

Page 1 of 580

IT Industry Readiness Bootcamp Program

A Project of Information Science & Technology

Department, Government of Sindh

Data Science with Python

Course Manual

Prepared By:

Dr. Muhammad Hussain Mughal

Page 2 of 580

Contents
Week 1: Introduction to Data Analysis and Reporting .. 14

Day 01 – INTRODUCTION .. 14

Basics of data analysis and reporting .. 14

What Is Data Science? ... 14

Why Python? ... 15

What is Artificial Intelligence? ... 15

What is Data Science & Machine Learning? .. 15

Different phases of a typical Analytics/Data Science projects and role of Python 16

Regression vs. Classification .. 16

Regression ... 16

Classification .. 17

Day 02 -PYTHON ESSENTIALS .. 17

Introduction to the installation of Anaconda .. 17

Introduction to Python Editors & IDE's (Anaconda, pycharm, Jupyter etc…) 17

Understand Jupyter notebook & Customize Settings .. 18

Overview of Python- Starting with Python .. 18

Installing Python .. 18

Accessing Source Code with ?? ... 20

Text Entry Shortcuts .. 23

Command History Shortcuts .. 24

IPython Magic Commands ... 25

Help on Magic Functions: ?, %magic, and %lsmagic.. 28

Profiling and Timing Code ... 28

Day 03 – Designing a Program ... 31

Input, Processing, and Output ... 31

Python Objects and data types ... 31

Strings and String Literals .. 32

Comments ... 32

Variables .. 32

Numeric Data Types and Literals ... 33

Escape Character ... 33

Day 04-Core built-in data structures – Lists, Tuples, Dictionaries, Sets ... 34

Introduction to Lists .. 34

Tuples .. 35

Page 3 of 580

Dictionaries.. 35

Creating a Dictionary ... 35

Retrieving a Value from a Dictionary ... 35

Using the in and not in Operators to Test for a Value in a Dictionary ... 36

Sets .. 37

Lab activity -Sets .. 38

Day-05: Decision Structures and Boolean Logic .. 38

The if Statement .. 38

Boolean Expressions and Relational Operators .. 39

The if-else Statement .. 39

if-elif-else Statement ... 40

Repetition Structures .. 40

Condition-Controlled and Count-Controlled Loops ... 40

The while Loop: A Condition-Controlled Loop ... 40

The for Loop: A Count-Controlled Loop ... 41

Calculating a Running Total ... 41

Sentinels .. 42

Nested Loops ... 42

Lab Activity: Nested Loops .. 43

Week 2 -Data Manipulation and Cleaning ... 44

Day 01- Functions, Packages ... 44

Benefits of Modularizing a Program with Functions .. 44

Void Functions and Value-Returning Functions ... 44

Defining and Calling a Void Function ... 44

Function Names .. 44

Defining and Calling a Function ... 45

Calling a Function .. 45

Scope and Local Variables ... 46

Global Variables and Global Constants .. 46

Introduction to Value-Returning Functions: Generating Random Numbers 46

Day-02: String, built-in String methods, String Manipulation, and regular expressions 48

