready, use job_filter to filter your dataframe df. 
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# dataframe filter 
df = df[df["job"] == job_filter] 

 

KPIs/summary cards 
Before you can design your KPIs, divide your layout into a 3 column layout by using st.columns(3). The 

three columns are kpi1, kpi2, and kpi3. st.metric() helps you create a KPI card. Use it to fill one KPI in 

each of those columns. 

st.metric()’s label helps you display the KPI title. The value **is the argument that helps you show the 

actual metric (value) and add-ons like delta to compare the KPI value with the KPI goal. 

# create three columns 
kpi1, kpi2, kpi3 = st.columns(3) 
# fill in those three columns with respective metrics or KPIs 
kpi1.metric( 

    label="Age ⏳", 
    value=round(avg_age), 
    delta=round(avg_age) - 10, 
) 
 
kpi2.metric( 

    label="Married Count 💍", 
    value=int(count_married), 
    delta=-10 + count_married, 
) 
 
kpi3.metric( 
    label="A/C Balance ＄", 
    value=f"$ {round(balance,2)} ", 
    delta=-round(balance / count_married) * 100, 
) 

Interactive charts 
Split your layout into 2 columns and fill them with charts. Unlike the metric above, use the with clause 

to fill the interactive charts in the respective columns: 

 

Density_heatmap in fig_col1 

Histogram in fig_col2 

# create two columns for charts 
fig_col1, fig_col2 = st.columns(2) 
 
with fig_col1: 
    st.markdown("### First Chart") 
    fig = px.density_heatmap( 
        data_frame=df, y="age_new", x="marital" 
    ) 
    st.write(fig) 
    
with fig_col2: 
    st.markdown("### Second Chart") 
    fig2 = px.histogram(data_frame=df, x="age_new") 
    st.write(fig2) 
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Data table 
Use st.dataframe() to display the data frame. Remember, your data frame gets filtered based on the 

filter option selected at the top: 

st.markdown("### Detailed Data View") 
st.dataframe(df) 

4. How to refresh the dashboard for real-time or live data feed 
Since you don’t have a real-time or live data feed yet, you’re going to simulate your existing data 

frame (unless you already have a live data feed or real-time data flowing in). 

To simulate it, use a for loop from 0 to 200 seconds (as an option, on every iteration you’ll have a 

second sleep/pause): 

for seconds in range(200): 
    df["age_new"] = df["age"] * np.random.choice(range(1, 5)) 
    df["balance_new"] = df["balance"] * np.random.choice(range(1, 5)) 
    time.sleep(1) 

Inside the loop, use NumPy's random.choice to generate a random number between 1 to 5. Use it as 

a multiplier to randomize the values of age and balance columns that you’ve used for your metrics 

and charts. 

5. How to auto-update components 
Now you know how to do a Streamlit web app! 

To display the live data feed with auto-updating KPIs/Metrics/Charts, put all these components inside 

a single-element container using st.empty(). Call it placeholder: 

# creating a single-element container. 
placeholder = st.empty() 

Put your components inside the placeholder by using a with clause. This way you’ll replace them in 

every iteration of the data update. The code below contains the placeholder.container() along with 

the UI components you created above: 

 

with placeholder.container(): 
 
    # create three columns 
    kpi1, kpi2, kpi3 = st.columns(3) 
 
    # fill in those three columns with respective metrics or KPIs 
    kpi1.metric( 

        label="Age ⏳", 
        value=round(avg_age), 
        delta=round(avg_age) - 10, 
    ) 
     
    kpi2.metric( 

        label="Married Count 💍", 
        value=int(count_married), 
        delta=-10 + count_married, 
    ) 
     
    kpi3.metric( 
        label="A/C Balance ＄", 
        value=f"$ {round(balance,2)} ", 
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        delta=-round(balance / count_married) * 100, 
    ) 
 
    # create two columns for charts 
    fig_col1, fig_col2 = st.columns(2) 
     
    with fig_col1: 
        st.markdown("### First Chart") 
        fig = px.density_heatmap( 
            data_frame=df, y="age_new", x="marital" 
        ) 
        st.write(fig) 
         
    with fig_col2: 
        st.markdown("### Second Chart") 
        fig2 = px.histogram(data_frame=df, x="age_new") 
        st.write(fig2) 
 
    st.markdown("### Detailed Data View") 
    st.dataframe(df) 
    time.sleep(1) 

 

And...here is the full code! 

import time  # to simulate a real time data, time loop 
import numpy as np  # np mean, np random 
import pandas as pd  # read csv, df manipulation 
import plotly.express as px  # interactive charts 

import streamlit as st  # 🎈 data web app development 
 
st.set_page_config( 
    page_title="Real-Time Data Science Dashboard", 

    page_icon="✅", 
    layout="wide", 
) 
 
# read csv from a github repo 
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-
analysis/master/bank.csv" 
 
# read csv from a URL 
@st.experimental_memo 
def get_data() -> pd.DataFrame: 
    return pd.read_csv(dataset_url) 
 
df = get_data() 
 
# dashboard title 
st.title("Real-Time / Live Data Science Dashboard") 
 
# top-level filters 
job_filter = st.selectbox("Select the Job", pd.unique(df["job"])) 
 
# creating a single-element container 
placeholder = st.empty() 
 
# dataframe filter 
df = df[df["job"] == job_filter] 
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# near real-time / live feed simulation 
for seconds in range(200): 
 
    df["age_new"] = df["age"] * np.random.choice(range(1, 5)) 
    df["balance_new"] = df["balance"] * np.random.choice(range(1, 5)) 
 
    # creating KPIs 
    avg_age = np.mean(df["age_new"]) 
 
    count_married = int( 
        df[(df["marital"] == "married")]["marital"].count() 
        + np.random.choice(range(1, 30)) 
    ) 
 
    balance = np.mean(df["balance_new"]) 
 
    with placeholder.container(): 
 
        # create three columns 
        kpi1, kpi2, kpi3 = st.columns(3) 
 
        # fill in those three columns with respective metrics or KPIs 
        kpi1.metric( 

            label="Age ⏳", 
            value=round(avg_age), 
            delta=round(avg_age) - 10, 
        ) 
         
        kpi2.metric( 

            label="Married Count 💍", 
            value=int(count_married), 
            delta=-10 + count_married, 
        ) 
         
        kpi3.metric( 
            label="A/C Balance ＄", 
            value=f"$ {round(balance,2)} ", 
            delta=-round(balance / count_married) * 100, 
        ) 
 
        # create two columns for charts 
        fig_col1, fig_col2 = st.columns(2) 
        with fig_col1: 
            st.markdown("### First Chart") 
            fig = px.density_heatmap( 
                data_frame=df, y="age_new", x="marital" 
            ) 
            st.write(fig) 
              with fig_col2: 
            st.markdown("### Second Chart") 
            fig2 = px.histogram(data_frame=df, x="age_new") 
            st.write(fig2) 
 
        st.markdown("### Detailed Data View") 
        st.dataframe(df) 
        time.sleep(1) 

To run this dashboard on your local computer: 
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• Save the code as a single monolithic app.py. 

• Open your Terminal or Command Prompt in the same path where the app.py is stored. 

• Execute streamlit run app.py for the dashboard to start running on your localhost and the link 

would be displayed in your Terminal and also opened as a new Tab in your default browser. 

Day-02: Develop Data Visualization Interfaces in Python With Dash 
Dash gives data scientists the ability to showcase their results in interactive web applications. 
You don’t need to be an expert in web development. In an afternoon, you can build and deploy 
a Dash app to share with others. 

Here you’ll learn how to: 

• Create a Dash application 
• Use Dash core components and HTML components 

• Customize the style of your Dash application 
• Use callbacks to build interactive applications 

• Deploy your application on PythonAnywhere 

You can download the source code, data, and resources for the sample application that you’ll 
make in this tutorial by clicking the link below: 

What Is Dash? 

Dash is an open-source framework for building data visualization interfaces. Released in 2017 as 
a Python library, it’s grown to include implementations for R, Julia, and F#. Dash helps data 
scientists build analytical web applications without requiring advanced web development 
knowledge. 

Three technologies constitute the core of Dash: 

1. Flask supplies the web server functionality. 
2. React.js renders the user interface of the web page. 

3. Plotly.js generates the charts used in your application. 

But you don’t have to worry about making all these technologies work together. Dash will do 
that for you. You just need to write Python, R, Julia, or F# and sprinkle in a bit of CSS. 

Plotly, a Canada-based company, built Dash and supports its development. You may know the 
company from the popular graphing libraries that share its name. The company released Dash 
as open source under an MIT license, so you can use Dash at no cost. 

Plotly also offers a commercial companion to Dash called Dash Enterprise. This paid service 
provides companies with support services such as hosting, deploying, and handling 
authentication on Dash applications. But these features live outside of Dash’s open-source 
ecosystem. 

Dash will help you build dashboards quickly. If you’re used to analyzing data or building data 
visualizations using Python, then Dash will be a useful addition to your toolbox. Here are a few 
examples of what you can make with Dash: 
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1. A dashboard showing object detection for self-driving cars 

2. A visualization of millions of Uber rides 
3. An interactive tool for analyzing soccer match data 

This is just a tiny sample. If you’d like to see other interesting use cases, then go 

check out the Dash App Gallery. 

Note: You don’t need advanced knowledge of web development to follow this 
manual, but some familiarity with HTML and CSS won’t hurt. 

You should know the basics of the following topics, though: 

• Python graphing libraries such as Plotly, Bokeh, and Matplotlib 
• HTML and the structure of an HTML file CSS and style sheets 

Get Started With Dash in Python 

You’ll go through the end-to-end process of building a dashboard using Dash. If you follow along 
with the examples, then you’ll go from a bare-bones dashboard on your local machine to a 
styled dashboard deployed on PythonAnywhere. 

To build the dashboard, you’ll use a dataset of sales and prices of avocados in the United States 
between 2015 and 2018. Justin Kiggins compiled this dataset using data from the Hass Avocado 
Board. 

How to Set Up Your Local Environment 

To develop your app, you’ll need a new directory to store your code and data. You’ll also need a 
clean Python virtual environment. To create those, execute the commands below, choosing the 
version that matches your operating system: 

PS> mkdir avocado_analytics 

PS> cd avocado_analytics 

PS> python -m venv venv 

PS> venv\Scripts\activate 

The first two commands create a directory for your project and move your current location there. 
The next command creates a virtual environment in that location. The last command activates 
the virtual environment. 

Next, you need to install the required libraries. You can do that using pip inside your virtual 
environment. Install the libraries as follows: 

(venv) $ python -m pip install dash==2.8.1 pandas==1.5.3 

This command will install Dash and pandas in your virtual environment. You’ll use specific 
versions of these packages to make sure that you have the same environment as the one used 
throughout this tutorial. Alongside Dash, pandas will help you handle reading and wrangling the 
data that you’ll use in your app. 



 

Page 458 of 580  
 

Save the data as avocado.csv in the root directory of the project. By now, you should have a virtual 
environment with the required libraries and the data in the root folder of your project. Your 
project’s structure should look like this: 

avocado_analytics/ 

venv/ 

avocado.csv 

Now you’ll build your first Dash application. 

How to Build a Dash Application 

For development purposes, it’s useful to think of the process of building a Dash application in 
three steps: 

1. Define the content of your application using the app’s layout. 
2. Style the looks of your app with CSS or styled components. 
3. Use callbacks to determine which parts of your app are interactive and what they react to. 

Initializing Your Dash Application 

Create an empty file named app.py in the root directory of your project, then review the code 
of app.py in this section. To make it easier for you to copy the full code, you’ll find the entire 
contents of app.py at the end of this section. 

Here are the first few lines of app.py: 

 1# app.py 

 2 

 3import pandas as pd 

 4from dash import Dash, dcc, html 

 5 

 6data = ( 

 7    pd.read_csv("avocado.csv") 

 8    .query("type == 'conventional' and region == 'Albany'") 

 9    .assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d")) 

10    .sort_values(by="Date") 

11) 

12 

13app = Dash(__name__) 

On lines 3 and 4, you import the required libraries: pandas and dash. You’ll use pandas to read 
and organize the data. You’re importing the following elements from dash: 

• Dash helps you initialize your application. 
• html, also called Dash HTML Components, lets you access HTML tags. 
• dcc, short for Dash Core Components, allows you to create interactive components like 

graphs, dropdowns, or date ranges. 
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On lines 6 to 11, you read the data and preprocess it for use in the dashboard. You filter some of 
the data because your dashboard isn’t interactive yet, and the plotted values wouldn’t make 
sense otherwise. 

On line 13, you create an instance of the Dash class you use Dash(__name__). 

Defining the Layout of Your Dash Application 

Next, you’ll define the layout property of your application. This property dictates the content of 
your app. In this case, you’ll use a heading with a description immediately below it, followed by 
two graphs. Here’s how you define it: 

 1# app.py 

 2 

 3# ... 

 4 

 5app.layout = html.Div( 

 6    children=[ 

 7        html.H1(children="Avocado Analytics"), 

 8        html.P( 

 9            children=( 

10                "Analyze the behavior of avocado prices and the number" 

11                " of avocados sold in the US between 2015 and 2018" 

12            ), 

13        ), 

14        dcc.Graph( 

15            figure={ 

16                "data": [ 

17                    { 

18                        "x": data["Date"], 

19                        "y": data["AveragePrice"], 

20                        "type": "lines", 

21                    }, 

22                ], 

23                "layout": {"title": "Average Price of Avocados"}, 

24            }, 

25        ), 

26        dcc.Graph( 

27            figure={ 

28                "data": [ 

29                    { 

30                        "x": data["Date"], 
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31                        "y": data["Total Volume"], 

32                        "type": "lines", 

33                    }, 

34                ], 

35                "layout": {"title": "Avocados Sold"}, 

36            }, 

37        ), 

38    ] 

39) 

With this code, you define the .layout property of the app object. This property determines the 
content of your application using a tree structure made of Dash components. 

Dash components come prepackaged in Python libraries. Some of them come with Dash when 
you install it. You have to install the rest separately. You’ll see two sets of components in almost 
every app: 

1. The Dash HTML Components module provides you with Python wrappers for HTML 

elements. For example, you could use Dash HTML Components to create elements 
such as paragraphs, headings, or lists. 

2. The Dash Core Components module provides you with Python abstractions for 
creating interactive user interfaces. You can use these components to create 

interactive elements such as graphs, sliders, or dropdowns. 

On lines 5 to 13, you can see the Dash HTML components in practice. You start by defining the 
parent component, html.Div. Then you add two more elements, a heading (html.H1) and a 
paragraph (html.P), as its children. 

These components are equivalent to the <div>, <h1>, and <p> HTML tags. You can use the 
components’ arguments to modify attributes or the content of the tags. For example, to specify 
what goes inside the <div> tag, you use the children argument in html.Div. 

There are also other arguments in the components, such as style, className, and id, that refer to 
attributes of the HTML tags. You’ll see how to use some of these properties to style your 
dashboard in the next section. 

The part of the layout shown on lines 5 to 13 will get transformed into the following HTML code: 

<div> 

  <h1>Avocado Analytics</h1> 

  <p> 

    Analyze the behavior of avocado prices and the number 

    of avocados sold in the US between 2015 and 2018 

  </p> 

  <!-- Rest of the app --> 
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</div> 

This HTML code is rendered when you open your application in the browser. It follows the same 
structure as your Python code, with a <div> tag containing an <h1> and a <p> element. 

On lines 14 and 26 in the layout code snippet, you can see the graph component from Dash Core 
Components in practice. There are two dcc.Graph components in app.layout. The first one plots 
the average prices of avocados during the period of study, and the second plots the number of 
avocados sold in the United States during the same period. 

Under the hood, Dash uses Plotly.js to generate graphs. The dcc.Graph components expect 
a figure object or a Python dictionary containing the plot’s data and layout. In this case, you 
provide the latter. 

Finally, these two lines of code help you run your application: 

# app.py 

 

# ... 

 

if __name__ == "__main__": 

    app.run_server(debug=True) 

These lines make it possible to run your Dash application locally using Flask’s built-in server. 
The debug=True parameter enables the hot-reloading option in your application. This means that 
when you make a change to your app, it reloads automatically, without you having to restart the 
server. 

This is the code for your bare-bones dashboard. It includes all the snippets of code that you 
reviewed earlier in this section. 

Now it’s time to run your application. Open a terminal inside your project’s root directory with 
the project’s virtual environment activated. Run python app.py, then go 
to http://localhost:8050 using your preferred browser. 

Note: Install dash by typing followin command on Shell: 
 conda install dash dash-core-components dash-html-components dash-renderer 
-c conda-forge 

 

and the py -m pip install dash 

Your dashboard should look like this: 
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The dashboard is far from visually pleasing, and you still need to add some interactivity to it. 

Style Your Dash Application 

Dash provides you with a lot of flexibility to customize the look of your application. You can use 
your own CSS or JavaScript files, set a favicon—the small icon shown on tabs in the web 
browser—and embed images, among other advanced options. 

Now you’ll see how to show off your own style with CSS. There are several packages on PyPI that 
provide styled Dash components. For example, dash-bootstrap-components are Bootstrap 
themed. 

Apply custom styles to components, and then you’ll style the dashboard that you built in the 
previous section. 

How to Apply a Custom Style to Your Components 

You can style components in two ways: 

• Using the style argument of individual components 

• Providing an external CSS file 
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Using the style argument to customize your dashboard is straightforward. This argument takes a 
Python dictionary with key-value pairs consisting of the names of CSS properties and the values 
that you want to set. 

When specifying CSS properties in the style argument, you should use mixedCase syntax instead 

of hyphen-separated words. For example, to change the background color of an element, you should 

use backgroundColor and not background-color. 

If you wanted to change the size and color of the H1 element in app.py, then you could set the 
element’s style argument as follows: 

html.H1( 

    children="Avocado Analytics", 

    style={"fontSize": "48px", "color": "red"}, 

), 
If you want to include your own local CSS or JavaScript files, then you need to create a folder 
called assets/ in the root directory of your project and save the files that you want to add there. 
By default, Dash automatically serves any file included in assets/. This will also work for adding a 
favicon or embedding images, as you’ll see in a bit. 

Then you can use the className or id arguments of the components to adjust their styles using 
CSS. These arguments correspond with the class and id attributes when they’re transformed into 
HTML tags. 

If you wanted to adjust the font size and text color of the H1 element in app.py, then you could 
use the className argument as follows: 

html.H1( 

    children="Avocado Analytics", 

    className="header-title", 

), 
 

Setting the className argument will define the class attribute for the <h1> element. You could 
then use a CSS file in the assets folder to specify how you want it to look: 

.header-title { 

  font-size: 48px; 

  color: red; 

} 

You use a class selector to format the heading in your CSS file. This selector will adjust the heading 
format. You could also use it with another element that needs to share the format by 
setting className="header-title". 
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How to Improve the Looks of Your Dashboard 

You just covered the basics of styling in Dash. Now, you’ll learn how to customize your 
dashboard’s looks. You’ll make these improvements: 

• Add a favicon and title to the page. 

• Change the font family of your dashboard. 

• Use an external CSS file to style Dash components. 

You’ll start by learning how to use external assets in your application. That’ll allow you to add a 
favicon, a custom font family, and a CSS style sheet. Then you’ll learn how to use 
the className argument to apply custom styles to your Dash components. 

Adding External Assets to Your Application 

Create a folder called assets/ in your project’s root directory. Download a favicon from 
the Twemoji open-source project and save it as favicon.ico in assets/. Finally, create a CSS file 
in assets/ called style.css and add the code in the collapsible section below: 

style.cssShow/Hide 

The assets/style.css file contains the styles that you’ll apply to components in your application’s 
layout. By now, your project structure should look like this: 

avocado_analytics/ 

│ 

├── assets/ 

│   ├── favicon.ico 

│   └── style.css 

│ 

├── venv/ 

│ 

├── app.py 

└── avocado.csv 

Once you start the server, Dash will automatically serve the files located in assets/. You include 
two files, favicon.ico and style.css, in assets/. To set a default favicon, you don’t have to take any 
additional steps. To use the styles that you defined in style.css, you’ll need to use 
the className argument in Dash components. 

You need to make a few changes in app.py. You’ll include an external style sheet, add a title to 
your dashboard, and style the components using the style.css file. Review the changes below. 
Then, in the last part of this section, you’ll find the full code for your updated version of app.py. 

Here’s how you include an external style sheet and add a title to your dashboard: 

# app.py 
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# ... 

 

external_stylesheets = [ 

    { 

        "href": ( 

            "https://fonts.googleapis.com/css2?" 

            "family=Lato:wght@400;700&display=swap" 

        ), 

        "rel": "stylesheet", 

    }, 

] 

app = dash.Dash(__name__, external_stylesheets=external_stylesheets) 

app.title = "Avocado Analytics: Understand Your Avocados!" 

 

# ... 

In these code lines, you specify an external CSS file containing a font family, which you want to 
load in your application. You add external files to the head tag of your application, so they load 
before the body of your application loads. You use the external_stylesheets argument for adding 
external CSS files or external_scripts for external JavaScript files like Google Analytics. 

You also set the title of your application. This is the text that appears in the title bar of your web 
browser, in Google’s search results, and in social media cards when you share your site. 

Customizing the Styles of Components 

To use the styles in style.css, you’ll need to use the className argument in Dash components. 
The code below adds a className with a corresponding class selector to each of the components 
in the header of your dashboard: 

# app.py 

 

# ... 

 

app.layout = html.Div( 

    children=[ 

        html.Div( 

            children=[ 

                html.P(children="🥑", className="header-emoji"), 

                html.H1( 

                    children="Avocado Analytics", className="header-title" 

                ), 

                html.P( 
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                    children=( 

                        "Analyze the behavior of avocado prices and the number" 

                        " of avocados sold in the US between 2015 and 2018" 

                    ), 

                    className="header-description", 

                ), 

            ], 

            className="header", 

 

        # ... 

In the highlighted lines, you can see that you’ve made three changes to the initial version of the 
dashboard: 

1. There’s a new <div> element that wraps all the header components. 

2. There’s a new paragraph element with an avocado emoji,        , that’ll serve as a logo on the 
page. 

3. There’s a className argument in each component. These class names match a class 
selector in style.css, which defines the looks of each component. 

For example, the header-description class assigned to the paragraph component starting 
with "Analyze the behavior of avocado prices" has a corresponding selector in style.css. In that 
file, you’ll see the following: 

.header-description { 

    color: #CFCFCF; 

    margin: 4px auto; 

    text-align: center; 

    max-width: 384px; 

} 

These lines define the format for the header-description class selector. They’ll change the color, 
margin, alignment, and maximum width of any component with className="header-
description". All the components have corresponding class selectors in the CSS file. 

The other significant change is in the graphs. Here’s the new code for the price chart: 

 1# app.py 

 2 

 3# ... 

 4 

 5app.layout = html.Div( 

 6    children=[ 

 7        # ... 

 8 
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 9        html.Div( 

10            children=[ 

11                html.Div( 

12                    children=dcc.Graph( 

13                        id="price-chart", 

14                        config={"displayModeBar": False}, 

15                        figure={ 

16                            "data": [ 

17                                { 

18                                    "x": data["Date"], 

19                                    "y": data["AveragePrice"], 

20                                    "type": "lines", 

21                                    "hovertemplate": ( 

22                                        "$%{y:.2f}<extra></extra>" 

23                                    ), 

24                                }, 

25                            ], 

26                            "layout": { 

27                                "title": { 

28                                    "text": "Average Price of Avocados", 

29                                    "x": 0.05, 

30                                    "xanchor": "left", 

31                                }, 

32                                "xaxis": {"fixedrange": True}, 

33                                "yaxis": { 

34                                    "tickprefix": "$", 

35                                    "fixedrange": True, 

36                                }, 

37                                "colorway": ["#17b897"], 

38                            }, 

39                        }, 

40                    ), 

41                    className="card", 

42                ), 

43 

44                # ... 

45 

46            ], 
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47            className="wrapper", 

48        ), 

49    ] 

50) 

51 

52# ... 

In this code, you define a className and a few customizations for 

the config and figure parameters of your chart. Here are the changes: 

• Line 14: You remove the floating toolbar that Plotly shows by default. 
• Lines 21 to 23: You set the hover template so that when users hover over a data point, it 

shows the price in dollars. Instead of 2.5, it’ll show as $2.5. 
• Lines 26 to 38: You adjust the axes, the color of the figure, and the title format in the layout 

section of the graph. 
• Lines 11 and 41: You wrap the graph in a <div> element with a "card" class. This will give 

the graph a white background and add a small shadow below it. 
• Lines 9 and 47: You add a <div> element that wraps the graph components with 

a wrapper class. 