Basic String Operations ... 48

Lab Activtity- Python essentials ... 49

Day 03- EXPORTING DATA USING PYTHON MODULES (numpy) .. 53

NumPy Array Attributes ... 54

Array Indexing: Accessing Single Elements .. 55

Page 4 of 580

Array Slicing: Accessing Subarrays .. 56

Multidimensional subarrays ... 57

Computation on NumPy Arrays: Universal Functions ... 62

Array arithmetic .. 62

Absolute value .. 63

Trigonometric functions .. 63

Specialized ufuncs .. 65

Advanced Ufunc Features ... 66

Aggregates ... 67

Aggregations: Min, Max, and Everything in Between .. 67

Summing the Values in an Array .. 67

Minimum and Maximum ... 68

Multidimensional aggregates ... 68

Computation on Arrays: Broadcasting .. 71

Modifying Values with Fancy Indexing .. 74

Sorting Arrays .. 77

Fast Sorting in NumPy: np.sort and np.argsort .. 77

Sorting along rows or columns .. 78

Partial Sorts: Partitioning ... 79

Day 04- Data Manipulation with Pandas ... 83

Pandas Introduction .. 83

Installing and Using Pandas ... 84

Introducing Pandas Objects ... 85

The Pandas Series Object .. 85

Series as specialized dictionary ... 87

The Pandas DataFrame Object .. 88

DataFrame as a generalized NumPy array ... 88

DataFrame as specialized dictionary ... 90

Constructing DataFrame objects ... 90

From a NumPy structured array. ... 91

The Pandas Index Object ... 92

Index as ordered set .. 93

Data Indexing and Selection .. 93

Data Selection in Series ... 93

Series as one-dimensional array .. 94

Data Selection in DataFrame ... 96

Page 5 of 580

DataFrame as a dictionary ... 96

DataFrame as two-dimensional array .. 98

Additional indexing conventions ... 100

Operating on Data in Pandas ... 101

Index alignment in DataFrame .. 103

Handling Missing Data ... 106

Trade-Offs in Missing Data Conventions ... 106

Missing Data in Pandas .. 106

Operating on Null Values ... 109

Hierarchical Indexing ... 113

A Multiply Indexed Series .. 113

Methods of MultiIndex Creation ... 117

Indexing and Slicing a MultiIndex ... 120

Rearranging Multi-Indices ... 123

Data Aggregations on Multi-Indices .. 126

Combining Datasets: Merge and Join ... 127

Categories of Joins .. 127

Specification of the Merge Key .. 130

Specifying Set Arithmetic for Joins... 134

Day 05- Descriptive Statistics .. 136

Cleansing Data with Pandas .. 136

Aggregation and Grouping ... 141

Planets Data.. 141

Simple Aggregation in Pandas ... 141

GroupBy: Split, Apply, Combine .. 143

Aggregate, filter, transform, apply. ... 147

Aggregation. .. 147

Filtering. .. 148

Transformation. ... 149

Week 3- Data Cleaning and Summerization .. 152

Day 01- Pandas String Operations .. 152

Tables of Pandas String Methods .. 153

Methods using regular expressions ... 155

Dates and Times in Python .. 158

Typed arrays of times: NumPy’s datetime64 ... 159

Dates and times in Pandas: Best of both worlds .. 162

Page 6 of 580

Pandas Time Series: Indexing by Time ... 162

Pandas Time Series Data Structures .. 163

Frequencies and Offsets .. 166

Resampling, Shifting, and Windowing ... 168

Resampling and converting frequencies .. 169

Rolling windows .. 173

Where to Learn More .. 174

Example: Visualizing Seattle Bicycle Counts .. 174

Day-02: Digging into the data .. 179

High-Performance Pandas: eval() and query() .. 181

Motivating query() and eval(): Compound Expressions ... 181

pandas.eval() for Efficient Operations .. 183

DataFrame.eval() for Column-Wise Operations ... 185

DataFrame.query() Method .. 187

Performance: When to Use These Functions ... 188

Lab Activity -DataFrame Data Structure .. 189

Lab Activity -Merging DataFrames .. 193

Lab activity - DataFrame` Indexing and Loading .. 195

Day-03: Pivot Tables .. 197

Motivating Pivot Tables ... 197

Pivot Tables by Hand ... 198

Pivot Table Syntax .. 198

Multilevel pivot tables .. 199

Example: Birthrate Data ... 201

Lab Activity .. 206

Day-04: What Is Machine Learning? .. 209