There are similar adjustments to the sales and volume charts. You can see those in the full 

code for the updated app.py in the collapsible section below: 

# app.py 

 

import pandas as pd 

from dash import Dash, dcc, html 

 

data = ( 

    pd.read_csv("avocado.csv") 

    .query("type == 'conventional' and region == 'Albany'") 

    .assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d")) 

    .sort_values(by="Date") 

) 

 

external_stylesheets = [ 

    { 

        "href": ( 

            "https://fonts.googleapis.com/css2?" 

            "family=Lato:wght@400;700&display=swap" 

        ), 

        "rel": "stylesheet", 

    }, 
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] 

app = Dash(__name__, external_stylesheets=external_stylesheets) 

app.title = "Avocado Analytics: Understand Your Avocados!" 

 

app.layout = html.Div( 

    children=[ 

        html.Div( 

            children=[ 

                html.P(children="🥑", className="header-emoji"), 

                html.H1( 

                    children="Avocado Analytics", className="header-title" 

                ), 

                html.P( 

                    children=( 

                        "Analyze the behavior of avocado prices and the number" 

                        " of avocados sold in the US between 2015 and 2018" 

                    ), 

                    className="header-description", 

                ), 

            ], 

            className="header", 

        ), 

        html.Div( 

            children=[ 

                html.Div( 

                    children=dcc.Graph( 

                        id="price-chart", 

                        config={"displayModeBar": False}, 

                        figure={ 

                            "data": [ 

                                { 

                                    "x": data["Date"], 

                                    "y": data["AveragePrice"], 

                                    "type": "lines", 

                                    "hovertemplate": ( 

                                        "$%{y:.2f}<extra></extra>" 

                                    ), 

                                }, 
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                            ], 

                            "layout": { 

                                "title": { 

                                    "text": "Average Price of Avocados", 

                                    "x": 0.05, 

                                    "xanchor": "left", 

                                }, 

                                "xaxis": {"fixedrange": True}, 

                                "yaxis": { 

                                    "tickprefix": "$", 

                                    "fixedrange": True, 

                                }, 

                                "colorway": ["#17b897"], 

                            }, 

                        }, 

                    ), 

                    className="card", 

                ), 

                html.Div( 

                    children=dcc.Graph( 

                        id="volume-chart", 

                        config={"displayModeBar": False}, 

                        figure={ 

                            "data": [ 

                                { 

                                    "x": data["Date"], 

                                    "y": data["Total Volume"], 

                                    "type": "lines", 

                                }, 

                            ], 

                            "layout": { 

                                "title": { 

                                    "text": "Avocados Sold", 

                                    "x": 0.05, 

                                    "xanchor": "left", 

                                }, 

                                "xaxis": {"fixedrange": True}, 

                                "yaxis": {"fixedrange": True}, 
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                                "colorway": ["#E12D39"], 

                            }, 

                        }, 

                    ), 

                    className="card", 

                ), 

            ], 

            className="wrapper", 

        ), 

    ] 

) 

 

if __name__ == "__main__": 

    app.run_server(debug=True) 

This is the updated version of app.py. It has the required changes in the code to 
add a favicon and a page title, update the font family, and use an external CSS 

file. After these changes, your dashboard should look like this: 

 

 

Add Interactivity to Your Dash Apps Using Callbacks 
In this section, you’ll learn how to add interactive elements to your dashboard. 
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Dash’s interactivity is based on a reactive programming paradigm. This means that you can 

link components with elements of your app that you want to update. If a user interacts with an 

input component like a dropdown or a range slider, then the output, such as a graph, will react 

automatically to the changes in the input. 

Now you’re going to make your dashboard interactive. This new version of your dashboard 

will allow the user to interact with the following filters: 

• Region 
• Type of avocado 
• Date range 

The collapsible boxes below contain the full source code that you’ll be exploring in this 

section. Start by replacing your local app.py with the new version in the collapsible section 

below: 

app.pyShow/Hide 

Next, replace style.css with the code in the collapsible section below: 

style.cssShow/Hide 

Now you’re ready to explore the interactive components that you’ve added to your 

application! 

How to Create Interactive Components 

First, you’ll learn how to create components that users can interact with. For 
that, you’ll include a new <div> element above your charts. It’ll include two 

dropdowns and a date range selector that the user can use to filter the data and 

update the graphs. 

You start by changing how you process your data. You no longer filter the data 

when you read them. Instead you find the regions and avocado types that are 

present in your data: 

# app.py 

 

# ... 

 

data = ( 

    pd.read_csv("avocado.csv") 

    # Remove .query(...) 

    .assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d")) 

    .sort_values(by="Date") 

) 

regions = data["region"].sort_values().unique() 

avocado_types = data["type"].sort_values().unique() 
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# ... 

Next, you’ll use regions and avocado_types to populate a few dropdowns. Here’s 

how that looks in app.py: 

 1# app.py 

 2 

 3# ... 

 4 

 5app.layout = html.Div( 

 6    children=[ 

 7 

 8        # ... 

 9 

10        html.Div( 

11            children=[ 

12                html.Div( 

13                    children=[ 

14                        html.Div(children="Region", className="menu-title"), 

15                        dcc.Dropdown( 

16                            id="region-filter", 

17                            options=[ 

18                                {"label": region, "value": region} 

19                                for region in regions 

20                            ], 

21                            value="Albany", 

22                            clearable=False, 

23                            className="dropdown", 

24                        ), 

25                    ] 

26                ), 

27                html.Div( 

28                    children=[ 

29                        html.Div(children="Type", className="menu-title"), 

30                        dcc.Dropdown( 

31                            id="type-filter", 

32                            options=[ 

33                                { 

34                                    "label": avocado_type.title(), 
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35                                    "value": avocado_type, 

36                                } 

37                                for avocado_type in avocado_types 

38                            ], 

39                            value="organic", 

40                            clearable=False, 

41                            searchable=False, 

42                            className="dropdown", 

43                        ), 

44                    ], 

45                ), 

46                html.Div( 

47                    children=[ 

48                        html.Div( 

49                            children="Date Range", className="menu-title" 

50                        ), 

51                        dcc.DatePickerRange( 

52                            id="date-range", 

53                            min_date_allowed=data["Date"].min().date(), 

54                            max_date_allowed=data["Date"].max().date(), 

55                            start_date=data["Date"].min().date(), 

56                            end_date=data["Date"].max().date(), 

57                        ), 

58                    ] 

59                ), 

60            ], 

61            className="menu", 

62        ), 

63 

64        # ... 

On lines 10 to 62, you define a <div> element above your graphs, consisting of 
two dropdowns and a date range selector. It’ll serve as a menu that the user will 

use to interact with the data: 
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The first component in the menu is the Region dropdown. Focus on the code for 

that component: 

html.Div( 

    children=[ 

        html.Div(children="Region", className="menu-title"), 

        dcc.Dropdown( 

            id="region-filter", 

            options=[ 

                {"label": region, "value": region} 

                for region in regions 

            ], 

            value="Albany", 

            clearable=False, 

            className="dropdown", 

        ), 

    ] 

), 

Here, you define the dropdown that users will use to filter the data by region. In 

addition to the title, it has a dcc.Dropdown component. Here’s what each of the 

parameters means: 

• id is the identifier of this element. 

• options indicates the options shown when the dropdown is selected. It 
expects a dictionary with labels and values. 

• value is the default value when the page loads. 
• clearable allows the user to leave this field empty if set to True. 

• className is a CSS class selector used for applying styles. 

The Type and Date Range selectors follow the same structure as the Region 

dropdown. Feel free to review them on your own. 

Next, take a look at the dcc.Graphs components: 

# app.py 

 

# ... 

 

app.layout = html.Div( 

    children=[ 
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        # ... 

 

        html.Div( 

            children=[ 

                html.Div( 

                    children=dcc.Graph( 

                        id="price-chart", 

                        config={"displayModeBar": False}, 

                    ), 

                    className="card", 

                ), 

                html.Div( 

                    children=dcc.Graph( 

                        id="volume-chart", 

                        config={"displayModeBar": False}, 

                    ), 

                    className="card", 

                ), 

            ], 

            className="wrapper", 

        ), 

    ] 

) 

 

# ... 

In this part of the code, you define the dcc.Graph components. You may have 
noticed that, compared to the previous version of the dashboard, the 

components are missing the figure argument. That’s because a callback 
function will now generate the figure argument using the inputs that the user 

sets using the Region, Type, and Date Range selectors. 

How to Define Callbacks 

You’ve defined how the user will interact with your application. Now you need to make your 

application react to user interactions. For that, you’ll use callback functions. 

Dash’s callback functions are regular Python functions with an app.callback decorator. In 

Dash, when an input changes, a callback function is triggered. The function performs some 

predetermined operations, like filtering a dataset, and returns an output to the application. In 

essence, callbacks link inputs and outputs in your app. 
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Here’s the callback function that’s used for updating the graphs: 

 1# app.py 

 2 

 3# .. 

 4 

 5@app.callback( 

 6    Output("price-chart", "figure"), 

 7    Output("volume-chart", "figure"), 

 8    Input("region-filter", "value"), 

 9    Input("type-filter", "value"), 

10    Input("date-range", "start_date"), 

11    Input("date-range", "end_date"), 

12) 

13def update_charts(region, avocado_type, start_date, end_date): 

14    filtered_data = data.query( 

15        "region == @region and type == @avocado_type" 

16        " and Date >= @start_date and Date <= @end_date" 

17    ) 

18    price_chart_figure = { 

19        "data": [ 

20            { 

21                "x": filtered_data["Date"], 

22                "y": filtered_data["AveragePrice"], 

23                "type": "lines", 

24                "hovertemplate": "$%{y:.2f}<extra></extra>", 

25            }, 

26        ], 

27        "layout": { 

28            "title": { 

29                "text": "Average Price of Avocados", 

30                "x": 0.05, 

31                "xanchor": "left", 

32            }, 

33            "xaxis": {"fixedrange": True}, 

34            "yaxis": {"tickprefix": "$", "fixedrange": True}, 

35            "colorway": ["#17B897"], 

36        }, 

37    } 
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38 

39    volume_chart_figure = { 

40        "data": [ 

41            { 

42                "x": filtered_data["Date"], 

43                "y": filtered_data["Total Volume"], 

44                "type": "lines", 

45            }, 

46        ], 

47        "layout": { 

48            "title": {"text": "Avocados Sold", "x": 0.05, "xanchor": "left"}, 

49            "xaxis": {"fixedrange": True}, 

50            "yaxis": {"fixedrange": True}, 

51            "colorway": ["#E12D39"], 

52        }, 

53    } 

54    return price_chart_figure, volume_chart_figure 

55 

56# ... 

On lines 6 to 11, you define the inputs and outputs inside the app.callback decorator. 

First, you define the outputs using Output objects. They take two arguments: 

1. The identifier of the element that they’ll modify when the function executes 
2. The property of the element to be modified 

For example, Output("price-chart", "figure") will update the figure property of 

the "price-chart" element. 

Then you define the inputs using Input objects. They also take two arguments: 

1. The identifier of the element that they’ll be watching for changes 
2. The property of the watched element that they’ll be watching for changes 

So, Input("region-filter", "value") will watch the "region-filter" element and 

its value property for changes. The argument passed on to the callback function will be the 

new value of region-filter.value. 

Note: The Input object that you’re using here is imported directly from dash. Be careful not 

to confuse it with the Input component coming from dcc. These objects aren’t 

interchangeable, and they have different purposes. 

On line 13, you define the function that’ll be applied when an input changes. It’s worth 

noticing that the arguments of the function will correspond with the order of 
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the Input objects supplied to the callback. There’s no explicit relationship between the 

names of the arguments in the function and the values specified in the Input objects. 

Finally, on lines 14 to 54, you define the body of the function. In this case, the function takes 

the inputs (region, type of avocado, and date range), filters the data, and generates the figure 

objects for the price and volume charts. 

That’s all! If you’ve followed along to this point, then your dashboard should look like this: 

Way to go! That’s the final version of your dashboard. In addition to making it look beautiful, 

you also made it interactive. The only missing step is making it public so you can share it 

with others. 

Deploy Your Dash Application to PythonAnywhere 

You’re done building your application, and you have a beautiful, fully interactive 

dashboard. Now you’ll learn how to deploy it. 

Dash apps are Flask apps, so both share the same deployment options. In this 

section, you’ll deploy your app on PythonAnywhere, which offers a free tier for 

hosting Python web applications in the cloud. 

Day-03: Host, run, and code Python in the cloud! 
PythonAnywhere by anaconda 

How to Create a Free PythonAnywhere Account 

Before you get started, make sure you’ve signed up for a PythonAnywhere beginner 

account, which is completely free of charge and doesn’t require you to provide any payment 

details. That said, it comes with a few limitations that you should be aware of. The most 

important ones will prevent you from doing the following: 

• Running more than one web application at a time 
• Defining a custom domain name 
• Exceeding the available disk quota (512 MB) 
• Using the CPU for longer than 100 seconds per day 
• Making unrestricted HTTP requests from your app 

For this tutorial, though, you won’t need any of that! 

If you’re based in Europe, then consider signing up through eu.pythonanywhere.com instead 

of the www.pythonanywhere.com. It’ll ensure GDPR compliance for your data, which 

PythonAnywhere will store on servers in Germany. Because of that, you may also experience 

slightly faster response times. Finally, if you decide to become a paid customer one day, then 

you’ll be charged in euros instead of US dollars. 

Feel free to follow either of the two PythonAnywhere links above if you don’t care about any 

of these features at the moment. Note, however, that once you register a username on one 

domain, then you won’t be able to reuse it on the other! 
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Another reason to think carefully about your username is that it must be unique, as it’ll 

become a part of your very own domain name, such as in these examples: 

http://realpython.pythonanywhere.com/ 

http://realpython.eu.pythonanywhere.com/ 

Once you register a new account on PythonAnywhere, you must confirm your email address 

so that you can reset the password if you forget it. Also, it might be a good idea to 

enable two-factor authentication on the Security tab in your Account settings as an extra 

security measure. 

If you’ve just created a new account, then you’re already good to go. But if you registered a 

PythonAnywhere account a while ago, then you might need to change your system image to a 

newer one, which comes with a more recent Python version and newer third-party libraries. 

At the time of writing, the latest image, called haggis, shipped with Python 3.10.5, pandas 

1.3.5, and Dash 2.4.1. 

Note: You can always check the available batteries for a given image and Python version. 

With that out of the way, it’s time to create your first web app on PythonAnywhere! 

How to Deploy Your Avocado Analytics App 

Because Dash apps are Flask apps with some extra frills, you can take advantage of 

PythonAnywhere’s excellent support for this popular Python web framework. 

When you’re logged in to your PythonAnywhere account, create a new Bash shell console, 

either from the Dashboard or the Consoles tab. This will throw you into an interactive 

prompt of the virtual server, letting you remotely execute commands straight from your web 

browser. 

There are already several useful programs installed for you, including a Git client, which 

you’ll use to get your project’s source code into PythonAnywhere. You can also upload files 

in other ways, but using Git seems the most convenient. If you haven’t made your own 

repository yet, then you might clone Real Python’s materials repository with your sample 

Dash application in it: 

$ git clone --depth=1 https://github.com/realpython/materials.git 

The --depth=1 option tells Git only to clone the latest commit, which saves time and disk 

space. Note that if you don’t want to configure SSH keys for your PythonAnywhere machine, 

then you’ll have to clone a public repository using the HTTPS protocol. Since August 2021, 

cloning private repositories has been possible only after configuring a personal access 

token in GitHub. 

When the repository is cloned, you can move and rename a subfolder with the finished 

avocado app to your home folder on PythonAnywhere, and then remove the rest of the 

materials: 

$ mv materials/python-dash/avocado_analytics_3/ ~/avocado_analytics 

$ rm -rf materials/ 
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Remember that you only have 512 megabytes of disk space on the free tier at your disposal, 

and the materials take up a significant portion of that! 

At this point, your home folder should look like this: 

home/realpython/ 

│ 

└── avocado_analytics/ 

    │ 

    ├── assets/ 

    │   ├── favicon.ico 

    │   └── style.css 

    │ 

    ├── app.py 

    └── avocado.csv 

Of course, the username realpython will be different on your account, but the overall folder 

structure should remain the same. 

Now, go the Web tab and click the button labeled Add a new web app. This will open a 

wizard, asking you a few questions. First, select Flask as the Python web framework of your 

choice: 
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Next, you’ll see a specific Flask version running on top of the given Python interpreter. 

Select the latest version available: 
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In the next step, you’ll need to update the file path leading up to the main Python module 

with your Flask app: 
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While you can change it later, it’s much easier if you do it right now, so make sure to rename 

the default mysite/ folder with avocado_analytics/ to match your project’s name. At the 

same time, you want to keep the suggested flask_app.py filename intact. PythonAnywhere 

will generate this file and populate it with a demo app, so if you renamed it to app.py, then 

the code that you cloned from GitHub would get overwritten! 

Once this is done, you’ll be presented with a number of configuration options for your new 

web app. First, you need to update the working directory of the app to be the same as the 

source code: 

 

This will ensure that Python can find your avocado.csv file at runtime and open it for 

reading. 
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Next, you’ll need to tweak the default WSGI server configuration, which is slightly different 

for Dash apps than it is for Flask. PythonAnywhere uses the uWSGI server behind the scenes, 

which reads the configuration from a special Python module located in the /var/www/ folder. 

Click the WSGI configuration file option visible in the screenshot above to open it in an 

editor in your web browser: 

 # This file contains the WSGI configuration required to serve up your 

 # web application at http://<your-username>.pythonanywhere.com/ 

 # It works by setting the variable 'application' to a WSGI handler of some 

 # description. 

 # 

 # The below has been auto-generated for your Flask project 

 

 import sys 

 

 # add your project directory to the sys.path 

 project_home = '/home/realpython/avocado_analytics' 

 if project_home not in sys.path: 

     sys.path = [project_home] + sys.path 

 

 # import flask app but need to call it "application" for WSGI to work 

-from flask_app import app as application  # noqa 

+from app import app 

+application = app.server 

You need to rename the flask_app module generated by the wizard to the actual app module 

that came with your avocado project. Besides that, you must expose the callable WSGI 

application through the Dash app’s .server field, as described in the official help page on 

PythonAnywhere. You might as well double-check if the path in 

your project_home variable is correct. 

Finally, save the file by hitting Ctrl + S , go back to the Web tab, and click the green button 

to reload your web app: 

 

When you visit the corresponding URL of your web app deployed to PythonAnywhere, you 

should see the familiar interface: 
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Avocado Analytics Web App Deployed to PythonAnywhere 

That’s it! Note that you never installed Dash or pandas because they were already shipped 

with PythonAnywhere. Also, you didn’t have to configure static resources, which are 

typically served by the web server rather than Flask, because Dash takes care of them 

automatically. 

Note: If you need more control over the external library versions, then you can 

use virtualenvwrapper to create a virtual environment for the platform and manually install 

those dependencies. Unfortunately, doing so will likely consume all of your disk space and 

drain your CPU bandwidth to the point you’ll end up in the tarpit. 

You can now share your Dash apps with the world by deploying them to PythonAnywhere or 

other web hosting providers. 
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Day-04: Interactive Data Visualization in 

Python With Bokeh 

Bokeh prides itself on being a library for interactive data visualization. 

Unlike popular counterparts in the Python visualization space, like Matplotlib and Seaborn, Bokeh 

renders its graphics using HTML and JavaScript. This makes it a great candidate for building web-

based dashboards and applications. However, it’s an equally powerful tool for exploring and 

understanding your data or creating beautiful custom charts for a project or report. 

Using a number of examples on a real-world dataset, the goal of this tutorial is to get you up and 

running with Bokeh. 

• Transform your data into visualizations, using Bokeh 

• Customize and organize your visualizations 

• Add interactivity to your visualizations 

Building a visualization with Bokeh involves the following steps: 

• Prepare the data 

• Determine where the visualization will be rendered 

• Set up the figure(s) 

• Connect to and draw your data 

• Organize the layout 

• Preview and save your beautiful data creation 

Prepare the Data 

Any good data visualization starts with—you guessed it—data. If you need a quick refresher 

on handling data in Python. 

This step commonly involves data handling libraries like Pandas and Numpy and is all about 

taking the required steps to transform it into a form that is best suited for your intended 

visualization.  

Determine Where the Visualization Will Be Rendered 

At this step, you’ll determine how you want to generate and ultimately view your 

visualization. In this tutorial, you’ll learn about two common options that Bokeh provides: 

generating a static HTML file and rendering your visualization inline in a Jupyter Notebook. 

Set up the Figure(s) 

From here, you’ll assemble your figure, preparing the canvas for your visualization. In this 

step, you can customize everything from the titles to the tick marks. You can also set up a 

suite of tools that can enable various user interactions with your visualization. 
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Connect to and Draw Your Data 

Next, you’ll use Bokeh’s multitude of renderers to give shape to your data. Here, you have 

the flexibility to draw your data from scratch using the many available marker and shape 

options, all of which are easily customizable. This functionality gives you incredible creative 

freedom in representing your data.  

Additionally, Bokeh has some built-in functionality for building things like stacked bar charts 

and plenty of examples for creating more advanced visualizations like network graphs and 

maps. 

Organize the Layout 

If you need more than one figure to express your data, Bokeh’s got you covered. Not only 

does Bokeh offer the standard grid-like layout options, but it also allows you to easily 

organize your visualizations into a tabbed layout in just a few lines of code.  

In addition, your plots can be quickly linked together, so a selection on one will be reflected 

on any combination of the others.  

Preview and Save Your Beautiful Data Creation 

Finally, it’s time to see what you created.  

Whether you’re viewing your visualization in a browser or notebook, you’ll be able to 

explore your visualization, examine your customizations, and play with any interactions that 

were added.  

If you like what you see, you can save your visualization to an image file. Otherwise, you can 

revisit the steps above as needed to bring your data vision to reality.  

That’s it! Those six steps are the building blocks for a tidy, flexible template that can be used 

to take your data from the table to the big screen: 

"""Bokeh Visualization Template 

 

This template is a general outline for turning your data into a  

visualization using Bokeh. 

""" 

# Data handling 

import pandas as pd 

import numpy as np 

 

# Bokeh libraries 

from bokeh.io import output_file, output_notebook 

from bokeh.plotting import figure, show 

from bokeh.models import ColumnDataSource 

from bokeh.layouts import row, column, gridplot 

from bokeh.models.widgets import Tabs, Panel 

 

# Prepare the data 

 

# Determine where the visualization will be rendered 
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output_file('filename.html')  # Render to static HTML, or  

output_notebook()  # Render inline in a Jupyter Notebook 

 

# Set up the figure(s) 

fig = figure()  # Instantiate a figure() object 

 

# Connect to and draw the data 

 

# Organize the layout 

 

# Preview and save  

show(fig)  # See what I made, and save if I like it 

Some common code snippets that are found in each step are previewed above, and you’ll see 

how to fill out the rest as you move through the rest of the tutorial! 

Generating Your First Figure 

There are multiple ways to output your visualization in Bokeh. In this tutorial, you’ll see 

these two options: 

• output_file('filename.html') will write the visualization to a static HTML file. 
• output_notebook() will render your visualization directly in a Jupyter Notebook. 

It’s important to note that neither function will actually show you the visualization. That 

doesn’t happen until show() is called. However, they will ensure that, when show() is called, 

the visualization appears where you intend it to. 

By calling both output_file() and output_notebook() in the same execution, the 

visualization will be rendered both to a static HTML file and inline in the notebook. 

However, if for whatever reason you run multiple output_file() commands in the same 

execution, only the last one will be used for rendering.  

This is a great opportunity to give you your first glimpse at a default Bokeh figure() using 

output_file(): 

# Bokeh Libraries 

from bokeh.io import output_file 

from bokeh.plotting import figure, show 

 

# The figure will be rendered in a static HTML file called 

output_file_test.html 

output_file('output_file_test.html',  

            title='Empty Bokeh Figure') 

 

# Set up a generic figure() object 

fig = figure() 

 

# See what it looks like 

show(fig) 
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As you can see, a new browser window opened with a tab called Empty Bokeh Figure and an 

empty figure. Not shown is the file generated with the name output_file_test.html in your 

current working directory.  

If you were to run the same code snippet with output_notebook() in place of 

output_file(), assuming you have a Jupyter Notebook fired up and ready to go, you will 

get the following: 

# Bokeh Libraries 

from bokeh.io import output_notebook 

from bokeh.plotting import figure, show 

 

# The figure will be right in my Jupyter Notebook 

output_notebook() 

 

# Set up a generic figure() object 
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fig = figure() 

 

# See what it looks like 

show(fig) 

 

As you can see, the result is the same, just rendered in a different location.  

More information about both output_file() and output_notebook() can be found in the 

Bokeh official docs. 

Note: Sometimes, when rendering multiple visualizations sequentially, you’ll see that past 

renders are not being cleared with each execution. If you experience this, import and run the 

following between executions: 

# Import reset_output (only needed once)  

from bokeh.plotting import reset_output 

 

# Use reset_output() between subsequent show() calls, as needed 

reset_output() 

Before moving on, you may have noticed that the default Bokeh figure comes pre-loaded 

with a toolbar. This is an important sneak preview into the interactive elements of Bokeh that 
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come right out of the box. You’ll find out more about the toolbar and how to configure it in 

the Adding Interaction section at the end of this tutorial.  

Getting Your Figure Ready for Data 

Now that you know how to create and view a generic Bokeh figure either in a browser or 

Jupyter Notebook, it’s time to learn more about how to configure the figure() object.  

The figure() object is not only the foundation of your data visualization but also the object 

that unlocks all of Bokeh’s available tools for visualizing data. The Bokeh figure is a subclass 

of the Bokeh Plot object, which provides many of the parameters that make it possible to 

configure the aesthetic elements of your figure.  

To show you just a glimpse into the customization options available, let’s create the ugliest 

figure ever: 

# Bokeh Libraries 

from bokeh.io import output_notebook 

from bokeh.plotting import figure, show 

 

# The figure will be rendered inline in my Jupyter Notebook 

output_notebook() 

 

# Example figure 

fig = figure(background_fill_color='gray', 

             background_fill_alpha=0.5, 

             border_fill_color='blue', 

             border_fill_alpha=0.25, 

             plot_height=300, 

             plot_width=500, 

             h_symmetry=True, 

             x_axis_label='X Label', 

             x_axis_type='datetime', 

             x_axis_location='above', 

             x_range=('2018-01-01', '2018-06-30'), 

             y_axis_label='Y Label', 

             y_axis_type='linear', 

             y_axis_location='left', 

             y_range=(0, 100), 

             title='Example Figure', 

             title_location='right', 

             toolbar_location='below', 

             tools='save') 

 

# See what it looks like 

show(fig) 
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Once the figure() object is instantiated, you can still configure it after the fact. Let’s say 

you want to get rid of the gridlines: 

# Remove the gridlines from the figure() object 

fig.grid.grid_line_color = None 

 

# See what it looks like  

show(fig) 

The gridline properties are accessible via the figure’s grid attribute. In this case, setting 

grid_line_color to None effectively removes the gridlines altogether. More details about 

figure attributes can be found below the fold in the Plot class documentation.  



 

Page 494 of 580  
 

 

Note: If you’re working in a notebook or IDE with auto-complete functionality, this feature 

can definitely be your friend! With so many customizable elements, it can be very helpful in 

discovering the available options: 

 

Otherwise, doing a quick web search, with the keyword bokeh and what you are trying to do, 

will generally point you in the right direction.  

There is tons more I could touch on here, but don’t feel like you’re missing out. I’ll make 

sure to introduce different figure tweaks as the tutorial progresses. Here are some other 

helpful links on the topic: 

• The Bokeh Plot Class is the superclass of the figure() object, from which figures inherit a 
lot of their attributes. 

• The Figure Class documentation is a good place to find more detail about the arguments of 
the figure() object. 
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Here are a few specific customization options worth checking out: 

• Text Properties covers all the attributes related to changing font styles, sizes, colors, and so 
forth. 

• TickFormatters are built-in objects specifically for formatting your axes using Python-like 
string formatting syntax. 

Sometimes, it isn’t clear how your figure needs to be customized until it actually has some 

data visualized in it, so next you’ll learn how to make that happen.  

Drawing Data With Glyphs 

 

An empty figure isn’t all that exciting, so let’s look at glyphs: the building blocks of Bokeh 

visualizations. A glyph is a vectorized graphical shape or marker that is used to represent your data, 

like a circle or square. More examples can be found in the Bokeh gallery. After you create your 

figure, you are given access to a bevy of configurable glyph methods. 

 

Let’s start with a very basic example, drawing some points on an x-y coordinate grid: 

 

# Bokeh Libraries 

from bokeh.io import output_file 

from bokeh.plotting import figure, show 

 

# My x-y coordinate data 

x = [1, 2, 1] 

y = [1, 1, 2] 

# Output the visualization directly in the notebook 

output_file('first_glyphs.html', title='First Glyphs') 

 

# Create a figure with no toolbar and axis ranges of [0,3] 

fig = figure(title='My Coordinates', 

             plot_height=300, plot_width=300, 

             x_range=(0, 3), y_range=(0, 3), 

             toolbar_location=None) 
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# Draw the coordinates as circles 

fig.circle(x=x, y=y, 

           color='green', size=10, alpha=0.5) 

# Show plot 

show(fig) 

 

First Glyphs 

Once your figure is instantiated, you can see how it can be used to draw the x-y coordinate data 
using customized circle glyphs. 

Here are a few categories of glyphs: 

    Marker includes shapes like circles, diamonds, squares, and triangles and is effective for creating 
visualizations like scatter and bubble charts. 

    Line covers things like single, step, and multi-line shapes that can be used to build line charts. 

    Bar/Rectangle shapes can be used to create traditional or stacked bar (hbar) and column (vbar) 
charts as well as waterfall or gantt charts. 

Information about the glyphs above, as well as others, can be found in Bokeh’s Reference Guide. 

These glyphs can be combined as needed to fit your visualization needs. Let’s say I want to create 
a visualization that shows how many words I wrote per day to make this tutorial, with an overlaid 
trend line of the cumulative word count: 

import numpy as np 

# Bokeh libraries 

from bokeh.io import output_notebook 

from bokeh.plotting import figure, show 

 

# My word count data 

day_num = np.linspace(1, 10, 10) 

daily_words = [450, 628, 488, 210, 287, 791, 508, 639, 397, 943] 

cumulative_words = np.cumsum(daily_words) 
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# Output the visualization directly in the notebook 

output_notebook() 

# Create a figure with a datetime type x-axis 

fig = figure(title='My Tutorial Progress', 

             plot_height=400, plot_width=700, 

             x_axis_label='Day Number', y_axis_label='Words Written', 

             x_minor_ticks=2, y_range=(0, 6000), 

             toolbar_location=None) 

# The daily words will be represented as vertical bars (columns) 

fig.vbar(x=day_num, bottom=0, top=daily_words,  

         color='blue', width=0.75,  

         legend='Daily') 

 

# The cumulative sum will be a trend line 

fig.line(x=day_num, y=cumulative_words,  

         color='gray', line_width=1, 

         legend='Cumulative') 

# Put the legend in the upper left corner 

fig.legend.location = 'top_left' 

 

# Let's check it out 

show(fig) 

Multi-Glyph Example 

To combine the columns and lines on the figure, they are simply created using the same figure() 
object. 
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Additionally, you can see above how seamlessly a legend can be created by setting the legend 
property for each glyph. The legend was then moved to the upper left corner of the plot by 
assigning 'top_left' to fig.legend.location. 

You can check out much more info about styling legends. Teaser: they will show up again later in 
the tutorial when we start digging into interactive elements of the visualization. 

A Quick Aside About Data 

Anytime you are exploring a new visualization library, it’s a good idea to start with some data in a 
domain you are familiar with. The beauty of Bokeh is that nearly any idea you have should be 
possible. It’s just a matter of how you want to leverage the available tools to do so. 

The remaining examples will use publicly available data from Kaggle, which has information about 
the National Basketball Association’s (NBA) 2017-18 season, specifically: 

    2017-18_playerBoxScore.csv: game-by-game snapshots of player statistics 

    2017-18_teamBoxScore.csv: game-by-game snapshots of team statistics 

    2017-18_standings.csv: daily team standings and rankings 

This data has nothing to do with what I do for work, but I love basketball and enjoy thinking about 
ways to visualize the ever-growing amount of data associated with it. 

If you don’t have data to play with from school or work, think about something you’re interested 
in and try to find some data related to that. It will go a long way in making both the learning and 
the creative process faster and more enjoyable! 

To follow along with the examples in the tutorial, you can download the datasets from the links 
above and read them into a Pandas DataFrame using the following commands: 

import pandas as pd 

 

# Read the csv files 

player_stats = pd.read_csv('2017-18_playerBoxScore.csv', parse_dates=['gmDate']) 

team_stats = pd.read_csv('2017-18_teamBoxScore.csv', parse_dates=['gmDate']) 

standings = pd.read_csv('2017-18_standings.csv', parse_dates=['stDate']) 

This code snippet reads the data from the three CSV files and automatically interprets the date 
columns as datetime objects. 

It’s now time to get your hands on some real data. 

Using the ColumnDataSource Object 
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The examples above used Python lists and Numpy arrays to represent the data, and Bokeh is well 
equipped to handle these datatypes. However, when it comes to data in Python, you are most 
likely going to come across Python dictionaries and Pandas DataFrames, especially if you’re 
reading in data from a file or external data source. 

Bokeh is well equipped to work with these more complex data structures and even has built-in 
functionality to handle them, namely the ColumnDataSource. 

You may be asking yourself, “Why use a ColumnDataSource when Bokeh can interface with other 
data types directly?” 

For one, whether you reference a list, array, dictionary, or DataFrame directly, Bokeh is going to 
turn it into a ColumnDataSource behind the scenes anyway. More importantly, the 
ColumnDataSource makes it much easier to implement Bokeh’s interactive affordances. 

The ColumnDataSource is foundational in passing the data to the glyphs you are using to visualize. 
Its primary functionality is to map names to the columns of your data. This makes it easier for you 
to reference elements of your data when building your visualization. It also makes it easier for 
Bokeh to do the same when building your visualization. 

The ColumnDataSource can interpret three types of data objects: 

    Python dict: The keys are names associated with the respective value sequences (lists, arrays, 
and so forth). 

    Pandas DataFrame: The columns of the DataFrame become the reference names for the 
ColumnDataSource. 

    Pandas groupby: The columns of the ColumnDataSource reference the columns as seen by 
calling groupby.describe(). 

Let’s start by visualizing the race for first place in the NBA’s Western Conference in 2017-18 
between the defending champion Golden State Warriors and the challenger Houston Rockets. The 
daily win-loss records of these two teams is stored in a DataFrame named west_top_2: 

>>> west_top_2 = (standings[(standings['teamAbbr'] == 'HOU') | (standings['teamAbbr'] == 'GS')] 

...               .loc[:, ['stDate', 'teamAbbr', 'gameWon']] 

...               .sort_values(['teamAbbr','stDate'])) 

>>> west_top_2.head() 

        stDate teamAbbr  gameWon 

9   2017-10-17       GS        0 

39  2017-10-18       GS        0 

69  2017-10-19       GS        0 
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99  2017-10-20       GS        1 

129 2017-10-21       GS        1 

From here, you can load this DataFrame into two ColumnDataSource objects and visualize the 
race: 

# Bokeh libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource 

 

# Output to file 

output_file('west-top-2-standings-race.html',  

            title='Western Conference Top 2 Teams Wins Race') 

 

# Isolate the data for the Rockets and Warriors 

rockets_data = west_top_2[west_top_2['teamAbbr'] == 'HOU'] 

warriors_data = west_top_2[west_top_2['teamAbbr'] == 'GS'] 

 

# Create a ColumnDataSource object for each team 

rockets_cds = ColumnDataSource(rockets_data) 

warriors_cds = ColumnDataSource(warriors_data) 

 

# Create and configure the figure 

fig = figure(x_axis_type='datetime', 

             plot_height=300, plot_width=600, 

             title='Western Conference Top 2 Teams Wins Race, 2017-18', 

             x_axis_label='Date', y_axis_label='Wins', 
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             toolbar_location=None) 

 

# Render the race as step lines 

fig.step('stDate', 'gameWon',  

         color='#CE1141', legend='Rockets',  

         source=rockets_cds) 

fig.step('stDate', 'gameWon',  

         color='#006BB6', legend='Warriors',  

         source=warriors_cds) 

 

# Move the legend to the upper left corner 

fig.legend.location = 'top_left' 

 

# Show the plot 

show(fig) 

Rockets vs. Warriors 

Notice how the respective ColumnDataSource objects are referenced when creating the two lines. 
You simply pass the original column names as input parameters and specify which 
ColumnDataSource to use via the source property. 

The visualization shows the tight race throughout the season, with the Warriors building a pretty 
big cushion around the middle of the season. However, a bit of a late-season slide allowed the 
Rockets to catch up and ultimately surpass the defending champs to finish the season as the 
Western Conference number-one seed. 

Note: In Bokeh, you can specify colors either by name, hex value, or RGB color code. 

For the visualization above, a color is being specified for the respective lines representing the two 
teams. Instead of using CSS color names like 'red' for the Rockets and 'blue' for the Warriors, you 
might have wanted to add a nice visual touch by using the official team colors in the form of hex 
color codes. Alternatively, you could have used tuples representing RGB color codes: (206, 17, 65) 
for the Rockets, (0, 107, 182) for the Warriors. 

Bokeh provides a helpful list of CSS color names categorized by their general hue. Also, 
htmlcolorcodes.com is a great site for finding CSS, hex, and RGB color codes. 
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ColumnDataSource objects can do more than just serve as an easy way to reference DataFrame 
columns. The ColumnDataSource object has three built-in filters that can be used to create views 
on your data using a CDSView object: 

    GroupFilter selects rows from a ColumnDataSource based on a categorical reference value 

    IndexFilter filters the ColumnDataSource via a list of integer indices 

    BooleanFilter allows you to use a list of boolean values, with True rows being selected 

 

In the previous example, two ColumnDataSource objects were created, one each from a subset of 
the west_top_2 DataFrame. The next example will recreate the same output from one 
ColumnDataSource based on all of west_top_2 using a GroupFilter that creates a view on the data: 

 

# Bokeh libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource, CDSView, GroupFilter 

 

# Output to file 

output_file('west-top-2-standings-race.html',  

            title='Western Conference Top 2 Teams Wins Race') 

 

# Create a ColumnDataSource 

west_cds = ColumnDataSource(west_top_2) 

 

# Create views for each team 

rockets_view = CDSView(source=west_cds, 

                       filters=[GroupFilter(column_name='teamAbbr', group='HOU')]) 

warriors_view = CDSView(source=west_cds, 
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                        filters=[GroupFilter(column_name='teamAbbr', group='GS')]) 

 

# Create and configure the figure 

west_fig = figure(x_axis_type='datetime', 

                  plot_height=300, plot_width=600, 

                  title='Western Conference Top 2 Teams Wins Race, 2017-18', 

                  x_axis_label='Date', y_axis_label='Wins', 

                  toolbar_location=None) 

 

# Render the race as step lines 

west_fig.step('stDate', 'gameWon', 

              source=west_cds, view=rockets_view, 

              color='#CE1141', legend='Rockets') 

west_fig.step('stDate', 'gameWon', 

              source=west_cds, view=warriors_view, 

              color='#006BB6', legend='Warriors') 

 

# Move the legend to the upper left corner 

west_fig.legend.location = 'top_left' 

 

# Show the plot 

show(west_fig) 

 

Rockets vs. Warriors 2 
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Notice how the GroupFilter is passed to CDSView in a list. This allows you to combine multiple 
filters together to isolate the data you need from the ColumnDataSource as needed. 

For information about integrating data sources, check out the Bokeh user guide’s post on the 
ColumnDataSource and other source objects available. 

The Western Conference ended up being an exciting race, but say you want to see if the Eastern 
Conference was just as tight. Not only that, but you’d like to view them in a single visualization. This 
is a perfect segue to the next topic: layouts. 

Day-05:Organizing Multiple Visualizations With Layouts 

The Eastern Conference standings came down to two rivals in the Atlantic Division: the 

Boston Celtics and the Toronto Raptors. Before replicating the steps used to create 

west_top_2, let’s try to put the ColumnDataSource to the test one more time using what you 

learned above.  

In this example, you’ll see how to feed an entire DataFrame into a ColumnDataSource and 

create views to isolate the relevant data: 

# Bokeh libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource, CDSView, GroupFilter 

 

# Output to file 

output_file('east-top-2-standings-race.html',  

            title='Eastern Conference Top 2 Teams Wins Race') 

 

# Create a ColumnDataSource 

standings_cds = ColumnDataSource(standings) 

 

# Create views for each team 

celtics_view = CDSView(source=standings_cds, 

                      filters=[GroupFilter(column_name='teamAbbr',  

                                           group='BOS')]) 

raptors_view = CDSView(source=standings_cds, 

                      filters=[GroupFilter(column_name='teamAbbr',  

                                           group='TOR')]) 

 

# Create and configure the figure 

east_fig = figure(x_axis_type='datetime', 

           plot_height=300, plot_width=600, 

           title='Eastern Conference Top 2 Teams Wins Race, 2017-18', 

           x_axis_label='Date', y_axis_label='Wins', 

           toolbar_location=None) 

 

# Render the race as step lines 

east_fig.step('stDate', 'gameWon',  

              color='#007A33', legend='Celtics', 

              source=standings_cds, view=celtics_view) 

east_fig.step('stDate', 'gameWon',  

              color='#CE1141', legend='Raptors', 

              source=standings_cds, view=raptors_view) 

 

# Move the legend to the upper left corner 
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east_fig.legend.location = 'top_left' 

 

# Show the plot 

show(east_fig) 

 

The ColumnDataSource was able to isolate the relevant data within a 5,040-by-39 

DataFrame without breaking a sweat, saving a few lines of Pandas code in the process.  

Looking at the visualization, you can see that the Eastern Conference race was no slouch. 

After the Celtics roared out of the gate, the Raptors clawed all the way back to overtake their 

division rival and finish the regular season with five more wins.  

With our two visualizations ready, it’s time to put them together. 

Similar to the functionality of Matplotlib’s subplot, Bokeh offers the column, row, and 

gridplot functions in its bokeh.layouts module. These functions can more generally be 

classified as layouts. 

The usage is very straightforward. If you want to put two visualizations in a vertical 

configuration, you can do so with the following: 

# Bokeh library 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.layouts import column 

 

# Output to file 

output_file('east-west-top-2-standings-race.html',  

            title='Conference Top 2 Teams Wins Race') 

 

# Plot the two visualizations in a vertical configuration 

show(column(west_fig, east_fig)) 
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I’ll save you the two lines of code, but rest assured that swapping column for row in the 

snippet above will similarly configure the two plots in a horizontal configuration. 

Note: If you’re trying out the code snippets as you go through the tutorial, I want to take a 

quick detour to address an error you may see accessing west_fig and east_fig in the 

following examples. In doing so, you may receive an error like this: 

WARNING:bokeh.core.validation.check:W-1004 (BOTH_CHILD_AND_ROOT): Models 

should not be a document root... 

This is one of many errors that are part of Bokeh’s validation module, where w-1004 in 

particular is warning about the re-use of west_fig and east_fig in a new layout.  

To avoid this error as you test the examples, preface the code snippet illustrating each layout 

with the following: 

# Bokeh libraries 
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from bokeh.plotting import figure, show 

from bokeh.models import ColumnDataSource, CDSView, GroupFilter 

 

# Create a ColumnDataSource 

standings_cds = ColumnDataSource(standings) 

 

# Create the views for each team 

celtics_view = CDSView(source=standings_cds, 

                      filters=[GroupFilter(column_name='teamAbbr',  

                                           group='BOS')]) 

 

raptors_view = CDSView(source=standings_cds, 

                      filters=[GroupFilter(column_name='teamAbbr',  

                                           group='TOR')]) 

 

rockets_view = CDSView(source=standings_cds, 

                      filters=[GroupFilter(column_name='teamAbbr',  

                                           group='HOU')]) 

warriors_view = CDSView(source=standings_cds, 

                      filters=[GroupFilter(column_name='teamAbbr',  

                                           group='GS')]) 

 

# Create and configure the figure 

east_fig = figure(x_axis_type='datetime', 

                  plot_height=300, 

                  x_axis_label='Date', 

                  y_axis_label='Wins', 

                  toolbar_location=None) 

 

west_fig = figure(x_axis_type='datetime', 

                  plot_height=300, 

                  x_axis_label='Date', 

                  y_axis_label='Wins', 

                  toolbar_location=None) 

 

# Configure the figures for each conference 

east_fig.step('stDate', 'gameWon',  

              color='#007A33', legend='Celtics', 

              source=standings_cds, view=celtics_view) 

east_fig.step('stDate', 'gameWon',  

              color='#CE1141', legend='Raptors', 

              source=standings_cds, view=raptors_view) 

 

west_fig.step('stDate', 'gameWon', color='#CE1141', legend='Rockets', 

              source=standings_cds, view=rockets_view) 

west_fig.step('stDate', 'gameWon', color='#006BB6', legend='Warriors', 

              source=standings_cds, view=warriors_view) 

 

# Move the legend to the upper left corner 

east_fig.legend.location = 'top_left' 

west_fig.legend.location = 'top_left' 

 

# Layout code snippet goes here! 

Doing so will renew the relevant components to render the visualization, ensuring that no 

warning is needed. 

Instead of using column or row, you may want to use a gridplot instead.  
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One key difference of gridplot is that it will automatically consolidate the toolbar across all 

of its children figures. The two visualizations above do not have a toolbar, but if they did, 

then each figure would have its own when using column or row. With that, it also has its own 

toolbar_location property, seen below set to 'right'. 

Syntactically, you’ll also notice below that gridplot differs in that, instead of being passed a 

tuple as input, it requires a list of lists, where each sub-list represents a row in the grid: 

# Bokeh libraries 

from bokeh.io import output_file 

from bokeh.layouts import gridplot 

 

# Output to file 

output_file('east-west-top-2-gridplot.html',  

            title='Conference Top 2 Teams Wins Race') 

 

# Reduce the width of both figures 

east_fig.plot_width = west_fig.plot_width = 300 

 

# Edit the titles 

east_fig.title.text = 'Eastern Conference' 

west_fig.title.text = 'Western Conference' 

 

# Configure the gridplot 

east_west_gridplot = gridplot([[west_fig, east_fig]],  

                              toolbar_location='right') 

 

# Plot the two visualizations in a horizontal configuration 

show(east_west_gridplot) 

 

Lastly, gridplot allows the passing of None values, which are interpreted as blank subplots. 

Therefore, if you wanted to leave a placeholder for two additional plots, then you could do 

something like this: 

# Bokeh libraries 

from bokeh.io import output_file 

from bokeh.layouts import gridplot 
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# Output to file 

output_file('east-west-top-2-gridplot.html',  

            title='Conference Top 2 Teams Wins Race') 

 

# Reduce the width of both figures 

east_fig.plot_width = west_fig.plot_width = 300 

 

# Edit the titles 

east_fig.title.text = 'Eastern Conference' 

west_fig.title.text = 'Western Conference' 

 

# Plot the two visualizations with placeholders 

east_west_gridplot = gridplot([[west_fig, None], [None, east_fig]],  

                              toolbar_location='right') 

 

# Plot the two visualizations in a horizontal configuration 

show(east_west_gridplot) 

 

If you’d rather toggle between both visualizations at their full size without having to squash 

them down to fit next to or on top of each other, a good option is a tabbed layout. 
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A tabbed layout consists of two Bokeh widget functions: Tab() and Panel() from the 

bokeh.models.widgets sub-module. Like using gridplot(), making a tabbed layout is 

pretty straightforward: 

# Bokeh Library 

from bokeh.io import output_file 

from bokeh.models.widgets import Tabs, Panel 

 

# Output to file 

output_file('east-west-top-2-tabbed_layout.html',  

            title='Conference Top 2 Teams Wins Race') 

 

# Increase the plot widths 

east_fig.plot_width = west_fig.plot_width = 800 

 

# Create two panels, one for each conference 

east_panel = Panel(child=east_fig, title='Eastern Conference') 

west_panel = Panel(child=west_fig, title='Western Conference') 

 

# Assign the panels to Tabs 

tabs = Tabs(tabs=[west_panel, east_panel]) 

 

# Show the tabbed layout 

show(tabs) 

 

The first step is to create a Panel() for each tab. That may sound a little confusing, but think 

of the Tabs() function as the mechanism that organizes the individual tabs created with 

Panel(). 