Categories of Machine Learning .. 210

Qualitative Examples of Machine Learning Applications ... 210

Summary .. 219

Day-05: Introducing Scikit-Learn ... 220

Data Representation in Scikit-Learn .. 220

Data as table .. 220

Features matrix ... 221

Target array ... 221

Scikit-Learn’s Estimator API .. 223

Basics of the API .. 224

Page 7 of 580

Supervised learning example: Simple linear regression .. 224

Predict labels for unknown data. ... 227

Supervised learning example: Iris classification ... 228

Unsupervised learning example: Iris dimensionality ... 229

Unsupervised learning: Iris clustering ... 230

Application: Exploring Handwritten Digits .. 231

Week 4- Data visualization using Matplotlib ... 236

Day-01: Data visualization using Matplotlib .. 236

Introduction and brief histroy ... 236

Importing matplotlib ... 236

Setting Styles ... 236

show() or No show()? How to Display Your Plots .. 236

Plotting from a script ... 237

Plotting from an IPython shell ... 237

Plotting from an IPython notebook ... 238

Saving Figures to File ... 238

Two Interfaces for the Price of One ... 240

MATLAB-style interface .. 240

Object-oriented interface ... 241

Simple Line Plots .. 241

Adjusting the Plot: Line Colors and Styles ... 243

Adjusting the Plot: Axes Limits .. 245

Labeling Plots .. 248

Simple Scatter Plots .. 250

Scatter Plots with plt.plot .. 251

Scatter Plots with plt.scatter ... 253

plot Versus scatter: A Note on Efficiency .. 255

Visualizing Errors ... 256

Basic Errorbars .. 256

Continuous Errors .. 257

Density and Contour Plots .. 259

Day-02: Visualizing a Three-Dimensional Function.. 259

Histograms, Binnings, and Density.. 264

Day-03: Two-Dimensional Histograms and Binnings ... 266

plt.hist2d: Two-dimensional histogram ... 266

plt.hexbin: Hexagonal binnings .. 267

Page 8 of 580

Kernel density estimation .. 267

Customizing Plot Legends ... 269

Choosing Elements for the Legend .. 271

Legend for Size of Points ... 272

Multiple Legends .. 274

Customizing Colorbars ... 275

Customizing Colorbars ... 276

Choosing the colormap ... 277

Color limits and extensions ... 280

Discrete colorbars ... 281

Handwritten Digits .. 282

Multiple Subplots .. 283

plt.axes: Subplots by Hand .. 284

plt.subplot: Simple Grids of Subplots .. 285

plt.subplots: The Whole Grid in One Go ... 287

plt.GridSpec: More Complicated Arrangements... 288

Day-04: Text and Annotation .. 290

Example: Effect of Holidays on US Births .. 291

Transforms and Text Position ... 293

Arrows and Annotation ... 295

Customizing Ticks .. 298

Major and Minor Ticks ... 299

Hiding Ticks or Labels .. 300

Reducing or Increasing the Number of Ticks ... 301

Fancy Tick Formats .. 303

Summary of Formatters and Locators ... 305

Customizing Matplotlib: Configurations and Stylesheets ... 306

Plot Customization by Hand .. 306

Changing the Defaults: rcParams .. 308

Stylesheets .. 310

FiveThirtyEight style .. 311

ggplot .. 312

Dark background ... 313

Grayscale .. 313

Seaborn style ... 314

Day-05: Three-Dimensional Plotting in Matplotlib .. 315

Page 9 of 580

Three-Dimensional Points and Lines ... 315

Three-Dimensional Contour Plots .. 316

Wireframes and Surface Plots ... 318

Surface Triangulations ... 320

Week 5: Data visualization with Seaborn .. 324

Day-01: Visualization with Seaborn ... 324

Seaborn Versus Matplotlib .. 324

Exploring Seaborn Plots ... 326

Histograms, KDE, and densities .. 326

Pair plots .. 330

Faceted histograms ... 331

Factor plots ... 332

Joint distributions .. 333

Bar plots ... 334

Example: Exploring Marathon Finishing Times .. 335

Day 02- Data Visualization on World Map- Geographic Data with Basemap 344

Map Projections .. 346

Cylindrical projections ... 347

Pseudo-cylindrical projections ... 348

Perspective projections .. 349

Conic projections .. 350

Drawing a Map Background .. 351

Plotting Data on Maps ... 353

Example: California Cities .. 354