Each Panel() takes as input a child, which can either be a single figure() or a layout. 

(Remember that a layout is a general name for a column, row, or gridplot.) Once your 

panels are assembled, they can be passed as input to Tabs() in a list. 

Now that you understand how to access, draw, and organize your data, it’s time to move on to 

the real magic of Bokeh: interaction! As always, check out Bokeh’s User Guide for more 

information on layouts. 
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Adding Interaction 

The feature that sets Bokeh apart is its ability to easily implement interactivity in your 

visualization. Bokeh even goes as far as describing itself as an interactive visualization 

library: 

Bokeh is an interactive visualization library that targets modern web browsers for 

presentation. (Source) 

In this section, we’ll touch on five ways that you can add interactivity: 

• Configuring the toolbar 
• Selecting data points 
• Adding hover actions 
• Linking axes and selections 
• Highlighting data using the legend 

Implementing these interactive elements open up possibilities for exploring your data that 

static visualizations just can’t do by themselves.  

Configuring the Toolbar 

As you saw all the way back in Generating Your First Figure, the default Bokeh figure() 

comes with a toolbar right out of the box. The default toolbar comes with the following tools 

(from left to right): 

• Pan 
• Box Zoom 
• Wheel Zoom 
• Save 
• Reset 
• A link to Bokeh’s user guide for Configuring Plot Tools 
• A link to the Bokeh homepage 

The toolbar can be removed by passing toolbar_location=None when instantiating a 

figure() object, or relocated by passing any of 'above', 'below', 'left', or 'right'. 

Additionally, the toolbar can be configured to include any combination of tools you desire. 

Bokeh offers 18 specific tools across five categories:  

• Pan/Drag: box_select, box_zoom, lasso_select, pan, xpan, ypan, resize_select 
• Click/Tap: poly_select, tap 
• Scroll/Pinch: wheel_zoom, xwheel_zoom, ywheel_zoom 
• Actions: undo, redo, reset, save 
• Inspectors: crosshair, hover 

To geek out on tools , make sure to visit Specifying Tools. Otherwise, they’ll be illustrated in 

covering the various interactions covered herein. 
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Selecting Data Points 

Implementing selection behavior is as easy as adding a few specific keywords when declaring 

your glyphs.  

The next example will create a scatter plot that relates a player’s total number of three-point 

shot attempts to the percentage made (for players with at least 100 three-point shot attempts).  

The data can be aggregated from the player_stats DataFrame: 

# Find players who took at least 1 three-point shot during the season 

three_takers = player_stats[player_stats['play3PA'] > 0] 

 

# Clean up the player names, placing them in a single column 

three_takers['name'] = [f'{p["playFNm"]} {p["playLNm"]}'  

                        for _, p in three_takers.iterrows()] 

 

# Aggregate the total three-point attempts and makes for each player 

three_takers = (three_takers.groupby('name') 

                            .sum() 

                            .loc[:,['play3PA', 'play3PM']] 

                            .sort_values('play3PA', ascending=False)) 

 

# Filter out anyone who didn't take at least 100 three-point shots 

three_takers = three_takers[three_takers['play3PA'] >= 100].reset_index() 

 

# Add a column with a calculated three-point percentage (made/attempted) 

three_takers['pct3PM'] = three_takers['play3PM'] / three_takers['play3PA'] 

Here’s a sample of the resulting DataFrame: 

>>> three_takers.sample(5) 

                   name  play3PA  play3PM    pct3PM 

229        Corey Brewer      110       31  0.281818 

78           Marc Gasol      320      109  0.340625 

126      Raymond Felton      230       81  0.352174 

127  Kristaps Porziņģis      229       90  0.393013 

66      Josh Richardson      336      127  0.377976 

Let’s say you want to select a groups of players in the distribution, and in doing so mute the 

color of the glyphs representing the non-selected players: 

# Bokeh Libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource, NumeralTickFormatter 

 

# Output to file 

output_file('three-point-att-vs-pct.html', 

            title='Three-Point Attempts vs. Percentage') 

 

# Store the data in a ColumnDataSource 

three_takers_cds = ColumnDataSource(three_takers) 

 

# Specify the selection tools to be made available 

select_tools = ['box_select', 'lasso_select', 'poly_select', 'tap', 

'reset'] 
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# Create the figure 

fig = figure(plot_height=400, 

             plot_width=600, 

             x_axis_label='Three-Point Shots Attempted', 

             y_axis_label='Percentage Made', 

             title='3PT Shots Attempted vs. Percentage Made (min. 100 3PA), 

2017-18', 

             toolbar_location='below', 

             tools=select_tools) 

 

# Format the y-axis tick labels as percentages 

fig.yaxis[0].formatter = NumeralTickFormatter(format='00.0%') 

 

# Add square representing each player 

fig.square(x='play3PA', 

           y='pct3PM', 

           source=three_takers_cds, 

           color='royalblue', 

           selection_color='deepskyblue', 

           nonselection_color='lightgray', 

           nonselection_alpha=0.3) 

 

# Visualize 

show(fig) 

First, specify the selection tools you want to make available. In the example above, 

'box_select', 'lasso_select', 'poly_select', and 'tap' (plus a reset button) were 

specified in a list called select_tools. When the figure is instantiated, the toolbar is 

positioned 'below' the plot, and the list is passed to tools to make the tools selected above 

available. 

Each player is initially represented by a royal blue square glyph, but the following 

configurations are set for when a player or group of players is selected: 

• Turn the selected player(s) to deepskyblue 
• Change all non-selected players’ glyphs to a lightgray color with 0.3 opacity  

That’s it! With just a few quick additions, the visualization now looks like this: 
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For even more information about what you can do upon selection, check out Selected and 

Unselected Glyphs. 

Adding Hover Actions 

So the ability to select specific player data points that seem of interest in my scatter plot is 

implemented, but what if you want to quickly see what individual players a glyph represents? 

One option is to use Bokeh’s HoverTool() to show a tooltip when the cursor crosses paths 

with a glyph. All you need to do is append the following to the code snippet above: 

# Bokeh Library 

from bokeh.models import HoverTool 

 

# Format the tooltip 

tooltips = [ 

            ('Player','@name'), 

            ('Three-Pointers Made', '@play3PM'), 

            ('Three-Pointers Attempted', '@play3PA'), 

            ('Three-Point Percentage','@pct3PM{00.0%}'), 

           ] 

 

# Add the HoverTool to the figure 

fig.add_tools(HoverTool(tooltips=tooltips)) 

 

# Visualize 

show(fig) 

The HoverTool() is slightly different than the selection tools you saw above in that it has 

properties, specifically tooltips. 
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First, you can configure a formatted tooltip by creating a list of tuples containing a 

description and reference to the ColumnDataSource. This list was passed as input to the 

HoverTool() and then simply added to the figure using add_tools(). Here’s what 

happened: 

 

Notice the addition of the Hover button to the toolbar, which can be toggled on and off. 

If you want to even further emphasize the players on hover, Bokeh makes that possible with 

hover inspections. Here is a slightly modified version of the code snippet that added the 

tooltip: 

# Format the tooltip 

tooltips = [ 

            ('Player','@name'), 

            ('Three-Pointers Made', '@play3PM'), 

            ('Three-Pointers Attempted', '@play3PA'), 

            ('Three-Point Percentage','@pct3PM{00.0%}'), 

           ] 

 

# Configure a renderer to be used upon hover 

hover_glyph = fig.circle(x='play3PA', y='pct3PM', source=three_takers_cds, 

                         size=15, alpha=0, 

                         hover_fill_color='black', hover_alpha=0.5) 

 

# Add the HoverTool to the figure 

fig.add_tools(HoverTool(tooltips=tooltips, renderers=[hover_glyph])) 

 

# Visualize 

show(fig) 
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This is done by creating a completely new glyph, in this case circles instead of squares, and 

assigning it to hover_glyph. Note that the initial opacity is set to zero so that it is invisible 

until the cursor is touching it. The properties that appear upon hover are captured by setting 

hover_alpha to 0.5 along with the hover_fill_color.  

Now you will see a small black circle appear over the original square when hovering over the 

various markers: 

 

To further explore the capabilities of the HoverTool(), see the HoverTool and Hover 

Inspections guides. 

Linking Axes and Selections 

Linking is the process of syncing elements of different visualizations within a layout. For 

instance, maybe you want to link the axes of multiple plots to ensure that if you zoom in on 

one it is reflected on another. Let’s see how it is done. 

For this example, the visualization will be able to pan to different segments of a team’s 

schedule and examine various game stats. Each stat will be represented by its own plot in a 

two-by-two gridplot() . 

The data can be collected from the team_stats DataFrame, selecting the Philadelphia 76ers 

as the team of interest: 

# Isolate relevant data 

phi_gm_stats = (team_stats[(team_stats['teamAbbr'] == 'PHI') &  

                           (team_stats['seasTyp'] == 'Regular')] 

                .loc[:, ['gmDate',  

                         'teamPTS',  
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                         'teamTRB',  

                         'teamAST',  

                         'teamTO',  

                         'opptPTS',]] 

                .sort_values('gmDate')) 

 

# Add game number 

phi_gm_stats['game_num'] = range(1, len(phi_gm_stats)+1) 

 

# Derive a win_loss column 

win_loss = [] 

for _, row in phi_gm_stats.iterrows(): 

 

    # If the 76ers score more points, it's a win 

    if row['teamPTS'] > row['opptPTS']: 

        win_loss.append('W') 

    else: 

        win_loss.append('L') 

 

# Add the win_loss data to the DataFrame 

phi_gm_stats['winLoss'] = win_loss 

Here are the results of the 76ers’ first 5 games: 

>>> phi_gm_stats.head() 

        gmDate  teamPTS  teamTRB  teamAST  teamTO  opptPTS  game_num 

winLoss 

10  2017-10-18      115       48       25      17      120         1       

L 

39  2017-10-20       92       47       20      17      102         2       

L 

52  2017-10-21       94       41       18      20      128         3       

L 

80  2017-10-23       97       49       25      21       86         4       

W 

113 2017-10-25      104       43       29      16      105         5       

L 

Start by importing the necessary Bokeh libraries, specifying the output parameters, and 

reading the data into a ColumnDataSource: 

# Bokeh Libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource, CategoricalColorMapper, Div 

from bokeh.layouts import gridplot, column 

 

# Output to file 

output_file('phi-gm-linked-stats.html', 

                title='76ers Game Log') 

 

# Store the data in a ColumnDataSource 

gm_stats_cds = ColumnDataSource(phi_gm_stats) 

Each game is represented by a column, and will be colored green if the result was a win and 

red for a loss. To accomplish this, Bokeh’s CategoricalColorMapper can be used to map 

the data values to specified colors: 
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# Create a CategoricalColorMapper that assigns a color to wins and losses 

win_loss_mapper = CategoricalColorMapper(factors = ['W', 'L'],  

                                         palette=['green', 'red']) 

For this use case, a list specifying the categorical data values to be mapped is passed to 

factors and a list with the intended colors to palette. For more on the 

CategoricalColorMapper, see the Colors section of Handling Categorical Data on Bokeh’s 

User Guide. 

There are four stats to visualize in the two-by-two gridplot: points, assists, rebounds, and 

turnovers. In creating the four figures and configuring their respective charts, there is a lot of 

redundancy in the properties. So to streamline the code a for loop can be used: 

# Create a dict with the stat name and its corresponding column in the data 

stat_names = {'Points': 'teamPTS', 

              'Assists': 'teamAST', 

              'Rebounds': 'teamTRB', 

              'Turnovers': 'teamTO',} 

 

# The figure for each stat will be held in this dict 

stat_figs = {} 

 

# For each stat in the dict 

for stat_label, stat_col in stat_names.items(): 

 

    # Create a figure 

    fig = figure(y_axis_label=stat_label,  

                 plot_height=200, plot_width=400, 

                 x_range=(1, 10), tools=['xpan', 'reset', 'save']) 

 

    # Configure vbar 

    fig.vbar(x='game_num', top=stat_col, source=gm_stats_cds, width=0.9,  

             color=dict(field='winLoss', transform=win_loss_mapper)) 

 

    # Add the figure to stat_figs dict 

    stat_figs[stat_label] = fig 

As you can see, the only parameters that needed to be adjusted were the y-axis-label of the 

figure and the data that will dictate top in the vbar. These values were easily stored in a dict 

that was iterated through to create the figures for each stat. 

You can also see the implementation of the CategoricalColorMapper in the configuration 

of the vbar glyph. The color property is passed a dict with the field in the 

ColumnDataSource to be mapped and the name of the CategoricalColorMapper created 

above. 

The initial view will only show the first 10 games of the 76ers’ season, so there needs to be a 

way to pan horizontally to navigate through the rest of the games in the season. Thus 

configuring the toolbar to have an xpan tool allows panning throughout the plot without 

having to worry about accidentally skewing the view along the vertical axis. 

Now that the figures are created, gridplot can be setup by referencing the figures from the 

dict created above: 
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# Create layout 

grid = gridplot([[stat_figs['Points'], stat_figs['Assists']],  

                [stat_figs['Rebounds'], stat_figs['Turnovers']]]) 

Linking the axes of the four plots is as simple as setting the x_range of each figure equal to 

one another: 

# Link together the x-axes 

stat_figs['Points'].x_range = \ 

    stat_figs['Assists'].x_range = \ 

    stat_figs['Rebounds'].x_range = \ 

    stat_figs['Turnovers'].x_range 

To add a title bar to the visualization, you could have tried to do this on the points figure, but 

it would have been limited to the space of that figure. Therefore, a nice trick is to use Bokeh’s 

ability to interpret HTML to insert a Div element that contains the title information. Once that 

is created, simply combine that with the gridplot() in a column layout: 

# Add a title for the entire visualization using Div 

html = """<h3>Philadelphia 76ers Game Log</h3> 

<b><i>2017-18 Regular Season</i> 

<br> 

</b><i>Wins in green, losses in red</i> 

""" 

sup_title = Div(text=html) 

 

# Visualize 

show(column(sup_title, grid)) 

Putting all the pieces together results in the following:  

 

Similarly you can easily implement linked selections, where a selection on one plot will be 

reflected on others. 
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To see how this works, the next visualization will contain two scatter plots: one that shows 

the 76ers’ two-point versus three-point field goal percentage and the other showing the 76ers’ 

team points versus opponent points on a game-by-game basis. 

The goal is to be able to select data points on the left-side scatter plot and quickly be able to 

recognize if the corresponding datapoint on the right scatter plot is a win or loss.  

The DataFrame for this visualization is very similar to that from the first example: 

# Isolate relevant data 

phi_gm_stats_2 = (team_stats[(team_stats['teamAbbr'] == 'PHI') &  

                             (team_stats['seasTyp'] == 'Regular')] 

                  .loc[:, ['gmDate',  

                           'team2P%',  

                           'team3P%',  

                           'teamPTS',  

                           'opptPTS']] 

                  .sort_values('gmDate')) 

 

# Add game number 

phi_gm_stats_2['game_num'] = range(1, len(phi_gm_stats_2) + 1) 

 

# Derive a win_loss column 

win_loss = [] 

for _, row in phi_gm_stats_2.iterrows(): 

 

    # If the 76ers score more points, it's a win 

    if row['teamPTS'] > row['opptPTS']: 

        win_loss.append('W') 

    else: 

        win_loss.append('L') 

 

# Add the win_loss data to the DataFrame 

phi_gm_stats_2['winLoss'] = win_loss 

Here’s what the data looks like: 

>>> phi_gm_stats_2.head() 

        gmDate  team2P%  team3P%  teamPTS  opptPTS  game_num winLoss 

10  2017-10-18   0.4746   0.4286      115      120         1       L 

39  2017-10-20   0.4167   0.3125       92      102         2       L 

52  2017-10-21   0.4138   0.3333       94      128         3       L 

80  2017-10-23   0.5098   0.3750       97       86         4       W 

113 2017-10-25   0.5082   0.3333      104      105         5       L 

The code to create the visualization is as follows:  

# Bokeh Libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource, CategoricalColorMapper, 

NumeralTickFormatter 

from bokeh.layouts import gridplot 

 

# Output inline in the notebook 

output_file('phi-gm-linked-selections.html', 

            title='76ers Percentages vs. Win-Loss') 

 



 

Page 521 of 580  
 

# Store the data in a ColumnDataSource 

gm_stats_cds = ColumnDataSource(phi_gm_stats_2) 

 

# Create a CategoricalColorMapper that assigns specific colors to wins and 

losses 

win_loss_mapper = CategoricalColorMapper(factors = ['W', 'L'], 

palette=['Green', 'Red']) 

 

# Specify the tools 

toolList = ['lasso_select', 'tap', 'reset', 'save'] 

 

# Create a figure relating the percentages 

pctFig = figure(title='2PT FG % vs 3PT FG %, 2017-18 Regular Season', 

                plot_height=400, plot_width=400, tools=toolList, 

                x_axis_label='2PT FG%', y_axis_label='3PT FG%') 

 

# Draw with circle markers 

pctFig.circle(x='team2P%', y='team3P%', source=gm_stats_cds,  

              size=12, color='black') 

 

# Format the y-axis tick labels as percenages 

pctFig.xaxis[0].formatter = NumeralTickFormatter(format='00.0%') 

pctFig.yaxis[0].formatter = NumeralTickFormatter(format='00.0%') 

 

# Create a figure relating the totals 

totFig = figure(title='Team Points vs Opponent Points, 2017-18 Regular 

Season', 

                plot_height=400, plot_width=400, tools=toolList, 

                x_axis_label='Team Points', y_axis_label='Opponent Points') 

 

# Draw with square markers 

totFig.square(x='teamPTS', y='opptPTS', source=gm_stats_cds, size=10, 

              color=dict(field='winLoss', transform=win_loss_mapper)) 

 

# Create layout 

grid = gridplot([[pctFig, totFig]]) 

 

# Visualize 

show(grid) 

This is a great illustration of the power in using a ColumnDataSource. As long as the glyph 

renderers (in this case, the circle glyphs for the percentages, and square glyphs for the 

wins and losses) share the same ColumnDataSource, then the selections will be linked by 

default.  

Here’s how it looks in action, where you can see selections made on either figure will be 

reflected on the other: 
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By selecting a random sample of data points in the upper right quadrant of the left scatter 

plot, those corresponding to both high two-point and three-point field goal percentage, the 

data points on the right scatter plot are highlighted.  

Similarly, selecting data points on the right scatter plot that correspond to losses tend to be 

further to the lower left, lower shooting percentages, on the left scatter plot.  

All the details on linking plots can be found at Linking Plots in the Bokeh User Guide. 

Highlighting Data Using the Legend 

That brings us to the final interactivity example in this tutorial: interactive legends. 

In the Drawing Data With Glyphs section, you saw how easy it is to implement a legend 

when creating your plot. With the legend in place, adding interactivity is merely a matter of 

assigning a click_policy. Using a single line of code, you can quickly add the ability to 

either hide or mute data using the legend. 

In this example, you’ll see two identical scatter plots comparing the game-by-game points 

and rebounds of LeBron James and Kevin Durant. The only difference will be that one will 

use a hide as its click_policy, while the other uses mute. 

The first step is to configure the output and set up the data, creating a view for each player 

from the player_stats DataFrame: 

# Bokeh Libraries 

from bokeh.plotting import figure, show 

from bokeh.io import output_file 

from bokeh.models import ColumnDataSource, CDSView, GroupFilter 

from bokeh.layouts import row 

 

# Output inline in the notebook 

output_file('lebron-vs-durant.html', 
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            title='LeBron James vs. Kevin Durant') 

 

# Store the data in a ColumnDataSource 

player_gm_stats = ColumnDataSource(player_stats) 

 

# Create a view for each player 

lebron_filters = [GroupFilter(column_name='playFNm', group='LeBron'), 

                  GroupFilter(column_name='playLNm', group='James')] 

lebron_view = CDSView(source=player_gm_stats, 

                      filters=lebron_filters) 

 

durant_filters = [GroupFilter(column_name='playFNm', group='Kevin'), 

                  GroupFilter(column_name='playLNm', group='Durant')] 

durant_view = CDSView(source=player_gm_stats, 

                      filters=durant_filters) 

Before creating the figures, the common parameters across the figure, markers, and data can 

be consolidated into dictionaries and reused. Not only does this save redundancy in the next 

step, but it provides an easy way to tweak these parameters later if need be: 

# Consolidate the common keyword arguments in dicts 

common_figure_kwargs = { 

    'plot_width': 400, 

    'x_axis_label': 'Points', 

    'toolbar_location': None, 

} 

common_circle_kwargs = { 

    'x': 'playPTS', 

    'y': 'playTRB', 

    'source': player_gm_stats, 

    'size': 12, 

    'alpha': 0.7, 

} 

common_lebron_kwargs = { 

    'view': lebron_view, 

    'color': '#002859', 

    'legend': 'LeBron James' 

} 

common_durant_kwargs = { 

    'view': durant_view, 

    'color': '#FFC324', 

    'legend': 'Kevin Durant' 

} 

Now that the various properties are set, the two scatter plots can be built in a much more 

concise fashion: 

# Create the two figures and draw the data 

hide_fig = figure(**common_figure_kwargs, 

                  title='Click Legend to HIDE Data',  

                  y_axis_label='Rebounds') 

hide_fig.circle(**common_circle_kwargs, **common_lebron_kwargs) 

hide_fig.circle(**common_circle_kwargs, **common_durant_kwargs) 

 

mute_fig = figure(**common_figure_kwargs, title='Click Legend to MUTE 

Data') 

mute_fig.circle(**common_circle_kwargs, **common_lebron_kwargs, 

                muted_alpha=0.1) 

mute_fig.circle(**common_circle_kwargs, **common_durant_kwargs, 
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                muted_alpha=0.1) 

Note that mute_fig has an extra parameter called muted_alpha. This parameter controls the 

opacity of the markers when mute is used as the click_policy. 

Finally, the click_policy for each figure is set, and they are shown in a horizontal 

configuration: 

# Add interactivity to the legend 

hide_fig.legend.click_policy = 'hide' 

mute_fig.legend.click_policy = 'mute' 

 

# Visualize 

show(row(hide_fig, mute_fig)) 

 

Once the legend is in place, all you have to do is assign either hide or mute to the figure’s 

click_policy property. This will automatically turn your basic legend into an interactive 

legend. 

Also note that, specifically for mute, the additional property of muted_alpha was set in the 

respective circle glyphs for LeBron James and Kevin Durant. This dictates the visual effect 

driven by the legend interaction. 

For more on all things interaction in Bokeh, Adding Interactions in the Bokeh User Guide is a 

great place to start. 

Presenting insights effectively through visualizations and narratives 
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Week 8: Text analysis and sentiment analysis 

Day- 01 & 02: NLTK libaray for text analysis  
Natural language processing (NLP) is a field that focuses on making natural human language usable by 

computer programs. NLTK, or Natural Language Toolkit, is a Python package that you can use for NLP. 

A lot of the data that you could be analyzing is unstructured data and contains human-readable text. 

Before you can analyze that data programmatically, you first need to preprocess it. In this tutorial, 

you’ll take your first look at the kinds of text preprocessing tasks you can do with NLTK so that you’ll 

be ready to apply them in future projects. You’ll also see how to do some basic text analysis and 

create visualizations. 

Steps:  

Find text to analyze 

Preprocess your text for analysis 

Analyze your text 
The first thing you need to do is make sure that you have Python installed. For this tutorial, you’ll be 

using Python 3.9. If you don’t yet have Python installed, then check out Python 3 Installation & Setup 

Guide to get started. In shell type following commamd  

$ python -m pip install nltk==3.5 

python -m pip install numpy matplotlib 

Once you have that dealt with, your next step is to install NLTK with pip. It’s a best practice to install it 

in a virtual environment. To learn more about virtual environments, check out Python Virtual 

Environments: A Primer. 

Tokenizing 
By tokenizing, you can conveniently split up text by word or by sentence. This will allow you to work 

with smaller pieces of text that are still relatively coherent and meaningful even outside of the 

context of the rest of the text. It’s your first step in turning unstructured data into structured data, 

which is easier to analyze. 