Example: Surface Temperature Data ... 356

Day-03: Visualization using google maps and ArcGis(Iris Data) .. 358

Day-04: Discussion on projects and exploring other datasets .. 358

Day-05: Mid Assessments .. 358

Week 6 : Advance Data Analytics .. 359

Day-01: Hyperparameters and Model Validation .. 359

Thinking About Model Validation .. 359

Model validation the right way: Holdout sets .. 360

Model validation via cross-validation ... 360

Selecting the Best Model ... 363

The bias–variance trade-off .. 363

Validation curves in Scikit-Learn ... 366

Page 10 of 580

Learning Curves ... 370

Learning curves in Scikit-Learn ... 372

Validation in Practice: Grid Search ... 373

Day-02: Feature Engineering ... 375

Categorical Features .. 375

Text Features ... 377

Image Features .. 378

Derived Features ... 378

Imputation of Missing Data ... 380

Feature Pipelines ... 381

Day-03: Linear Regression ... 382

Simple Linear Regression .. 382

Basis Function Regression ... 385

Regularization ... 389

Example: Predicting Bicycle Traffic ... 392

Day-04: Support Vector Machines .. 398

Motivating Support Vector Machines ... 398

Support Vector Machines: Maximizing the Margin .. 399

Fitting a support vector machine .. 400

Beyond linear boundaries: Kernel SVM .. 404

Day-05: Decision Trees and Random Forests .. 412

Motivating Random Forests: Decision Trees ... 413

Ensembles of Estimators: Random Forests .. 417

Random Forest Regression ... 419

Example: Random Forest for Classifying Digits .. 421

Summary of Random Forests ... 434

In Depth: Principal Component Analysis ... 435

Introducing Principal Component Analysis .. 435

PCA as Noise Filtering .. 442

Example: Eigenfaces ... 444

Week 7: Creating Reports and Dashboards ... 447

Day-01 : Introduction to Dashboards .. 447

Data Analytics Dashboard Benefits .. 447

What are some Data Analytics Dashboard Examples? .. 448

What are the Best Analytics Dashboard Tools? ... 449

Building interactive dashboards with libraries like Dash or Streamlit ... 450

Page 11 of 580

1. How to import the required libraries and read input data .. 450

2. How to do a basic dashboard setup .. 451

3. How to design a user interface .. 451

Page title ... 451

Top-level filter ... 451

KPIs/summary cards .. 452

Interactive charts... 452

Data table .. 453

4. How to refresh the dashboard for real-time or live data feed .. 453

5. How to auto-update components ... 453

Day-02: Develop Data Visualization Interfaces in Python With Dash .. 456

What Is Dash? .. 456

Get Started With Dash in Python ... 457

How to Set Up Your Local Environment .. 457

How to Build a Dash Application ... 458

Initializing Your Dash Application .. 458

Defining the Layout of Your Dash Application ... 459

Style Your Dash Application ... 462

How to Apply a Custom Style to Your Components .. 462

How to Improve the Looks of Your Dashboard ... 464

Add Interactivity to Your Dash Apps Using Callbacks .. 471

How to Create Interactive Components .. 472

How to Define Callbacks .. 476

Deploy Your Dash Application to PythonAnywhere .. 479

Day-03: Host, run, and code Python in the cloud! .. 479

How to Create a Free PythonAnywhere Account .. 479

How to Deploy Your Avocado Analytics App ... 480

Day-04: Interactive Data Visualization in Python With Bokeh .. 487

Building a visualization with Bokeh involves the following steps: ... 487

Prepare the Data ... 487

Determine Where the Visualization Will Be Rendered .. 487

Set up the Figure(s) ... 487

Connect to and Draw Your Data .. 488

Organize the Layout .. 488

Preview and Save Your Beautiful Data Creation .. 488

Generating Your First Figure.. 489

Page 12 of 580

Getting Your Figure Ready for Data ... 492

Drawing Data With Glyphs .. 495

Day-05:Organizing Multiple Visualizations With Layouts .. 504

Adding Interaction ... 511

Configuring the Toolbar ... 511

Selecting Data Points ... 512

Adding Hover Actions .. 514