When you’re analyzing text, you’ll be tokenizing by word and tokenizing by sentence. Here’s what 

both types of tokenization bring to the table: 

Tokenizing by word: Words are like the atoms of natural language. They’re the smallest unit of 

meaning that still makes sense on its own. Tokenizing your text by word allows you to identify words 

that come up particularly often. For example, if you were analyzing a group of job ads, then you might 

find that the word “Python” comes up often. That could suggest high demand for Python knowledge, 

but you’d need to look deeper to know more. 

Tokenizing by sentence: When you tokenize by sentence, you can analyze how those words relate to 

one another and see more context. Are there a lot of negative words around the word “Python” 

because the hiring manager doesn’t like Python? Are there more terms from the domain of 

herpetology than the domain of software development, suggesting that you may be dealing with an 

entirely different kind of python than you were expecting? 

from nltk.tokenize import sent_tokenize, word_tokenize 
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You can use sent_tokenize() to split up example_string into sentences: 

>>> sent_tokenize(example_string) 

>>> word_tokenize(example_string) 

 

Filtering Stop Words 
Stop words are words that you want to ignore, so you filter them out of your text when you’re 

processing it. Very common words like 'in', 'is', and 'an' are often used as stop words since they don’t 

add a lot of meaning to a text in and of themselves. 

Here’s how to import the relevant parts of NLTK in order to filter out stop words: 

>>> nltk.download("stopwords") 

>>> from nltk.corpus import stopwords 

>>> from nltk.tokenize import word_tokenize 

>>> worf_quote = "Sir, I protest. I am not a merry man!" 

>>> words_in_quote = word_tokenize(worf_quote) 

>>> words_in_quote 

['Sir', ',', 'protest', '.', 'merry', 'man', '!'] 

You have a list of the words in worf_quote, so the next step is to create a set of stop words to 

filter words_in_quote. For this example, you’ll need to focus on stop words in "english": 

>>> stop_words = set(stopwords.words("english")) 

>>> stop_words = set(stopwords.words("english")) 

Next, create an empty list to hold the words that make it past the filter: 

>>> 

>>> filtered_list = [] 

You created an empty list, filtered_list, to hold all the words in words_in_quote that aren’t stop 

words. Now you can use stop_words to filter words_in_quote: 

>>> 

>>> for word in words_in_quote: 

...    if word.casefold() not in stop_words: 

...         filtered_list.append(word) 

You iterated over words_in_quote with a for loop and added all the words that weren’t stop words 

to filtered_list. You used .casefold() on word so you could ignore whether the letters in word were 

uppercase or lowercase. This is worth doing because stopwords.words('english') includes only 

lowercase versions of stop words. 
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Alternatively, you could use a list comprehension to make a list of all the words in your text that 

aren’t stop words: 

>>> 

>>> filtered_list = [ 

...     word for word in words_in_quote if word.casefold() not in stop_words 

... ] 

When you use a list comprehension, you don’t create an empty list and then add items to the end of 

it. Instead, you define the list and its contents at the same time. Using a list comprehension is often 

seen as more Pythonic. 

Take a look at the words that ended up in filtered_list: 

>>> 

>>> filtered_list 

['Sir', ',', 'protest', '.', 'merry', 'man', '!'] 

You filtered out a few words like 'am' and 'a', but you also filtered out 'not', which does affect the 

overall meaning of the sentence. (Worf won’t be happy about this.) 

Words like 'I' and 'not' may seem too important to filter out, and depending on what kind of analysis 

you want to do, they can be. Here’s why: 

'I' is a pronoun, which are context words rather than content words: 

Content words give you information about the topics covered in the text or the sentiment that the 

author has about those topics. 

Context words give you information about writing style. You can observe patterns in how authors use 

context words in order to quantify their writing style. Once you’ve quantified their writing style, you 

can analyze a text written by an unknown author to see how closely it follows a particular writing style 

so you can try to identify who the author is. 

'not' is technically an adverb but has still been included in NLTK’s list of stop words for English. If you 

want to edit the list of stop words to exclude 'not' or make other changes, then you can download it. 

So, 'I' and 'not' can be important parts of a sentence, but it depends on what you’re trying to learn 

from that sentence. 

Stemming 
Stemming is a text processing task in which you reduce words to their root, which is the core part of a 

word. For example, the words “helping” and “helper” share the root “help.” Stemming allows you to 

zero in on the basic meaning of a word rather than all the details of how it’s being used. NLTK 

has more than one stemmer, but you’ll be using the Porter stemmer. 

Here’s how to import the relevant parts of NLTK in order to start stemming: 

>>> 

>>> from nltk.stem import PorterStemmer 
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>>> from nltk.tokenize import word_tokenize 

Now that you’re done importing, you can create a stemmer with PorterStemmer(): 

>>> 

>>> stemmer = PorterStemmer() 

The next step is for you to create a string to stem. Here’s one you can use: 

>>> 

>>> string_for_stemming = """ 

... The crew of the USS Discovery discovered many discoveries. 

... Discovering is what explorers do.""" 

Before you can stem the words in that string, you need to separate all the words in it: 

>>> 

>>> words = word_tokenize(string_for_stemming) 

Now that you have a list of all the tokenized words from the string, take a look at what’s in words: 

>>> 

>>> words 

['The', 

 'crew', 

 'of', 

 'the', 

 'USS', 

 'Discovery', 

 'discovered', 

 'many', 

 'discoveries', 

 '.', 

 'Discovering', 

 'is', 

 'what', 

 'explorers', 

 'do', 

 '.'] 
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Create a list of the stemmed versions of the words in words by using stemmer.stem() in a list 

comprehension: 

>>> 

>>> stemmed_words = [stemmer.stem(word) for word in words] 

Take a look at what’s in stemmed_words: 

>>> 

>>> stemmed_words 

['the', 

 'crew', 

 'of', 

 'the', 

 'uss', 

 'discoveri', 

 'discov', 

 'mani', 

 'discoveri', 

 '.', 

 'discov', 

 'is', 

 'what', 

 'explor', 

 'do', 

 '.'] 

Here’s what happened to all the words that started with 'discov' or 'Discov': 

Original word Stemmed version 

'Discovery' 'discoveri' 

'discovered' 'discov' 

'discoveries' 'discoveri' 

'Discovering' 'discov' 

Those results look a little inconsistent. Why would 'Discovery' give 

you 'discoveri' when 'Discovering' gives you 'discov'? 
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Understemming and overstemming are two ways stemming can go wrong: 

Understemming happens when two related words should be reduced to the same stem but aren’t. 

This is a false negative. 

Overstemming happens when two unrelated words are reduced to the same stem even though they 

shouldn’t be. This is a false positive. 

The Porter stemming algorithm dates from 1979, so it’s a little on the older side. The Snowball 

stemmer, which is also called Porter2, is an improvement on the original and is also available through 

NLTK, so you can use that one in your own projects. It’s also worth noting that the purpose of the 

Porter stemmer is not to produce complete words but to find variant forms of a word. 

Fortunately, you have some other ways to reduce words to their core meaning, such as lemmatizing, 

which you’ll see later in this tutorial. But first, we need to cover parts of speech. 

Tagging Parts of Speech 

Part of speech is a grammatical term that deals with the roles words play when you use them 

together in sentences. Tagging parts of speech, or POS tagging, is the task of labeling the words in 

your text according to their part of speech. 

In English, there are eight parts of speech: 

Part of 

speech Role Examples 

Noun Is a person, place, or thing mountain, bagel, 

Poland 

Pronoun Replaces a noun you, she, we 

Adjective Gives information about what a noun is like efficient, windy, 

colorful 

Verb Is an action or a state of being learn, is, go 

Adverb Gives information about a verb, an adjective, or another 

adverb 

efficiently, always, 

very 

Preposition Gives information about how a noun or pronoun is 

connected to another word 

from, about, at 

Conjunction Connects two other words or phrases so, because, and 

Interjection Is an exclamation yay, ow, wow 

Some sources also include the category articles (like “a” or “the”) in the list of parts of speech, but 

other sources consider them to be adjectives. NLTK uses the word determiner to refer to articles. 

Here’s how to import the relevant parts of NLTK in order to tag parts of speech: 

>>> 

>>> from nltk.tokenize import word_tokenize 
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Now create some text to tag. You can use this Carl Sagan quote: 

>>> 

>>> sagan_quote = """ 

... If you wish to make an apple pie from scratch, 

... you must first invent the universe.""" 

Use word_tokenize to separate the words in that string and store them in a list: 

>>> 

>>> words_in_sagan_quote = word_tokenize(sagan_quote) 

Now call nltk.pos_tag() on your new list of words: 

>>> 

>>> import nltk 

>>> nltk.pos_tag(words_in_sagan_quote) 

[('If', 'IN'), 

 ('you', 'PRP'), 

 ('wish', 'VBP'), 

 ('to', 'TO'), 

 ('make', 'VB'), 

 ('an', 'DT'), 

 ('apple', 'NN'), 

 ('pie', 'NN'), 

 ('from', 'IN'), 

 ('scratch', 'NN'), 

 (',', ','), 

 ('you', 'PRP'), 

 ('must', 'MD'), 

 ('first', 'VB'), 

 ('invent', 'VB'), 

 ('the', 'DT'), 

 ('universe', 'NN'), 

 ('.', '.')] 
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All the words in the quote are now in a separate tuple, with a tag that represents their part of speech. 

But what do the tags mean? Here’s how to get a list of tags and their meanings: 

>>> 

>>> nltk.help.upenn_tagset() 

The list is quite long, but feel free to expand the box below to see it. 

POS Tags and Their MeaningsShow/Hide 

Here’s a summary that you can use to get started with NLTK’s POS tags: 

Tags that start with Deal with 

JJ Adjectives 

NN Nouns 

RB Adverbs 

PRP Pronouns 

VB Verbs 

Now that you know what the POS tags mean, you can see that your tagging was fairly successful: 

'pie' was tagged NN because it’s a singular noun. 

'you' was tagged PRP because it’s a personal pronoun. 

'invent' was tagged VB because it’s the base form of a verb. 

But how would NLTK handle tagging the parts of speech in a text that is basically 

gibberish? Jabberwocky is a nonsense poem that doesn’t technically mean much but is still written in 

a way that can convey some kind of meaning to English speakers. 

Make a string to hold an excerpt from this poem: 

>>> 

>>> jabberwocky_excerpt = """ 

... 'Twas brillig, and the slithy toves did gyre and gimble in the wabe: 

... all mimsy were the borogoves, and the mome raths outgrabe.""" 

Use word_tokenize to separate the words in the excerpt and store them in a list: 

>>> 

>>> words_in_excerpt = word_tokenize(jabberwocky_excerpt) 

Call nltk.pos_tag() on your new list of words: 

>>> 

>>> nltk.pos_tag(words_in_excerpt) 
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[("'T", 'NN'), 

 ('was', 'VBD'), 

 ('brillig', 'VBN'), 

 (',', ','), 

 ('and', 'CC'), 

 ('the', 'DT'), 

 ('slithy', 'JJ'), 

 ('toves', 'NNS'), 

 ('did', 'VBD'), 

 ('gyre', 'NN'), 

 ('and', 'CC'), 

 ('gimble', 'JJ'), 

 ('in', 'IN'), 

 ('the', 'DT'), 

 ('wabe', 'NN'), 

 (':', ':'), 

 ('all', 'DT'), 

 ('mimsy', 'NNS'), 

 ('were', 'VBD'), 

 ('the', 'DT'), 

 ('borogoves', 'NNS'), 

 (',', ','), 

 ('and', 'CC'), 

 ('the', 'DT'), 

 ('mome', 'JJ'), 

 ('raths', 'NNS'), 

 ('outgrabe', 'RB'), 

 ('.', '.')] 

Accepted English words like 'and' and 'the' were correctly tagged as a conjunction and a determiner, 

respectively. The gibberish word 'slithy' was tagged as an adjective, which is what a human English 

speaker would probably assume from the context of the poem as well. Way to go, NLTK! 
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Lemmatizing 
Now that you’re up to speed on parts of speech, you can circle back to lemmatizing. Like 

stemming, lemmatizing reduces words to their core meaning, but it will give you a complete English 

word that makes sense on its own instead of just a fragment of a word like 'discoveri'. 

Note: A lemma is a word that represents a whole group of words, and that group of words is called 

a lexeme. 

For example, if you were to look up the word “blending” in a dictionary, then you’d need to look at 

the entry for “blend,” but you would find “blending” listed in that entry. 

In this example, “blend” is the lemma, and “blending” is part of the lexeme. So when you lemmatize a 

word, you are reducing it to its lemma. 

Here’s how to import the relevant parts of NLTK in order to start lemmatizing: 

>>> 

>>> from nltk.stem import WordNetLemmatizer 

Create a lemmatizer to use: 

>>> 

>>> lemmatizer = WordNetLemmatizer() 

Let’s start with lemmatizing a plural noun: 

>>> 

>>> lemmatizer.lemmatize("scarves") 

'scarf' 

"scarves" gave you 'scarf', so that’s already a bit more sophisticated than what you would have gotten 

with the Porter stemmer, which is 'scarv'. Next, create a string with more than one word to 

lemmatize: 

>>> 

>>> string_for_lemmatizing = "The friends of DeSoto love scarves." 

Now tokenize that string by word: 

>>> 

>>> words = word_tokenize(string_for_lemmatizing) 

Here’s your list of words: 

>>> 

>>> words 

['The', 

 'friends', 

 'of', 
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 'DeSoto', 

 'love' 

 'scarves', 

 '.'] 

Create a list containing all the words in words after they’ve been lemmatized: 

>>> 

>>> lemmatized_words = [lemmatizer.lemmatize(word) for word in words] 

Here’s the list you got: 

>>> 

>>> lemmatized_words 

['The', 

 'friend', 

 'of', 

 'DeSoto', 

 'love', 

 'scarf', 

 '.' 

That looks right. The plurals 'friends' and 'scarves' became the singulars 'friend' and 'scarf'. 

But what would happen if you lemmatized a word that looked very different from its lemma? Try 

lemmatizing "worst": 

>>> 

>>> lemmatizer.lemmatize("worst") 

'worst' 

You got the result 'worst' because lemmatizer.lemmatize() assumed that "worst" was a noun. You can 

make it clear that you want "worst" to be an adjective: 

>>> 

>>> lemmatizer.lemmatize("worst", pos="a") 

'bad' 

The default parameter for pos is 'n' for noun, but you made sure that "worst" was treated as an 

adjective by adding the parameter pos="a". As a result, you got 'bad', which looks very different from 

your original word and is nothing like what you’d get if you were stemming. This is because "worst" is 

the superlative form of the adjective 'bad', and lemmatizing reduces superlatives as well 

as comparatives to their lemmas. 



 

Page 536 of 580  
 

Now that you know how to use NLTK to tag parts of speech, you can try tagging your words before 

lemmatizing them to avoid mixing up homographs, or words that are spelled the same but have 

different meanings and can be different parts of speech. 

Chunking 
While tokenizing allows you to identify words and sentences, chunking allows you to identify phrases. 

Note: A phrase is a word or group of words that works as a single unit to perform a grammatical 

function. Noun phrases are built around a noun. 

Here are some examples: 

“A planet” 

“A tilting planet” 

“A swiftly tilting planet” 

Chunking makes use of POS tags to group words and apply chunk tags to those groups. Chunks don’t 

overlap, so one instance of a word can be in only one chunk at a time. 

Here’s how to import the relevant parts of NLTK in order to chunk: 

>>> 

>>> from nltk.tokenize import word_tokenize 

Before you can chunk, you need to make sure that the parts of speech in your text are tagged, so 

create a string for POS tagging. You can use this quote from The Lord of the Rings: 

>>> 

>>> lotr_quote = "It's a dangerous business, Frodo, going out your door." 

Now tokenize that string by word: 

>>> 

>>> words_in_lotr_quote = word_tokenize(lotr_quote) 

>>> words_in_lotr_quote 

['It', 

 "'s", 

 'a', 

 'dangerous', 

 'business', 

 ',', 

 'Frodo', 

 ',', 

 'going', 



 

Page 537 of 580  
 

 'out', 

 'your', 

 'door', 

 '.'] 

Now you’ve got a list of all of the words in lotr_quote. 

The next step is to tag those words by part of speech: 

>>> 

>>> nltk.download("averaged_perceptron_tagger") 

>>> lotr_pos_tags = nltk.pos_tag(words_in_lotr_quote) 

>>> lotr_pos_tags 

[('It', 'PRP'), 

 ("'s", 'VBZ'), 

 ('a', 'DT'), 

 ('dangerous', 'JJ'), 

 ('business', 'NN'), 

 (',', ','), 

 ('Frodo', 'NNP'), 

 (',', ','), 

 ('going', 'VBG'), 

 ('out', 'RP'), 

 ('your', 'PRP$'), 

 ('door', 'NN'), 

 ('.', '.')] 

You’ve got a list of tuples of all the words in the quote, along with their POS tag. In order to chunk, 

you first need to define a chunk grammar. 

Note: A chunk grammar is a combination of rules on how sentences should be chunked. It often 

uses regular expressions, or regexes. 

For this tutorial, you don’t need to know how regular expressions work, but they will definitely come 

in handy for you in the future if you want to process text. 

Create a chunk grammar with one regular expression rule: 

>>> 

>>> grammar = "NP: {<DT>?<JJ>*<NN>}" 
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NP stands for noun phrase. You can learn more about noun phrase chunking in Chapter 7 of Natural 

Language Processing with Python—Analyzing Text with the Natural Language Toolkit. 

According to the rule you created, your chunks: 

Start with an optional (?) determiner ('DT') 

Can have any number (*) of adjectives (JJ) 

End with a noun (<NN>) 

Create a chunk parser with this grammar: 

>>> 

>>> chunk_parser = nltk.RegexpParser(grammar) 

Now try it out with your quote: 

>>> 

>>> tree = chunk_parser.parse(lotr_pos_tags) 

Here’s how you can see a visual representation of this tree: 

>>> 

>>> tree.draw() 

This is what the visual representation looks like: 

 

You got two noun phrases: 

'a dangerous business' has a determiner, an adjective, and a noun. 

'door' has just a noun. 

Now that you know about chunking, it’s time to look at chinking. 

Chinking 
Chinking is used together with chunking, but while chunking is used to include a pattern, chinking is 

used to exclude a pattern. 

Let’s reuse the quote you used in the section on chunking. You already have a list of tuples containing 

each of the words in the quote along with its part of speech tag: 

>>> 

>>> lotr_pos_tags 

[('It', 'PRP'), 
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 ("'s", 'VBZ'), 

 ('a', 'DT'), 

 ('dangerous', 'JJ'), 

 ('business', 'NN'), 

 (',', ','), 

 ('Frodo', 'NNP'), 

 (',', ','), 

 ('going', 'VBG'), 

 ('out', 'RP'), 

 ('your', 'PRP$'), 

 ('door', 'NN'), 

 ('.', '.')] 

The next step is to create a grammar to determine what you want to include and exclude in your 

chunks. This time, you’re going to use more than one line because you’re going to have more than 

one rule. Because you’re using more than one line for the grammar, you’ll be using triple quotes ("""): 

>>> 

>>> grammar = """ 

... Chunk: {<.*>+} 

...        }<JJ>{""" 

The first rule of your grammar is {<.*>+}. This rule has curly braces that face inward ({}) because it’s 

used to determine what patterns you want to include in you chunks. In this case, you want to include 

everything: <.*>+. 

The second rule of your grammar is }<JJ>{. This rule has curly braces that face outward (}{) because it’s 

used to determine what patterns you want to exclude in your chunks. In this case, you want to 

exclude adjectives: <JJ>. 

Create a chunk parser with this grammar: 

>>> 

>>> chunk_parser = nltk.RegexpParser(grammar) 

Now chunk your sentence with the chink you specified: 

>>> 

>>> tree = chunk_parser.parse(lotr_pos_tags) 

You get this tree as a result: 

>>> 
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>>> tree 

Tree('S', [Tree('Chunk', [('It', 'PRP'), ("'s", 'VBZ'), ('a', 'DT')]), ('dangerous', 'JJ'), Tree('Chunk', 

[('business', 'NN'), (',', ','), ('Frodo', 'NNP'), (',', ','), ('going', 'VBG'), ('out', 'RP'), ('your', 'PRP$'), ('door', 

'NN'), ('.', '.')])]) 

In this case, ('dangerous', 'JJ') was excluded from the chunks because it’s an adjective (JJ). But that will 

be easier to see if you get a graphic representation again: 

>>> 

>>> tree.draw() 

You get this visual representation of the tree: 

 

Here, you’ve excluded the adjective 'dangerous' from your chunks and are left with two chunks 

containing everything else. The first chunk has all the text that appeared before the adjective that was 

excluded. The second chunk contains everything after the adjective that was excluded. 

Now that you know how to exclude patterns from your chunks, it’s time to look into named entity 

recognition (NER). 

Using Named Entity Recognition (NER) 

Named entities are noun phrases that refer to specific locations, people, organizations, and so on. 

With named entity recognition, you can find the named entities in your texts and also determine what 

kind of named entity they are. 

Here’s the list of named entity types from the NLTK book: 

NE type Examples 

ORGANIZATION Georgia-Pacific Corp., WHO 

PERSON Eddy Bonte, President Obama 

LOCATION Murray River, Mount Everest 

DATE June, 2008-06-29 

TIME two fifty a m, 1:30 p.m. 

MONEY 175 million Canadian dollars, GBP 10.40 

PERCENT twenty pct, 18.75 % 

FACILITY Washington Monument, Stonehenge 

GPE South East Asia, Midlothian 

You can use nltk.ne_chunk() to recognize named entities. Let’s use lotr_pos_tags again to test it out: 
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>>> 

>>> nltk.download("maxent_ne_chunker") 

>>> nltk.download("words") 

>>> tree = nltk.ne_chunk(lotr_pos_tags) 

Now take a look at the visual representation: 

>>> 

>>> tree.draw() 

Here’s what you get: 

 

See how Frodo has been tagged as a PERSON? You also have the option to use the 

parameter binary=True if you just want to know what the named entities are but not what kind of 

named entity they are: 

>>> 

>>> tree = nltk.ne_chunk(lotr_pos_tags, binary=True) 

>>> tree.draw() 

Now all you see is that Frodo is an NE: 

 

That’s how you can identify named entities! But you can take this one step further and extract named 

entities directly from your text. Create a string from which to extract named entities. You can use this 

quote from The War of the Worlds: 

>>> 

>>> quote = """ 

... Men like Schiaparelli watched the red planet—it is odd, by-the-bye, that 

... for countless centuries Mars has been the star of war—but failed to 

... interpret the fluctuating appearances of the markings they mapped so well. 

... All that time the Martians must have been getting ready. 

... 

... During the opposition of 1894 a great light was seen on the illuminated 
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... part of the disk, first at the Lick Observatory, then by Perrotin of Nice, 

... and then by other observers. English readers heard of it first in the 

... issue of Nature dated August 2.""" 

Now create a function to extract named entities: 

>>> 

>>> def extract_ne(quote): 

...     words = word_tokenize(quote, language=language) 

...     tags = nltk.pos_tag(words) 

...     tree = nltk.ne_chunk(tags, binary=True) 

...     return set( 

...         " ".join(i[0] for i in t) 

...         for t in tree 

...         if hasattr(t, "label") and t.label() == "NE" 

...     ) 

With this function, you gather all named entities, with no repeats. In order to do that, you tokenize by 

word, apply part of speech tags to those words, and then extract named entities based on those tags. 

Because you included binary=True, the named entities you’ll get won’t be labeled more specifically. 

You’ll just know that they’re named entities. 

Take a look at the information you extracted: 

>>> 

>>> extract_ne(quote) 

{'Lick Observatory', 'Mars', 'Nature', 'Perrotin', 'Schiaparelli'} 

You missed the city of Nice, possibly because NLTK interpreted it as a regular English adjective, but 

you still got the following: 

An institution: 'Lick Observatory' 

A planet: 'Mars' 

A publication: 'Nature' 

People: 'Perrotin', 'Schiaparelli' 

That’s some pretty decent variety! 

Getting Text to Analyze 
Now that you’ve done some text processing tasks with small example texts, you’re ready to analyze a 

bunch of texts at once. A group of texts is called a corpus. NLTK provides several corpora covering 

everything from novels hosted by Project Gutenberg to inaugural speeches by presidents of the 

United States. 
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In order to analyze texts in NLTK, you first need to import them. This requires nltk.download("book"), 

which is a pretty big download: 

>>> 

>>> nltk.download("book") 

>>> from nltk.book import * 

*** Introductory Examples for the NLTK Book *** 

Loading text1, ..., text9 and sent1, ..., sent9 

Type the name of the text or sentence to view it. 

Type: 'texts()' or 'sents()' to list the materials. 

text1: Moby Dick by Herman Melville 1851 

text2: Sense and Sensibility by Jane Austen 1811 

text3: The Book of Genesis 

text4: Inaugural Address Corpus 

text5: Chat Corpus 

text6: Monty Python and the Holy Grail 

text7: Wall Street Journal 

text8: Personals Corpus 

text9: The Man Who Was Thursday by G . K . Chesterton 1908 

You now have access to a few linear texts (such as Sense and Sensibility and Monty Python and the 

Holy Grail) as well as a few groups of texts (such as a chat corpus and a personals corpus). Human 

nature is fascinating, so let’s see what we can find out by taking a closer look at the personals corpus! 

This corpus is a collection of personals ads, which were an early version of online dating. If you 

wanted to meet someone, then you could place an ad in a newspaper and wait for other readers to 

respond to you. 

If you’d like to learn how to get other texts to analyze, then you can check out Chapter 3 of Natural 

Language Processing with Python – Analyzing Text with the Natural Language Toolkit. 

Using a Concordance 

When you use a concordance, you can see each time a word is used, along with its immediate 

context. This can give you a peek into how a word is being used at the sentence level and what words 

are used with it. 

Let’s see what these good people looking for love have to say! The personals corpus is called text8, so 

we’re going to call .concordance() on it with the parameter "man": 

>>> 

>>> text8.concordance("man") 



 

Page 544 of 580  
 

Displaying 14 of 14 matches: 

 to hearing from you all . ABLE young man seeks , sexy older women . Phone for 

ble relationship . GENUINE ATTRACTIVE MAN 40 y . o ., no ties , secure , 5 ft . 

ship , and quality times . VIETNAMESE MAN Single , never married , financially 

ip . WELL DRESSED emotionally healthy man 37 like to meet full figured woman fo 

 nth subs LIKE TO BE MISTRESS of YOUR MAN like to be treated well . Bold DTE no 

eeks lady in similar position MARRIED MAN 50 , attrac . fit , seeks lady 40 - 5 

eks nice girl 25 - 30 serious rship . Man 46 attractive fit , assertive , and k 

 40 - 50 sought by Aussie mid 40s b / man f / ship r / ship LOVE to meet widowe 

discreet times . Sth E Subs . MARRIED MAN 42yo 6ft , fit , seeks Lady for discr 

woman , seeks professional , employed man , with interests in theatre , dining 

 tall and of large build seeks a good man . I am a nonsmoker , social drinker , 

lead to relationship . SEEKING HONEST MAN I am 41 y . o ., 5 ft . 4 , med . bui 

 quiet times . Seeks 35 - 45 , honest man with good SOH & similar interests , f 

 genuine , caring , honest and normal man for fship , poss rship . S / S , S / 

Interestingly, the last three of those fourteen matches have to do with seeking an honest man, 

specifically: 

SEEKING HONEST MAN 

Seeks 35 - 45 , honest man with good SOH & similar interests 

genuine , caring , honest and normal man for fship , poss rship 

Let’s see if there’s a similar pattern with the word "woman": 

>>> 

>>> text8.concordance("woman") 

Displaying 11 of 11 matches: 

at home . Seeking an honest , caring woman , slim or med . build , who enjoys t 

thy man 37 like to meet full figured woman for relationship . 48 slim , shy , S 

rry . MALE 58 years old . Is there a Woman who would like to spend 1 weekend a 

 other interests . Seeking Christian Woman for fship , view to rship . SWM 45 D 

ALE 60 - burly beared seeks intimate woman for outings n / s s / d F / ston / P 

ington . SCORPIO 47 seeks passionate woman for discreet intimate encounters SEX 

le dad . 42 , East sub . 5 " 9 seeks woman 30 + for f / ship relationship TALL 
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personal trainer looking for married woman age open for fun MARRIED Dark guy 37 

rinker , seeking slim - medium build woman who is happy in life , age open . AC 

. O . TERTIARY Educated professional woman , seeks professional , employed man 

 real romantic , age 50 - 65 y . o . WOMAN OF SUBSTANCE 56 , 59 kg ., 50 , fit 

The issue of honesty came up in the first match only: 

Seeking an honest , caring woman , slim or med . build 

Dipping into a corpus with a concordance won’t give you the full picture, but it can still be interesting 

to take a peek and see if anything stands out. 

Making a Dispersion Plot 

You can use a dispersion plot to see how much a particular word appears and where it appears. So 

far, we’ve looked for "man" and "woman", but it would be interesting to see how much those words 

are used compared to their synonyms: 

>>> 

>>> text8.dispersion_plot( 

...     ["woman", "lady", "girl", "gal", "man", "gentleman", "boy", "guy"] 

... ) 

Here’s the dispersion plot you get: 

 

Each vertical blue line represents one instance of a word. Each horizontal row of blue lines represents 

the corpus as a whole. This plot shows that: 

"lady" was used a lot more than "woman" or "girl". There were no instances of "gal". 

"man" and "guy" were used a similar number of times and were more common 

than "gentleman" or "boy". 
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You use a dispersion plot when you want to see where words show up in a text or corpus. If you’re 

analyzing a single text, this can help you see which words show up near each other. If you’re analyzing 

a corpus of texts that is organized chronologically, it can help you see which words were being used 

more or less over a period of time. 

Staying on the theme of romance, see what you can find out by making a dispersion plot for Sense 

and Sensibility, which is text2. Jane Austen novels talk a lot about people’s homes, so make a 

dispersion plot with the names of a few homes: 

>>> 

>>> text2.dispersion_plot(["Allenham", "Whitwell", "Cleveland", "Combe"]) 

Here’s the plot you get: 

 

Apparently Allenham is mentioned a lot in the first third of the novel and then doesn’t come up much 

again. Cleveland, on the other hand, barely comes up in the first two thirds but shows up a fair bit in 

the last third. This distribution reflects changes in the relationship between Marianne and Willoughby: 

Allenham is the home of Willoughby’s benefactress and comes up a lot when Marianne is first 

interested in him. 

Cleveland is a home that Marianne stays at after she goes to see Willoughby in London and things go 

wrong. 

Dispersion plots are just one type of visualization you can make for textual data. The next one you’ll 

take a look at is frequency distributions. 

Making a Frequency Distribution 

With a frequency distribution, you can check which words show up most frequently in your text. You’ll 

need to get started with an import: 

>>> 

>>> from nltk import FreqDist 

FreqDist is a subclass of collections.Counter. Here’s how to create a frequency distribution of the 

entire corpus of personals ads: 
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>>> 

>>> frequency_distribution = FreqDist(text8) 

>>> print(frequency_distribution) 

<FreqDist with 1108 samples and 4867 outcomes> 

Since 1108 samples and 4867 outcomes is a lot of information, start by narrowing that down. Here’s 

how to see the 20 most common words in the corpus: 

>>> 

>>> frequency_distribution.most_common(20) 

[(',', 539), 

 ('.', 353), 

 ('/', 110), 

 ('for', 99), 

 ('and', 74), 

 ('to', 74), 

 ('lady', 68), 

 ('-', 66), 

 ('seeks', 60), 

 ('a', 52), 

 ('with', 44), 

 ('S', 36), 

 ('ship', 33), 

 ('&', 30), 

 ('relationship', 29), 

 ('fun', 28), 

 ('in', 27), 

 ('slim', 27), 

 ('build', 27), 

 ('o', 26)] 

You have a lot of stop words in your frequency distribution, but you can remove them just as you 

did earlier. Create a list of all of the words in text8 that aren’t stop words: 

>>> 

>>> meaningful_words = [ 
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...     word for word in text8 if word.casefold() not in stop_words 

... ] 

Now that you have a list of all of the words in your corpus that aren’t stop words, make a frequency 

distribution: 

>>> 

>>> frequency_distribution = FreqDist(meaningful_words) 

Take a look at the 20 most common words: 

>>> 

>>> frequency_distribution.most_common(20) 

[(',', 539), 

 ('.', 353), 

 ('/', 110), 

 ('lady', 68), 

 ('-', 66), 

 ('seeks', 60), 

 ('ship', 33), 

 ('&', 30), 

 ('relationship', 29), 

 ('fun', 28), 

 ('slim', 27), 

 ('build', 27), 

 ('smoker', 23), 

 ('50', 23), 

 ('non', 22), 

 ('movies', 22), 

 ('good', 21), 

 ('honest', 20), 

 ('dining', 19), 

 ('rship', 18)] 

You can turn this list into a graph: 

>>> 
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>>> frequency_distribution.plot(20, cumulative=True) 

Here’s the graph you get: 

 

Some of the most common words are: 

'lady' 

'seeks' 

'ship' 

'relationship' 

'fun' 

'slim' 

'build' 

'smoker' 

'50' 

'non' 

'movies' 

'good' 

'honest' 

From what you’ve already learned about the people writing these personals ads, they did seem 

interested in honesty and used the word 'lady' a lot. In addition, 'slim' and 'build' both show up the 

same number of times. You saw slim and build used near each other when you were learning 
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about concordances, so maybe those two words are commonly used together in this corpus. That 

brings us to collocations! 

Finding Collocations 

A collocation is a sequence of words that shows up often. If you’re interested in common collocations 

in English, then you can check out The BBI Dictionary of English Word Combinations. It’s a handy 

reference you can use to help you make sure your writing is idiomatic. Here are some examples of 

collocations that use the word “tree”: 

Syntax tree 

Family tree 

Decision tree 

To see pairs of words that come up often in your corpus, you need to call .collocations() on it: 

>>> 

>>> text8.collocations() 

would like; medium build; social drinker; quiet nights; non smoker; 

long term; age open; Would like; easy going; financially secure; fun 

times; similar interests; Age open; weekends away; poss rship; well 

presented; never married; single mum; permanent relationship; slim 

build 

slim build did show up, as did medium build and several other word combinations. No long walks on 

the beach though! 

But what would happen if you looked for collocations after lemmatizing the words in your corpus? 

Would you find some word combinations that you missed the first time around because they came up 

in slightly varied versions? 

If you followed the instructions earlier, then you’ll already have a lemmatizer, but you can’t 

call collocations() on just any data type, so you’re going to need to do some prep work. Start by 

creating a list of the lemmatized versions of all the words in text8: 

>>> 

>>> lemmatized_words = [lemmatizer.lemmatize(word) for word in text8] 

But in order for you to be able to do the linguistic processing tasks you’ve seen so far, you need to 

make an NLTK text with this list: 

>>> 

>>> new_text = nltk.Text(lemmatized_words) 

Here’s how to see the collocations in your new_text: 

>>> 
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>>> new_text.collocations() 

medium build; social drinker; non smoker; long term; would like; age 

open; easy going; financially secure; Would like; quiet night; Age 

open; well presented; never married; single mum; permanent 

relationship; slim build; year old; similar interest; fun time; Photo 

pls 

Compared to your previous list of collocations, this new one is missing a few: 

weekends away 

poss rship 

The idea of quiet nights still shows up in the lemmatized version, quiet night. Your latest search for 

collocations also brought up a few news ones: 

year old suggests that users often mention ages. 

photo pls suggests that users often request one or more photos. 

That’s how you can find common word combinations to see what people are talking about and how 

they’re talking about it! 

Conclusion 

Congratulations on taking your first steps with NLP! A whole new world of unstructured data is now 

open for you to explore. Now that you’ve covered the basics of text analytics tasks, you can get out 

there are find some texts to analyze and see what you can learn about the texts themselves as well as 

the people who wrote them and the topics they’re about. 

Now you know how to: 

Find text to analyze 

Preprocess your text for analysis 

Analyze your text 

Create visualizations based on your analysis 

For your next step, you can use NLTK to analyze a text to see whether the sentiments expressed in it 

are positive or negative. To learn more about sentiment analysis, check out Sentiment Analysis: First 

Steps With Python’s NLTK Library. If you’d like to dive deeper into the nuts and bolts of NLTK, then 

you can work your way through Natural Language Processing with Python—Analyzing Text with the 

Natural Language Toolkit. 

Day-03 & 04: Sentiment Analysis: First Steps With Python's NLTK Library 
Sentiment Analysis 

Sentiment analysis can help you determine the ratio of positive to negative engagements about a 

specific topic. You can analyze bodies of text, such as comments, tweets, and product reviews, to 

obtain insights from your audience. In this tutorial, you’ll learn the important features of NLTK for 
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processing text data and the different approaches you can use to perform sentiment analysis on your 

data. 

Steps for Sentiment Analysis 
Split and filter text data in preparation for analysis 

Analyze word frequency 

Find concordance and collocations using different methods 

Perform quick sentiment analysis with NLTK’s built-in classifier 

Define features for custom classification 

Use and compare classifiers for sentiment analysis with NLTK 

Getting Started With NLTK 

The NLTK library contains various utilities that allow you to effectively manipulate and analyze 

linguistic data. Among its advanced features are text classifiers that you can use for many kinds of 

classification, including sentiment analysis. 

Sentiment analysis is the practice of using algorithms to classify various samples of related text into 

overall positive and negative categories. With NLTK, you can employ these algorithms through 

powerful built-in machine learning operations to obtain insights from linguistic data. 

import nltk 

 

nltk.download() 

NLTK will display a download manager showing all available and installed resources. Here are the ones 

you’ll need to download for this task: 

names: A list of common English names compiled by Mark Kantrowitz 

stopwords: A list of really common words, like articles, pronouns, prepositions, and conjunctions 

state_union: A sample of transcribed State of the Union addresses by different US presidents, 

compiled by Kathleen Ahrens 

twitter_samples: A list of social media phrases posted to Twitter 

movie_reviews: Two thousand movie reviews categorized by Bo Pang and Lillian Lee 

averaged_perceptron_tagger: A data model that NLTK uses to categorize words into their part of 

speech 

vader_lexicon: A scored list of words and jargon that NLTK references when performing sentiment 

analysis, created by C.J. Hutto and Eric Gilbert 

punkt: A data model created by Jan Strunk that NLTK uses to split full texts into word lists 

A quick way to download specific resources directly from the console is to pass 

a list to nltk.download(): 

>>> 
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>>> import nltk 

 

>>> nltk.download([ 

...     "names", 

...     "stopwords", 

...     "state_union", 

...     "twitter_samples", 

...     "movie_reviews", 

...     "averaged_perceptron_tagger", 

...     "vader_lexicon", 

...     "punkt", 

... ]) 

his will tell NLTK to find and download each resource based on its identifier. 

Should NLTK require additional resources that you haven’t installed, you’ll see a 

helpful LookupError with details and instructions to download the resource: 

>>> import nltk 

 

>>> w = nltk.corpus.shakespeare.words() 

... 

LookupError: 

********************************************************************** 

  Resource shakespeare not found. 

  Please use the NLTK Downloader to obtain the resource: 

 

  >>> import nltk 

  >>> nltk.download('shakespeare') 

Compiling Data 
NLTK provides a number of functions that you can call with few or no arguments that will help you 

meaningfully analyze text before you even touch its machine learning capabilities. Many of NLTK’s 

utilities are helpful in preparing your data for more advanced analysis. 

Soon, you’ll learn about frequency distributions, concordance, and collocations. But first, you need 

some data. 

Start by loading the State of the Union corpus you downloaded earlier: 
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words = [w for w in nltk.corpus.state_union.words() if w.isalpha()] 

Note that you build a list of individual words with the corpus’s .words() method, but you 

use str.isalpha() to include only the words that are made up of letters. Otherwise, your word list may 

end up with “words” that are only punctuation marks. 

Have a look at your list. You’ll notice lots of little words like “of,” “a,” “the,” and similar. These 

common words are called stop words, and they can have a negative effect on your analysis because 

they occur so often in the text. Thankfully, there’s a convenient way to filter them out. 

NLTK provides a small corpus of stop words that you can load into a list: 

stopwords = nltk.corpus.stopwords.words("english") 

Make sure to specify english as the desired language since this corpus contains stop words in various 

languages. 

Now you can remove stop words from your original word list: 

words = [w for w in words if w.lower() not in stopwords] 

Since all words in the stopwords list are lowercase, and those in the original list may not be, you 

use str.lower() to account for any discrepancies. Otherwise, you may end up with mixedCase or 

capitalized stop words still in your list. 

While you’ll use corpora provided by NLTK for this tutorial, it’s possible to build your own text corpora 

from any source. Building a corpus can be as simple as loading some plain text or as complex as 

labeling and categorizing each sentence. Refer to NLTK’s documentation for more information on how 

to work with corpus readers. 

For some quick analysis, creating a corpus could be overkill. If all you need is a word list, there are 

simpler ways to achieve that goal. Beyond Python’s own string manipulation methods, NLTK 

provides nltk.word_tokenize(), a function that splits raw text into individual words. 

While tokenization is itself a bigger topic (and likely one of the steps you’ll take when creating a 

custom corpus), this tokenizer delivers simple word lists really well. 

To use it, call word_tokenize() with the raw text you want to split: 

>>> 

>>> from pprint import pprint 

 

>>> text = """ 

... For some quick analysis, creating a corpus could be overkill. 

... If all you need is a word list, 

... there are simpler ways to achieve that goal.""" 

>>> pprint(nltk.word_tokenize(text), width=79, compact=True) 

['For', 'some', 'quick', 'analysis', ',', 'creating', 'a', 'corpus', 'could', 

 'be', 'overkill', '.', 'If', 'all', 'you', 'need', 'is', 'a', 'word', 'list', 
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 ',', 'there', 'are', 'simpler', 'ways', 'to', 'achieve', 'that', 'goal', '.'] 

Now you have a workable word list! Remember that punctuation will be counted as individual words, 

so use str.isalpha() to filter them out later. 

Creating Frequency Distributions 
Now you’re ready for frequency distributions. A frequency distribution is essentially a table that tells 

you how many times each word appears within a given text. In NLTK, frequency distributions are a 

specific object type implemented as a distinct class called FreqDist. This class provides useful 

operations for word frequency analysis. 

To build a frequency distribution with NLTK, construct the nltk.FreqDist class with a word list: 

words: list[str] = nltk.word_tokenize(text) 

fd = nltk.FreqDist(words) 

This will create a frequency distribution object similar to a Python dictionary but with added features. 

Note: Type hints with generics as you saw above in words: list[str] = ... is a new feature in Python 3.9! 

After building the object, you can use methods like .most_common() and .tabulate() to start 

visualizing information: 

>>> 

>>> fd.most_common(3) 

[('must', 1568), ('people', 1291), ('world', 1128)] 

>>> fd.tabulate(3) 

  must people  world 

  1568   1291   1128 

These methods allow you to quickly determine frequently used words in a sample. 

With .most_common(), you get a list of tuples containing each word and how many times it appears 

in your text. You can get the same information in a more readable format with .tabulate(). 

In addition to these two methods, you can use frequency distributions to query particular words. You 

can also use them as iterators to perform some custom analysis on word properties. 

For example, to discover differences in case, you can query for different variations of the same word: 

>>> 

>>> fd["America"] 

1076 

>>> fd["america"]  # Note this doesn't result in a KeyError 

0 

>>> fd["AMERICA"] 

3 
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These return values indicate the number of times each word occurs exactly as given. 

Since frequency distribution objects are iterable, you can use them within list comprehensions to 

create subsets of the initial distribution. You can focus these subsets on properties that are useful for 

your own analysis. 

Try creating a new frequency distribution that’s based on the initial one but normalizes all words to 

lowercase: 

lower_fd = nltk.FreqDist([w.lower() for w in fd]) 

Now you have a more accurate representation of word usage regardless of case. 

Think of the possibilities: You could create frequency distributions of words starting with a particular 

letter, or of a particular length, or containing certain letters. Your imagination is the limit! 

Extracting Concordance and Collocations 

In the context of NLP, a concordance is a collection of word locations along with their context. You 

can use concordances to find: 

How many times a word appears 

Where each occurrence appears 

What words surround each occurrence 

In NLTK, you can do this by calling .concordance(). To use it, you need an instance of 

the nltk.Text class, which can also be constructed with a word list. 

Before invoking .concordance(), build a new word list from the original corpus text so that all the 

context, even stop words, will be there: 

>>> 

>>> text = nltk.Text(nltk.corpus.state_union.words()) 

>>> text.concordance("america", lines=5) 

Displaying 5 of 1079 matches: 

 would want us to do . That is what America will do . So much blood has already 

ay , the entire world is looking to America for enlightened leadership to peace 

beyond any shadow of a doubt , that America will continue the fight for freedom 

 to make complete victory certain , America will never become a party to any pl 

nly in law and in justice . Here in America , we have labored long and hard to 

Note that .concordance() already ignores case, allowing you to see the context of all case variants of a 

word in order of appearance. Note also that this function doesn’t show you the location of each word 

in the text. 

Additionally, since .concordance() only prints information to the console, it’s not ideal for data 

manipulation. To obtain a usable list that will also give you information about the location of each 

occurrence, use .concordance_list(): 
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>>> 

>>> concordance_list = text.concordance_list("america", lines=2) 

>>> for entry in concordance_list: 

...     print(entry.line) 

... 

 would want us to do . That is what America will do . So much blood has already 

ay , the entire world is looking to America for enlightened leadership to peace 

.concordance_list() gives you a list of ConcordanceLine objects, which contain information about 

where each word occurs as well as a few more properties worth exploring. The list is also sorted in 

order of appearance. 

The nltk.Text class itself has a few other interesting features. One of them is .vocab(), which is worth 

mentioning because it creates a frequency distribution for a given text. 

Revisiting nltk.word_tokenize(), check out how quickly you can create a custom nltk.Text instance and 

an accompanying frequency distribution: 

>>> 

>>> words: list[str] = nltk.word_tokenize( 

...     """Beautiful is better than ugly. 

...     Explicit is better than implicit. 

...     Simple is better than complex.""" 

... ) 

>>> text = nltk.Text(words) 

>>> fd = text.vocab()  # Equivalent to fd = nltk.FreqDist(words) 

>>> fd.tabulate(3) 

    is better   than 

     3      3      3 

.vocab() is essentially a shortcut to create a frequency distribution from an instance of nltk.Text. That 

way, you don’t have to make a separate call to instantiate a new nltk.FreqDist object. 

Another powerful feature of NLTK is its ability to quickly find collocations with simple function calls. 

Collocations are series of words that frequently appear together in a given text. In the State of the 

Union corpus, for example, you’d expect to find the words United and States appearing next to each 

other very often. Those two words appearing together is a collocation. 

Collocations can be made up of two or more words. NLTK provides classes to handle several types of 

collocations: 

Bigrams: Frequent two-word combinations 
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Trigrams: Frequent three-word combinations 

Quadgrams: Frequent four-word combinations 

NLTK provides specific classes for you to find collocations in your text. Following the pattern you’ve 

seen so far, these classes are also built from lists of words: 

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()] 

finder = nltk.collocations.TrigramCollocationFinder.from_words(words) 

The TrigramCollocationFinder instance will search specifically for trigrams. As you may have guessed, 

NLTK also has the BigramCollocationFinder and QuadgramCollocationFinder classes for bigrams and 

quadgrams, respectively. All these classes have a number of utilities to give you information about all 

identified collocations. 

One of their most useful tools is the ngram_fd property. This property holds a frequency distribution 

that is built for each collocation rather than for individual words. 

Using ngram_fd, you can find the most common collocations in the supplied text: 

>>> 

>>> finder.ngram_fd.most_common(2) 

[(('the', 'United', 'States'), 294), (('the', 'American', 'people'), 185)] 

>>> finder.ngram_fd.tabulate(2) 

  ('the', 'United', 'States') ('the', 'American', 'people') 

                          294                           185 

You don’t even have to create the frequency distribution, as it’s already a property of the collocation 

finder instance. 

Now that you’ve learned about some of NLTK’s most useful tools, it’s time to jump into sentiment 

analysis! 

Using NLTK’s Pre-Trained Sentiment Analyzer 

NLTK already has a built-in, pretrained sentiment analyzer called VADER (Valence Aware Dictionary 

and sEntiment Reasoner). 

Since VADER is pretrained, you can get results more quickly than with many other analyzers. 

However, VADER is best suited for language used in social media, like short sentences with some slang 

and abbreviations. It’s less accurate when rating longer, structured sentences, but it’s often a good 

launching point. 

To use VADER, first create an instance of nltk.sentiment.SentimentIntensityAnalyzer, then 

use .polarity_scores() on a raw string: 

>>> 

>>> from nltk.sentiment import SentimentIntensityAnalyzer 

>>> sia = SentimentIntensityAnalyzer() 
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>>> sia.polarity_scores("Wow, NLTK is really powerful!") 

{'neg': 0.0, 'neu': 0.295, 'pos': 0.705, 'compound': 0.8012} 

You’ll get back a dictionary of different scores. The negative, neutral, and positive scores are related: 

They all add up to 1 and can’t be negative. The compound score is calculated differently. It’s not just 

an average, and it can range from -1 to 1. 

Now you’ll put it to the test against real data using two different corpora. First, load 

the twitter_samples corpus into a list of strings, making a replacement to render URLs inactive to 

avoid accidental clicks: 

tweets = [t.replace("://", "//") for t in nltk.corpus.twitter_samples.strings()] 

Notice that you use a different corpus method, .strings(), instead of .words(). This gives you a list of 

raw tweets as strings. 

Different corpora have different features, so you may need to use Python’s help(), as 

in help(nltk.corpus.tweet_samples), or consult NLTK’s documentation to learn how to use a given 

corpus. 

Now use the .polarity_scores() function of your SentimentIntensityAnalyzer instance to classify 

tweets: 

from random import shuffle 

 

def is_positive(tweet: str) -> bool: 

    """True if tweet has positive compound sentiment, False otherwise.""" 

    return sia.polarity_scores(tweet)["compound"] > 0 

 

shuffle(tweets) 

for tweet in tweets[:10]: 

    print(">", is_positive(tweet), tweet) 

In this case, is_positive() uses only the positivity of the compound score to make the call. You can 

choose any combination of VADER scores to tweak the classification to your needs. 

Now take a look at the second corpus, movie_reviews. As the name implies, this is a collection of 

movie reviews. The special thing about this corpus is that it’s already been classified. Therefore, you 

can use it to judge the accuracy of the algorithms you choose when rating similar texts. 

Keep in mind that VADER is likely better at rating tweets than it is at rating long movie reviews. To get 

better results, you’ll set up VADER to rate individual sentences within the review rather than the 

entire text. 

Since VADER needs raw strings for its rating, you can’t use .words() like you did earlier. Instead, make 

a list of the file IDs that the corpus uses, which you can use later to reference individual reviews: 

positive_review_ids = nltk.corpus.movie_reviews.fileids(categories=["pos"]) 
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negative_review_ids = nltk.corpus.movie_reviews.fileids(categories=["neg"]) 

all_review_ids = positive_review_ids + negative_review_ids 

.fileids() exists in most, if not all, corpora. In the case of movie_reviews, each file corresponds to a 

single review. Note also that you’re able to filter the list of file IDs by specifying categories. This 

categorization is a feature specific to this corpus and others of the same type. 

Next, redefine is_positive() to work on an entire review. You’ll need to obtain that specific review 

using its file ID and then split it into sentences before rating: 

from statistics import mean 

 

def is_positive(review_id: str) -> bool: 

    """True if the average of all sentence compound scores is positive.""" 

    text = nltk.corpus.movie_reviews.raw(review_id) 

    scores = [ 

        sia.polarity_scores(sentence)["compound"] 

        for sentence in nltk.sent_tokenize(text) 

    ] 

    return mean(scores) > 0 

.raw() is another method that exists in most corpora. By specifying a file ID or a list of file IDs, you can 

obtain specific data from the corpus. Here, you get a single review, then use nltk.sent_tokenize() to 

obtain a list of sentences from the review. Finally, is_positive() calculates the average compound 

score for all sentences and associates a positive result with a positive review. 

You can take the opportunity to rate all the reviews and see how accurate VADER is with this setup: 

>>> 

>>> shuffle(all_review_ids) 

>>> correct = 0 

>>> for review_id in all_review_ids: 

...     if is_positive(review_id): 

...         if review_id in positive_review_ids: 

...             correct += 1 

...     else: 

...         if review_id in negative_review_ids: 

...             correct += 1 

... 



 

Page 561 of 580  
 

>>> print(F"{correct / len(all_review_ids):.2%} correct") 

64.00% correct 

After rating all reviews, you can see that only 64 percent were correctly classified by VADER using the 

logic defined in is_positive(). 

A 64 percent accuracy rating isn’t great, but it’s a start. Have a little fun tweaking is_positive() to see if 

you can increase the accuracy. 

In the next section, you’ll build a custom classifier that allows you to use additional features for 

classification and eventually increase its accuracy to an acceptable level. 

Customizing NLTK’s Sentiment Analysis 

NLTK offers a few built-in classifiers that are suitable for various types of analyses, including sentiment 

analysis. The trick is to figure out which properties of your dataset are useful in classifying each piece 

of data into your desired categories. 

In the world of machine learning, these data properties are known as features, which you must reveal 

and select as you work with your data. While this tutorial won’t dive too deeply into feature 

selection and feature engineering, you’ll be able to see their effects on the accuracy of classifiers. 

Selecting Useful Features 

Since you’ve learned how to use frequency distributions, why not use them as a launching point for 

an additional feature? 

By using the predefined categories in the movie_reviews corpus, you can create sets of positive and 

negative words, then determine which ones occur most frequently across each set. Begin by 

excluding unwanted words and building the initial category groups: 

 1unwanted = nltk.corpus.stopwords.words("english") 

 2unwanted.extend([w.lower() for w in nltk.corpus.names.words()]) 

 3 

 4def skip_unwanted(pos_tuple): 

 5    word, tag = pos_tuple 

 6    if not word.isalpha() or word in unwanted: 

 7        return False 

 8    if tag.startswith("NN"): 

 9        return False 

10    return True 

11 

12positive_words = [word for word, tag in filter( 

13    skip_unwanted, 
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14    nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["pos"])) 

15)] 

16negative_words = [word for word, tag in filter( 

17    skip_unwanted, 

18    nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["neg"])) 

19)] 

This time, you also add words from the names corpus to the unwanted list on line 2 since movie 

reviews are likely to have lots of actor names, which shouldn’t be part of your feature sets. 

Notice pos_tag() on lines 14 and 18, which tags words by their part of speech. 

It’s important to call pos_tag() before filtering your word lists so that NLTK can more accurately tag all 

words. skip_unwanted(), defined on line 4, then uses those tags to exclude nouns, according to 

NLTK’s default tag set. 

Now you’re ready to create the frequency distributions for your custom feature. Since many words 

are present in both positive and negative sets, begin by finding the common set so you can remove it 

from the distribution objects: 

positive_fd = nltk.FreqDist(positive_words) 

negative_fd = nltk.FreqDist(negative_words) 

 

common_set = set(positive_fd).intersection(negative_fd) 

 

for word in common_set: 

    del positive_fd[word] 

    del negative_fd[word] 

 

top_100_positive = {word for word, count in positive_fd.most_common(100)} 

top_100_negative = {word for word, count in negative_fd.most_common(100)} 

Once you’re left with unique positive and negative words in each frequency distribution object, you 

can finally build sets from the most common words in each distribution. The amount of words in each 

set is something you could tweak in order to determine its effect on sentiment analysis. 

This is one example of a feature you can extract from your data, and it’s far from perfect. Looking 

closely at these sets, you’ll notice some uncommon names and words that aren’t necessarily positive 

or negative. Additionally, the other NLTK tools you’ve learned so far can be useful for building more 

features. One possibility is to leverage collocations that carry positive meaning, like the bigram 

“thumbs up!” 

Here’s how you can set up the positive and negative bigram finders: 
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unwanted = nltk.corpus.stopwords.words("english") 

unwanted.extend([w.lower() for w in nltk.corpus.names.words()]) 

 

positive_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([ 

    w for w in nltk.corpus.movie_reviews.words(categories=["pos"]) 

    if w.isalpha() and w not in unwanted 

]) 

negative_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([ 

    w for w in nltk.corpus.movie_reviews.words(categories=["neg"]) 

    if w.isalpha() and w not in unwanted 

]) 

The rest is up to you! Try different combinations of features, think of ways to use the negative VADER 

scores, create ratios, polish the frequency distributions. The possibilities are endless! 

Training and Using a Classifier 

With your new feature set ready to use, the first prerequisite for training a classifier is to define a 

function that will extract features from a given piece of data. 

Since you’re looking for positive movie reviews, focus on the features that indicate positivity, 

including VADER scores: 

def extract_features(text): 

    features = dict() 

    wordcount = 0 

    compound_scores = list() 

    positive_scores = list() 

 

    for sentence in nltk.sent_tokenize(text): 

        for word in nltk.word_tokenize(sentence): 

            if word.lower() in top_100_positive: 

                wordcount += 1 

        compound_scores.append(sia.polarity_scores(sentence)["compound"]) 

        positive_scores.append(sia.polarity_scores(sentence)["pos"]) 

 

    # Adding 1 to the final compound score to always have positive numbers 
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    # since some classifiers you'll use later don't work with negative numbers. 

    features["mean_compound"] = mean(compound_scores) + 1 

    features["mean_positive"] = mean(positive_scores) 

    features["wordcount"] = wordcount 

 

    return features 

extract_features() should return a dictionary, and it will create three features for each piece of text: 

The average compound score 

The average positive score 

The amount of words in the text that are also part of the top 100 words in all positive reviews 

In order to train and evaluate a classifier, you’ll need to build a list of features for each text you’ll 

analyze: 

features = [ 

    (extract_features(nltk.corpus.movie_reviews.raw(review)), "pos") 

    for review in nltk.corpus.movie_reviews.fileids(categories=["pos"]) 

] 

features.extend([ 

    (extract_features(nltk.corpus.movie_reviews.raw(review)), "neg") 

    for review in nltk.corpus.movie_reviews.fileids(categories=["neg"]) 

]) 

Each item in this list of features needs to be a tuple whose first item is the dictionary returned 

by extract_features and whose second item is the predefined category for the text. After initially 

training the classifier with some data that has already been categorized (such as 

the movie_reviews corpus), you’ll be able to classify new data. 

Training the classifier involves splitting the feature set so that one portion can be used for training 

and the other for evaluation, then calling .train(): 

>>> 

>>> # Use 1/4 of the set for training 

>>> train_count = len(features) // 4 

>>> shuffle(features) 

>>> classifier = nltk.NaiveBayesClassifier.train(features[:train_count]) 

>>> classifier.show_most_informative_features(10) 

Most Informative Features 
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               wordcount = 2                 pos : neg    =      4.1 : 1.0 

               wordcount = 3                 pos : neg    =      3.8 : 1.0 

               wordcount = 0                 neg : pos    =      1.6 : 1.0 

               wordcount = 1                 pos : neg    =      1.5 : 1.0 

>>> nltk.classify.accuracy(classifier, features[train_count:]) 

0.668 

Since you’re shuffling the feature list, each run will give you different results. In fact, it’s important to 

shuffle the list to avoid accidentally grouping similarly classified reviews in the first quarter of the list. 

Adding a single feature has marginally improved VADER’s initial accuracy, from 64 percent to 67 

percent. More features could help, as long as they truly indicate how positive a review is. You can 

use classifier.show_most_informative_features() to determine which features are most indicative of a 

specific property. 

To classify new data, find a movie review somewhere and pass it to classifier.classify(). You can also 

use extract_features() to tell you exactly how it was scored: 

>>> 

>>> new_review = ... 

>>> classifier.classify(new_review) 

>>> extract_features(new_review) 

Was it correct? Based on the scoring output from extract_features(), what can you improve? 

Feature engineering is a big part of improving the accuracy of a given algorithm, but it’s not the whole 

story. Another strategy is to use and compare different classifiers. 

Comparing Additional Classifiers 

NLTK provides a class that can use most classifiers from the popular machine learning 

framework scikit-learn. 

Many of the classifiers that scikit-learn provides can be instantiated quickly since they have defaults 

that often work well. In this section, you’ll learn how to integrate them within NLTK to classify 

linguistic data. 

Installing and Importing scikit-learn 
Like NLTK, scikit-learn is a third-party Python library, so you’ll have to install it with pip: 

$ python3 -m pip install scikit-learn 

After you’ve installed scikit-learn, you’ll be able to use its classifiers directly within NLTK. 

The following classifiers are a subset of all classifiers available to you. These will work within NLTK for 

sentiment analysis: 

from sklearn.naive_bayes import ( 

    BernoulliNB, 
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    ComplementNB, 

    MultinomialNB, ) 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.neural_network import MLPClassifier 

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis 

With these classifiers imported, you’ll first have to instantiate each one. Thankfully, all of these have 

pretty good defaults and don’t require much tweaking. 

To aid in accuracy evaluation, it’s helpful to have a mapping of classifier names and their instances: 

classifiers = {     "BernoulliNB": BernoulliNB(), 

    "ComplementNB": ComplementNB(), 

    "MultinomialNB": MultinomialNB(), 

    "KNeighborsClassifier": KNeighborsClassifier(), 

    "DecisionTreeClassifier": DecisionTreeClassifier(), 

    "RandomForestClassifier": RandomForestClassifier(), 

    "LogisticRegression": LogisticRegression(), 

    "MLPClassifier": MLPClassifier(max_iter=1000), 

    "AdaBoostClassifier": AdaBoostClassifier(), } 

Now you can use these instances for training and accuracy evaluation. 

Using scikit-learn Classifiers With NLTK 

Since NLTK allows you to integrate scikit-learn classifiers directly into its own classifier class, the 

training and classification processes will use the same methods you’ve already 

seen, .train() and .classify(). 

You’ll also be able to leverage the same features list you built earlier by means of extract_features(). 

To refresh your memory, here’s how you built the features list: 

features = [ 

    (extract_features(nltk.corpus.movie_reviews.raw(review)), "pos") 

    for review in nltk.corpus.movie_reviews.fileids(categories=["pos"]) 

] 

features.extend([ 
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    (extract_features(nltk.corpus.movie_reviews.raw(review)), "neg") 

    for review in nltk.corpus.movie_reviews.fileids(categories=["neg"]) ]) 

The features list contains tuples whose first item is a set of features given by extract_features(), and 

whose second item is the classification label from preclassified data in the movie_reviews corpus. 

Since the first half of the list contains only positive reviews, begin by shuffling it, then iterate over all 

classifiers to train and evaluate each one: 

>>> 

>>> # Use 1/4 of the set for training 

>>> train_count = len(features) // 4 

>>> shuffle(features) 

>>> for name, sklearn_classifier in classifiers.items(): 

...     classifier = nltk.classify.SklearnClassifier(sklearn_classifier) 

...     classifier.train(features[:train_count]) 

...     accuracy = nltk.classify.accuracy(classifier, features[train_count:]) 

...     print(F"{accuracy:.2%} - {name}") 

... 

67.00% - BernoulliNB 

66.80% - ComplementNB 

66.33% - MultinomialNB 

69.07% - KNeighborsClassifier 

62.73% - DecisionTreeClassifier 

66.60% - RandomForestClassifier 

72.20% - LogisticRegression 

73.13% - MLPClassifier 

69.40% - AdaBoostClassifier 

For each scikit-learn classifier, call nltk.classify.SklearnClassifier to create a usable NLTK classifier that 

can be trained and evaluated exactly like you’ve seen before with nltk.NaiveBayesClassifier and its 

other built-in classifiers. The .train() and .accuracy() methods should receive different portions of the 

same list of features. 

 

Day-05: Labs and Practice activities for sentiments analysis on various datasets 
 

This day is reserved for various data analysis and practice activities activities along with assessments. 
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Week 9: Time series analysis and forecasting 

Day-01: Time Series – Introduction 

NumPy 

Numerical Python is a library used for scientific computing. It works on an N-dimensional array object 

and provides basic mathematical functionality such as size, shape, mean, standard deviation, 

minimum, maximum as well as some more complex functions such as linear algebraic functions and 

Fourier transform. You will learn more about these as we move ahead in this tutorial. 

Pandas 

This library provides highly efficient and easy-to-use data structures such as series, dataframes and 

panels. It has enhanced Python’s functionality from mere data collection and preparation to data 

analysis. The two libraries, Pandas and NumPy, make any  operation on small to very large dataset 

very simple. To know more about these functions,follow this tutorial. 

SciPy 

Science Python is a library used for scientific and technical computing. It provides functionalities for 

optimization, signal and image processing, integration, interpolation and linear algebra. This library 

comes handy while performing machine learning. We will discuss these functionalities as we move 

ahead in this tutorial.  

Scikit Learn 

This library is a SciPy Toolkit widely used for statistical modelling, machine learning and deep learning, 

as it contains various customizable regression, classification and clustering models. It works well with 

Numpy, Pandas and other libraries which makes it easier to use. 

Statsmodels 

Like Scikit Learn, this library is used for statistical data exploration and statistical 

modelling. It also operates well with other Python libraries. 

Matplotlib 

This library is used for data visualization in various formats such as line plot, bar graph, 

heat maps, scatter plots, histogram etc. It contains all the graph related functionalities 

required from plotting to labelling. We will discuss these functionalities as we move ahead 

in this tutorial. 

Datetime  

This library, with its two modules – datetime and calendar, provides all necessary datetime 

functionality for reading, formatting and manipulating time. 

These libraries are very essential to start with machine learning with any sort of data. 
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Time Series – Data Processing and Visualization 

Time Series is a sequence of observations indexed in equi-spaced time intervals. Hence, the 

order and continuity should be maintained in any time series. The dataset we will be using is a 

multi-variate time series having hourly data for approximately one year, for air quality in a 

significantly polluted Italian city. The dataset can be downloaded from the link given below: 

http://archive.ics.uci.edu/ml/datasets/air+quality 

It is necessary to make sure that: • The time series is equally spaced, and • There are no 

redundant values or gaps in it. In case the time series is not continuous, we can upsample or 

downsample it.  

Showing df.head()  

import pandas  

df = pandas.read_csv("AirQualityUCI.csv", sep = ";", decimal = ",") df = df.iloc[ : , 0:14]  

len(df)  

9471  

df.head() 

df.isna().sum() 

df = df[df['Date'].notnull()] 

For preprocessing the time series, we make sure there are no NaN(NULL) values in the dataset; 

if there are, we can replace them with either 0 or average or preceding or succeeding values. 

Replacing is a preferred choice over dropping so that the continuity of the time series is 

maintained. However, in our dataset the last few values seem to be NULL and hence dropping 

will not affect the continuity. 

Dropping NaN(Not-a-Number) 

df.isna().sum() 

df = df[df['Date'].notnull()] 

df = df[df['Date'].notnull()] 

Converting to datetime object 

df['DateTime'] = (df.Date) + ' ' + (df.Time) 

print (type(df.DateTime[0])) 

import datetime 

df.DateTime = df.DateTime.apply(lambda x: datetime.datetime.strptime(x,'%d/%m/%Y 

%H.%M.%S')) 
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print (type(df.DateTime[0])) 

Showing plots 

df.index = df.DateTime 

import matplotlib.pyplot as plt  

plt.plot(df['T']) 

plt.plot(df['C6H6(GT)']) 

Box-plots are another useful kind of graphs that allow you to condense a lot of information 

about a dataset into a single graph. It shows the mean, 25% and 75% quartile and outliers of 

one or multiple variables. In the case when number of outliers is few and is very distant from 

the mean, we can eliminate the outliers by setting them to mean value or 75% quartile value. 

Showing Boxplots 

plt.boxplot(df[['T','C6H6(GT)']].values) 

Time Series – Modeling 

A time series has 4 components as given below:  

• Level: It is the mean value around which the series varies.  

• Trend: It is the increasing or decreasing behavior of a variable with time.  

• Seasonality: It is the cyclic behavior of time series.  

• Noise: It is the error in the observations added due to environmental factors. 

Time Series Modeling Techniques 

To capture these components, there are a number of popular time series modelling techniques. 

This section gives a brief introduction of each technique, however we will discuss about them 

in detail in the upcoming chapters: 

Naïve Methods 

These are simple estimation techniques, such as the predicted value is given the value equal to 

mean of preceding values of the time dependent variable, or previous actual value. These are 

used for comparison with sophisticated modelling techniques. 

Auto Regression 

Auto regression predicts the values of future time periods as a function of values at previous 

time periods. Predictions of auto regression may fit the data better than that of naïve methods, 

but it may not be able to account for seasonality. 

ARIMA Model 

An Auto-Regressive Integrated Moving-Average(ARIMA) models the value of a variable as 

a linear function of previous values and residual errors at previous time steps of a stationary 

time series. However, the real world data may be non-stationary and have seasonality, thus 

Seasonal-ARIMA and Fractional-ARIMA were developed. ARIMA works on univariate time 

series, to handle multiple variables VARIMA was introduced. 
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Exponential Smoothing 

It models the value of a variable as an exponential weighted linear function of previous 

values. This statistical model can handle trend and seasonality as well. 

LSTM 

Long Short-Term Memory model (LSTM) is a recurrent neural network which is used for 

time series to account for long term dependencies. It can be trained with large amount of 

data to capture the trends in multi-variate time series. 

Time Series – Parameter Calibration 

Any statistical or machine learning model has some parameters which greatly influence how 

the data is modeled. For example, ARIMA has p, d, q values. These parameters are to be 

decided such that the error between actual values and modeled values is minimum. 

Parameter calibration is said to be the most crucial and time-consuming task of model fitting. 

Hence, it is very essential for us to choose optimal parameters. 

Methods for Calibration of Parameters 

There are various ways to calibrate parameters. This section talks about some of them in 

detail. 

Hit-and-try 

One common way of calibrating models is hand calibration, where you start by visualizing the 

time-series and intuitively try some parameter values and change them over and over until you 

achieve a good enough fit. It requires a good understanding of the model we are trying. For 

ARIMA model, hand calibration is done with the help of auto-correlation plot for ‘p’ 

parameter, partial auto-correlation plot for ‘q’ parameter and ADF-test to confirm the 

stationarity of time-series and setting ‘d’ parameter. We will discuss all these in detail in the 

coming chapters. 

Grid Search 

Another way of calibrating models is by grid search, which essentially means you try building 

a model for all possible combinations of parameters and select the one with minimum error. 

This is time-consuming and hence is useful when number of parameters to be calibrated and 

range of values they take are fewer as this involves multiple nested for loops. 

Genetic Algorithm 

Genetic algorithm works on the biological principle that a good solution will eventually 

evolve to the most ‘optimal’ solution. It uses biological operations of mutation, cross-over 

and selection to finally reach to an optimal solution. 

For further knowledge you can read about other parameter optimization techniques like 
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Bayesian optimization and Swarm optimization. 

Time Series – Naïve Methods 

 Naïve Methods such as assuming the predicted value at time ‘t’ to be the actual value of 

the variable at time ‘t-1’ or rolling mean of series, are used to weigh how well do the statistical 

models and machine learning models can perform and emphasize their need. In this chapter, 

let us try these models on one of the features of our time-series data. First we shall see the mean 

of the ‘temperature’ feature of our data and the deviation around it. It is also useful to see 

maximum and minimum temperature values. We can use the functionalities of numpy library 

here.  

Showing statistics 

import numpy print ('Mean: ',numpy.mean(df['T']), '; Standard Deviation: 

',numpy.std(df['T']),'; \nMaximum Temperature: ',max(df['T']),'; Minimum Temperature: 

',min(df['T'])) 

We have the statistics for all 9357 observations across equi-spaced timeline which are useful 

for us to understand the data. Now we will try the first naïve method, setting the predicted value 

at present time equal to actual value at previous time and calculate the root mean squared 

error(RMSE) for it to quantify the performance of this method. 

Showing 1st naïve method 
Before executing following commands first install scikit-learn in notebook: 

!pip install scikit-learn 

df['T'] df['T_t-1'] = df['T'].shift(1) 

df_naive = df[['T','T_t-1']][1:] 

from sklearn import metrics  

from math import sqrt  

df['T_rm'] = df['T'].rolling(3).mean().shift(1) 

df_naive = df[['T','T_rm']].dropna() 

true = df_naive['T'] 

prediction = df_naive['T_t-1'] 

error = sqrt(metrics.mean_squared_error(true,prediction)) 

print ('RMSE for Naive Method 1: ', error) 

 

Let us see the next naïve method, where predicted value at present time is equated to the mean 

of the time periods preceding it. We will calculate the RMSE for this method too.  
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Showing 2nd naïve method 

df['T_rm'] = df['T'].rolling(3).mean().shift(1) 

df_naive = df[['T','T_rm']].dropna() 

 

true = df_naive['T'] 

prediction = df_naive['T_rm'] 

error = sqrt(metrics.mean_squared_error(true,prediction)) 

print ('RMSE for Naive Method 2: ', error) 

Here, you can experiment with various number of previous time periods also called ‘lags’ 

you want to consider, which is kept as 3 here. In this data it can be seen that as you increase 

the number of lags and error increases. If lag is kept 1, it becomes same as the naïve method 

used earlier. 

Points to Note 

 You can write a very simple function for calculating root mean squared error. Here, we 

have used the mean squared error function from the package ‘sklearn’ and then taken its 

square root. 

 In pandas df[‘column_name’] can also be written as df.column_name, however for this 

dataset df.T will not work the same as df[‘T’] because df.T is the function for transposing a 

dataframe. So use only df[‘T’] or consider renaming this column before using the other 

syntax. 

Time Series – Auto Regression 

 

For a stationary time series, an auto regression models sees the value of a variable at time ‘t’ 

as a linear function of values ‘p’ time steps preceding it. Mathematically it can be written as:  

Where, ‘p’ is the auto-regressive trend parameter  

𝜖𝑡 is white noise, and 

 𝑦𝑡−1, 𝑦𝑡−2 …𝑦𝑡−𝑝 denote the value of variable at previous time periods.  

The value of p can be calibrated using various methods. One way of finding the apt 

value of ‘p’ is plotting the auto-correlation plot.  
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Note: We should separate the data into train and test at 8:2 ratio of total data available 

prior to doing any analysis on the data because test data is only to find out the accuracy of our 

model and assumption is, it is not available to us until after predictions have been made. In 

case of time series, sequence of data points is very essential so one should keep in mind not to 

lose the order during splitting of data. An auto-correlation plot or a correlogram shows the 

relation of a variable with itself at prior time steps. It makes use of Pearson’s correlation and 

shows the correlations within 95% confidence interval. Let’s see how it looks like for 

‘temperature’ variable of our data. 

Showing ACP 

split = len(df) - int(0.2*len(df)) 

train, test = df['T'][0:split], df['T'][split:] 

from statsmodels.graphics.tsaplots import plot_acf 

plot_acf(train, lags = 100) 

plt.show() 

All the lag values lying outside the shaded blue region are assumed to have a correlation. 

Time Series – Moving Average 

For a stationary time series, a moving average model sees the value of a variable at time ‘t’ as 

a linear function of residual errors from ‘q’ time steps preceding it. The residual error is 

calculated by comparing the value at the time ‘t’ to moving average of the values preceding. 

Mathematically it can be written as: 

 

Where ‘q’ is the moving-average trend parameter  

𝜖𝑡 is white noise, and 𝜖𝑡−1, 𝜖𝑡−2 … 𝜖𝑡−𝑞are the error terms at previous time periods. 

Value of ‘q’ can be calibrated using various methods. One way of finding the apt value of ‘q’ 

is plotting the partial auto-correlation plot. A partial auto-correlation plot shows the relation of 

a variable with itself at prior time steps with indirect correlations removed, unlike auto-

correlation plot which shows direct as well as indirect correlations, let’s see how it looks like 

for ‘temperature’ variable of our data. 

Showing PACP 

from statsmodels.graphics.tsaplots import plot_pacf 

plot_pacf(train, lags = 100) 

plt.show() 
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A partial auto-correlation is read in the same way as a correlogram. 

Time Series – ARIMA 
We have already understood that for a stationary time series a variable at time ‘t’ is a linear function 

of prior observations or residual errors. Hence it is time for us to combine the two and have an Auto-

regressive moving average (ARMA) model.  

However, at times the time series is not stationary, i.e the statistical properties of a series like mean, 

variance changes over time. And the statistical models we have studied so far assume the time series 

to be stationary, therefore, we can include a pre-processing step of differencing the time series to 

make it stationary. Now, it is important for us to find out whether the time series we are dealing with 

is stationary or not. 

 Various methods to find the stationarity of a time series are looking for seasonality or trend in the 

plot of time series, checking the difference in mean and variance for various time periods, Augmented 

Dickey-Fuller (ADF) test, KPSS test, Hurst’s exponent etc. Let us see whether the ‘temperature’ 

variable of our dataset is a stationary time series or not using ADF test. 

from statsmodels.tsa.stattools import adfuller 

result = adfuller(train) 

print('ADF Statistic: %f' % result[0]) 

print('p-value: %f' % result[1]) 

print('Critical Values:') 

for key, value In result[4].items() 

 print('\t%s: %.3f' % (key, value)) 

Now that we have run the ADF test, let us interpret the result. First we will compare the ADF 

Statistic with the critical values, a lower critical value tells us the series is most likely non-

stationary. Next, we see the p-value. A p-value greater than 0.05 also suggests that the time 

series is non-stationary. Alternatively, p-value less than or equal to 0.05, or ADF Statistic less 

than critical values suggest the time series is stationary. 

Hence, the time series we are dealing with is already stationary. In case of stationary time 

series, we set the ‘d’ parameter as 0. We can also confirm the stationarity of time series using 

Hurst exponent. 

import hurst 

H, c,data = hurst.compute_Hc(train) 

print("H = {:.4f}, c = {:.4f}".format(H,c)) 

The value of H0.5 shows persistent behavior or a trending series. H=0.5 shows random 

walk/Brownian motion. The value of H< 0.5, confirming that our series is stationary.  
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For non-stationary time series, we set ‘d’ parameter as 1. Also, the value of the autoregressive 

trend parameter ‘p’ and the moving average trend parameter ‘q’, is calculated on the stationary 

time series i.e by plotting ACP and PACP after differencing the time series. ARIMA Model, 

which is characterized by 3 parameter, (p,d,q) are now clear to us, so let us model our time 

series and predict the future values of temperature. 

from statsmodels.tsa.arima_model import ARIMA 

model = ARIMA(train.values, order=(5, 0, 2)) 

model_fit = model.fit(disp=False) 

predictions = model_fit.predict(len(test)) 

test_ = pandas.DataFrame(test) 

test_['predictions'] = predictions[0:1871] 

plt.plot(df['T']) 

plt.plot(test_.predictions) 

plt.show() 

error = sqrt(metrics.mean_squared_error(test.values,predictions[0:1871])) 

print ('Test RMSE for ARIMA: ', error) 

 

Time Series – Variations of ARIMA 

In the previous chapter, we have now seen how ARIMA model works, and its limitations that 

it cannot handle seasonal data or multivariate time series and hence, new models were 

introduced to include these features. 

A glimpse of these new models is given here: 

Vector Auto-Regression (VAR) 

It is a generalized version of auto regression model for multivariate stationary time series. 

It is characterized by ‘p’ parameter. 

Vector Moving Average (VMA) 

It is a generalized version of moving average model for multivariate stationary time series. 

It is characterized by ‘q’ parameter. 

Vector Auto Regression Moving Average (VARMA) 
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It is the combination of VAR and VMA and a generalized version of ARMA model for 

multivariate stationary time series. It is characterized by ‘p’ and ‘q’ parameters. Much like, 

ARMA is capable of acting like an AR model by setting ‘q’ parameter as 0 and as a MA 

model by setting ‘p’ parameter as 0, VARMA is also capable of acting like an VAR model by 

setting ‘q’ parameter as 0 and as a VMA model by setting ‘p’ parameter as 0. 

from statsmodels.tsa.statespace.varmax import VARMAX 

model = VARMAX(train_multi, order = (2,1)) 

model_fit = model.fit() 

plt.plot(train_multi['T']) 

plt.plot(test_multi['T']) 

plt.plot(predictions_multi.iloc[:,0:1], '--') 

plt.show() 

plt.plot(train_multi['C6H6(GT)']) 

plt.plot(test_multi['C6H6(GT)']) 

plt.plot(predictions_multi.iloc[:,1:2], '--') 

plt.show() 

 

The above code shows how VARMA model can be used to model multivariate time series, 

although this model may not be best suited on our data. 

VARMA with Exogenous Variables (VARMAX) 

It is an extension of VARMA model where extra variables called covariates are used to 

model the primary variable we are interested it. 

Seasonal Auto Regressive Integrated Moving Average (SARIMA) 

This is the extension of ARIMA model to deal with seasonal data. It divides the data into 

seasonal and non-seasonal components and models them in a similar fashion. It is 

characterized by 7 parameters, for non-seasonal part (p,d,q) parameters same as for ARIMA 

model and for seasonal part (P,D,Q,m) parameters where ‘m’ is the number of seasonal 

periods and P,D,Q are similar to parameters of ARIMA model. These parameters can be 

calibrated using grid search or genetic algorithm. 
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SARIMA with Exogenous Variables (SARIMAX) 

This is the extension of SARIMA model to include exogenous variables which help us to 

model the variable we are interested in. 

It may be useful to do a co-relation analysis on variables before putting them as exogenous 

variables. 

from scipy.stats.stats import pearsonr 

x=train_multi['T'].values 

y=train_multi['C6H6(GT)'].values 

corr , p = pearsonr(x,y) 

print ('Corelation Coefficient =', corr,'\nP-Value =',p) 

Pearson’s Correlation shows a linear relation between 2 variables, to interpret the results, we 

first look at the p-value, if it is less that 0.05 then the value of coefficient is significant, else the 

value of coefficient is not significant. For significant p-value, a positive value of correlation 

coefficient indicates positive correlation, and a negative value indicates a negative correlation. 

Hence, for our data, ‘temperature’ and ‘C6H6’ seem to have a highly positive correlation. 

Therefore, we will be modelling temperature and will give ‘C6H6’ as exogenous variable to 

SARIMAX model. 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

 

model = SARIMAX(x, exog = y, order = (2, 0, 2), seasonal_order = (2, 0, 1, 

4),enforce_stationarity=False,  

enforce_invertibility = False) 

model_fit = model.fit(disp = False) 

y_ = test_multi['C6H6(GT)'].values 

predicted = model_fit.predict(exog=y_) 

test_multi_ = pandas.DataFrame(test) 

test_multi_['predictions'] = predicted[0:1871] 

plt.plot(train_multi['T']) 

plt.plot(test_multi_['T']) 

plt.plot(test_multi_.predictions, '--') 
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The predictions here seem to take larger variations now as opposed to univariate ARIMA 

modelling. Needless to say, SARIMAX can be used as an ARX, MAX, ARMAX or ARIMAX 

model by setting only the corresponding parameters to non-zero values. 

Fractional Auto Regressive Integrated Moving Average (FARIMA) At times, it may happen 

that our series is not stationary, yet differencing with ‘d’ parameter taking the value 1 may 

over-difference it. So, we need to difference the time series using a fractional value. 

In the world of data science there is no one superior model, the model that works on your data 

depends greatly on your dataset. Knowledge of various models allows us to choose one that 

work on our data and experimenting with that model to achieve the best results. And results 

should be seen as plot as well as error metrics, at times a small error may also be bad, hence, 

plotting and visualizing the results is essential. 

Day-02:Time Series – Exponential Smoothing 
Simple Exponential Smoothing Exponential Smoothing is a technique for smoothing univariate time-

series by assigning exponentially decreasing weights to data over a time period. Mathematically, the 

value of variable at time ‘t+1’ given value at time t, y_(t+1|t) is defined as: 

 

where, 0≤ 𝛼 ≤1 is the smoothing parameter, and y1,...,yt are previous values of network traffic at 

times 1, 2, 3, … ,t. This is a simple method to model a time series with no clear trend or seasonality. 

But exponential smoothing can also be used for time series with trend and seasonality. Triple 

Exponential Smoothing Triple Exponential Smoothing (TES) or Holt's Winter method, applies 

exponential smoothing three times - level smoothing 𝑙𝑡 , trend smoothing 𝑏𝑡 , and seasonal 

smoothing 𝑠𝑡 , with 𝛼, 𝛽 ∗ and 𝛾 as smoothing parameters with ‘m’ as the frequency of the 

seasonality, i.e. the number of seasons in a year. According to the nature of the seasonal component, 

TES has two categories: • Holt-Winter's Additive Method: When the seasonality is additive in nature. • 

Holt-Winter’s Multiplicative Method: When the seasonality is multiplicative in nature. For non-
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seasonal time series, we only have trend smoothing and level smoothing, which is called Holt’s Linear 

Trend Method. Let’s try applying triple exponential smoothing on our data. 

from statsmodels.tsa.holtwinters import ExponentialSmoothing 

model = ExponentialSmoothing(train.values ) 

model_fit = model.fit() 

predictions_ = model_fit.predict(len(test)) 

plt.plot(test.values) 

plt.plot(predictions_[1:1871]) 

 

Here, we have trained the model once with training set and then we keep on making predictions. 

A more realistic approach is to re-train the model after one or more time step(s). As we get the 

prediction for time ‘t+1’ from training data ‘til time ‘t’, the next prediction for time ‘t+2’ can 

be made using the training data ‘til time ‘t+1’ as the actual value at ‘t+1’ will be known then. 

This methodology of making predictions for one or more future steps and then re-training the 

model is called rolling forecast or walk forward validation. 

Time Series – Walk Forward Validation 

In time series modelling, the predictions over time become less and less accurate and hence it 

is a more realistic approach to re-train the model with actual data as it gets available for further 

predictions. Since training of statistical models are not time consuming, walk-forward 
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validation is the most preferred solution to get most accurate results. Let us apply one step walk 

forward validation on our data and compare it with the results we got earlier. 

import numpy 

prediction = [] 

data = train.values 

for t in test.values: 

    model = (ExponentialSmoothing(data).fit()) 

    y = model.predict() 

    prediction.append(y[0]) 

    data = numpy.append(data, t) 

test_ = pandas.DataFrame(test) 

test_['predictionswf'] = prediction 

plt.plot(test_['T']) 

plt.plot(test_.predictionswf, '--') 

plt.show() 
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error = sqrt(metrics.mean_squared_error(test.values,prediction)) 

print ('Test RMSE for Triple Exponential Smoothing with Walk-Forward Validation: ', error) 

We can see that our model performs significantly better now. In fact, the trend is followed so 

closely that on the plot predictions are overlapping with the actual values. You can try applying 

walk-forward validation on ARIMA models too. 

Day-03:Time Series – LSTM Model 

Now, we are familiar with statistical modelling on time series, but machine learning is all 

the rage right now, so it is essential to be familiar with some machine learning models as 

well. We shall start with the most popular model in time series domain – Long Short-term 

Memory model. 

LSTM is a class of recurrent neural network. So before we can jump to LSTM, it is essential 

to understand neural networks and recurrent neural networks. 

Neural Networks 

An artificial neural network is a layered structure of connected neurons, inspired by 

biological neural networks. It is not one algorithm but combinations of various algorithms 
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which allows us to do complex operations on data. 

Recurrent Neural Networks 

It is a class of neural networks tailored to deal with temporal data. The neurons of RNN 

have a cell state/memory, and input is processed according to this internal state, which is 

achieved with the help of loops with in the neural network. There are recurring module(s) 

of ‘tanh’ layers in RNNs that allow them to retain information. However, not for a long 

time, which is why we need LSTM models. 

LSTM 

It is special kind of recurrent neural network that is capable of learning long term 

dependencies in data. This is achieved because the recurring module of the model has a 

combination of four layers interacting with each other. 

An LSTM module has a cell state and three gates which provides them with the power to 

selectively learn, unlearn or retain information from each of the units. The cell state in LSTM 

helps the information to flow through the units without being altered by allowing only a few 

linear interactions. Each unit has an input, output and a forget gate which can add or remove 

the information to the cell state. The forget gate decides which information from the previous 

cell state should be forgotten for which it uses a sigmoid function. The input gate controls the 

information flow to the current cell state using a point-wise multiplication operation of 

‘sigmoid’ and ‘tanh’ respectively. Finally, the output gate decides which information should 

be passed on to the next hidden state. Now that we have understood the internal working of 

LSTM model, let us implement it. To understand the implementation of LSTM, we will start 

with a simple example – a straight line. Let us see, if LSTM can learn the relationship of a 

straight line and predict it. First let us create the dataset depicting a straight line. 

x = numpy.arange (1,500,1) 

y = 0.4 * x + 30 

plt.plot(x,y) 

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):] 

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):] 

train = numpy.array(list(zip(trainx,trainy))) 

test = numpy.array(list(zip(trainx,trainy))) 
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def create_dataset(n_X, look_back): 

    dataX, dataY = [], [] 

    for i in range(len(n_X)-look_back): 

        a = n_X[i:(i+look_back), ] 

        dataX.append(a) 

        dataY.append(n_X[i + look_back, ]) 

    return numpy.array(dataX), numpy.array(dataY) 

look_back = 1 

trainx,trainy = create_dataset(train, look_back) 

testx,testy = create_dataset(test, look_back) 

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2)) 

testx = numpy.reshape(testx, (testx.shape[0], 1, 2)) 

 

Now we will train our model 

Small batches of training data are shown to network, one run of when entire training data is 

shown to the model in batches and error is calculated is called an epoch. The epochs are to be 

run ‘til the time the error is reducing. 

Note: First Install Keras and Tensorflow libaries 

!pip install keras 

!anaconda create -n tensorflow python=3.11 

!activate tensorflow 

!pip install --ignore-installed --upgrade tensorflow 

from keras.models import Sequential 

from keras.layers import LSTM, Dense 

model = Sequential() 

model.add(LSTM(256, return_sequences=True, input_shape=(trainx.shape[1], 2))) 
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model.add(LSTM(128,input_shape=(trainx.shape[1], 2))) 

model.add(Dense(2)) 

model.compile(loss='mean_squared_error', optimizer = 'adam') 

model.fit(trainx, trainy, epochs=2000, batch_size=10, verbose=2, shuffle=False) 

model.save_weights('LSTMBasic1.h5') 

Now, we should try and model a sine or cosine wave in a similar fashion. You can run the 

code given below and play with the model parameters to see how the results change. 

 

model.load_weights('LSTMBasic1.h5') 

predict = model.predict(testx) 

Now let’s see what our predictions look like. 

x = numpy.arange (1,500,1) 

y = numpy.sin(x) 

plt.plot(x,y) 

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):] 

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):] 

train = numpy.array(list(zip(trainx,trainy))) 

test = numpy.array(list(zip(trainx,trainy))) 

look_back = 1 

trainx,trainy = create_dataset(train, look_back) 

testx,testy = create_dataset(test, look_back) 

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2)) 

testx = numpy.reshape(testx, (testx.shape[0], 1, 2)) 

model = Sequential() 

model.add(LSTM(512, return_sequences = True, input_shape = (trainx.shape[1], 

2))) 
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model.add(LSTM(256,input_shape = (trainx.shape[1], 2))) 

model.add(Dense(2)) 

model.compile(loss = 'mean_squared_error', optimizer = 'adam') 

model.fit(trainx, trainy, epochs = 2000, batch_size = 10, verbose = 2, shuffle 

= False) 

model.save_weights('LSTMBasic2.h5') 

model.load_weights('LSTMBasic2.h5') 

predict = model.predict(testx) 

plt.plot(trainx.reshape(398,2)[:,0:1], trainx.reshape(398,2)[:,1:2]) 

plt.plot(predict[:,0:1], predict[:,1:2]) 

 

Day-04: Time Series – Error Metrics 
 

 

It is important for us to quantify the performance of a model to use it as a feedback and 

comparison. In this tutorial we have used one of the most popular error metric root mean 

squared error. There are various other error metrics available. This chapter discusses them 

in brief. 

Mean Square Error 

It is the average of square of difference between the predicted values and true values. 

Sklearn provides it as a function. It has the same units as the true and predicted values 

squared and is always positive. 
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Where 𝑦’𝑡 is the predicted value, 

𝑦𝑡  is the actual value, and 

n  is the total number of values in test set. 

It is clear from the equation that MSE is more penalizing for larger errors, or the outliers. 

Root Mean Square Error 

It is the square root of the mean square error. It is also always positive and is in the range 

of the data. 

 

Root Mean Square Error 

It is the square root of the mean square error. It is also always positive and is in the range of 

the data. 

 

Where, 𝑦’𝑡  is predicted value 

𝑦𝑡  is actual value, and 

n  is total number of values in test set. 

It is in the power of unity and hence is more interpretable as compared to MSE. RMSE is 

also more penalizing for larger errors. We have used RMSE metric in our tutorial. 

Mean Absolute Error 

It is the average of absolute difference between predicted values and true values. It has the 

same units as predicted and true value and is always positive. 
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Where, 𝑦’𝑡 is predicted value, 

𝑦𝑡 is actual value and n is total number of values in test set. 

However, the disadvantage of using this error is that the positive error and negative errors  

can offset each other. Hence mean absolute percentage error is used. 

Mean Absolute Percentage Error 

It is the percentage of average of absolute difference between predicted values and 

true values, divided by the true value. 

 

Where   𝑦’𝑡  is predicted value  
𝑦𝑡  is actual value, and  
n  is total number of values in test set. 

 
 

Day-05: Time Series – Applications 
 

We discussed time series analysis in this tutorial, which has given us the understanding that time series 

models first recognize the trend and seasonality from the existing observations and then forecast a 

value based on this trend and seasonality. Such analysis is useful in various fields such as: 

• Financial Analysis: It includes sales forecasting, inventory analysis, stock market analysis, price 

estimation. 

• Weather Analysis: It includes temperature estimation, climate change, seasonal shift 

recognition, weather forecasting. 

• Network Data Analysis: It includes network usage prediction, anomaly or intrusion detection, 

predictive maintenance. 

• Healthcare Analysis: It includes census prediction, insurance benefits prediction, patient 

monitoring. 

 

Time Series – Further Scope 
Machine learning deals with various kinds of problems. In fact, almost all fields have a scope to be 
automatized or improved with the help of machine learning. A few such problems on which a great deal of 
work is being done are given below. 

Time Series Data 
This is the data which changes according to time, and hence time plays a crucial role in it, 
which we largely discussed in this tutorial. 



 

Page 589 of 580  
 

Non-Time Series Data 
It is the data independent of time, and a major percentage of ML problems are on non time series 

data. For simplicity, we shall categorize it further as: 

• Numerical Data: Computers, unlike humans, only understand numbers, so all kinds of data 

ultimately is converted to numerical data for machine learning, for example, image data is 

converted to (r,b,g) values, characters are converted to ASCII codes or words are indexed to 

numbers, speech data is converted to mfcc files containing numerical data. 

• Image Data: Computer vision has revolutionized the world of computers, it has 

• various applications in the field of medicine, satellite imaging etc. 

• Text Data: Natural Language Processing (NLP) is used for text classification, paraphrase 

detection and language summarization. This is what makes Google and Facebook smart. 

• Speech Data: Speech Processing involves speech recognition and sentimental understanding. 

It plays a crucial role in imparting to computers human-like qualities. 

 

Now, Stdents are required to explore the projects related to time series analysis and forecasting and 

presents their proposal for further discussion and refinement.  
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Week 10 & 11: Data Analysis Projects 

In these two weeks there will be discussion and working on Advanced Data Analysis 

Techniques and working on project in group of (2-3) students. Topics listed below will be 

discussed based on the profile of the students, learning and coverage. The following topics will 

be discussed, and notes will be shared with students in soft format. The projects will be 

developed using google labs for collaborative working of groups.   

Advanced Analytics is the autonomous or semi-autonomous examination of data or content using 
sophisticated techniques and tools, typically beyond those of traditional business intelligence (BI), to 
discover deeper insights, make predictions, or generate recommendations.  

Advanced analytic techniques include data/text mining, machine learning, pattern matching, 
forecasting, visualization, semantic analysis, sentiment analysis, network and cluster analysis, 
multivariate statistics, graph analysis, simulation, complex event processing, and neural networks. 
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List of resources & Acknoledgements:  

1. Starting Out with Python[4th Globa lED] by Tony Gaddis 

2. Python for Data Analysis by Wes McKinney 

3. Python Data Science Handbook, Essential Tools for Working with Data by Beijing Boston 

4. Data Science by Lillian Pierson 3rd Edition 

5. Python Data Visualization Cookbook by Igor Milovanović 
6. Natural Language Processing with Python by Steven Bird, Ewan Klein, and Edward Loper 

7. https://realpython.com/python-data-visualization-bokeh/ 

8. https://github.com/osanchez2323/Portfolio/blob/master/NBA%20Draft%20Analysis/ 

9. https://docs.bokeh.org/en/latest/  

10. https://pandas.pydata.org/ 

11. https://matplotlib.org/ 

12. https://dash.plotly.com/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