Linking Axes and Selections ... 516

Highlighting Data Using the Legend .. 522

Week 8: Text analysis and sentiment analysis ... 525

Day- 01 & 02: NLTK libaray for text analysis .. 525

Analyze your text ... 525

Tokenizing ... 525

Filtering Stop Words .. 526

Stemming .. 527

Lemmatizing .. 534

Chunking .. 536

Chinking ... 538

Getting Text to Analyze ... 542

Day-03 & 04: Sentiment Analysis: First Steps With Python's NLTK Library 551

Steps for Sentiment Analysis ... 552

Compiling Data .. 553

Creating Frequency Distributions .. 555

Installing and Importing scikit-learn .. 565

Day-05: Labs and Practice activities for sentiments analysis on various datasets 567

Week 9: Time series analysis and forecasting ... 568

Day-01: Time Series – Introduction ... 568

Time Series – Data Processing and Visualization ... 569

Converting to datetime object .. 569

Showing plots .. 570

Time Series – Modeling ... 570

Time Series Modeling Techniques ... 570

Naïve Methods .. 570

Auto Regression .. 570

ARIMA Model .. 570

Exponential Smoothing ... 571

Page 13 of 580

LSTM .. 571

Time Series – Parameter Calibration ... 571

Methods for Calibration of Parameters ... 571

Hit-and-try ... 571

Grid Search .. 571

Genetic Algorithm ... 571

Time Series – Naïve Methods .. 572

Showing statistics .. 572

Showing 1st naïve method .. 572

Showing 2nd naïve method ... 573

Time Series – Auto Regression .. 573

Time Series – Moving Average .. 574

Time Series – ARIMA ... 575

Time Series – Variations of ARIMA .. 576

Day-02:Time Series – Exponential Smoothing ... 579

Time Series – Walk Forward Validation ... 580

Day-03:Time Series – LSTM Model .. 582

Neural Networks.. 582

Recurrent Neural Networks ... 583

LSTM .. 583

Day-04: Time Series – Error Metrics .. 586

Mean Square Error .. 586

Root Mean Square Error .. 587

Root Mean Square Error .. 587

Mean Absolute Error ... 587

Mean Absolute Percentage Error .. 588

Day-05: Time Series – Applications ... 588

Time Series – Further Scope .. 588

Time Series Data .. 588

Non-Time Series Data .. 589

Week 10 & 11: Data Analysis Projects ... 590

List of resources & Acknoledgements: .. 591

Page 14 of 580

Week 1: Introduction to Data Analysis and Reporting

Day 01 – INTRODUCTION

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of
discovering useful information, informing conclusions, and supporting decision-making. Data analysis
has multiple facets and approaches, encompassing diverse techniques under a variety of names, and
is used in different business, science, and social science domains. In today's business world, data
analysis plays a role in making decisions more scientific and helping businesses operate more
effectively.

Basics of data analysis and reporting

A data analysis report is a type of business report in which you present quantitative and qualitative

data to evaluate your strategies and performance. Based on this data, you give recommendations

for further steps and business decisions while using the data as evidence that backs up your

evaluation.

Today, data analysis is one of the most important elements of business intelligence strategies as

companies have realized the potential of having data-driven insights at hand to help them make

data-driven decisions.

What Is Data Science?

The “data science” is fundamentally an interdisciplinary subject. Data science comprises three distinct
and overlapping areas: the skills of a statistician who knows how to model and summarize datasets
(which are growing ever larger); the skills of a computer scientist who can
design and use algorithms to efficiently store, process, and visualize this data; and the domain
expertise—what we might think of as “classical” training in a subject—necessary both to formulate
the right questions and to put their answers in context.
Defining data science
If science is a systematic method by which people study and explain domainspecific phenomena that
occur in the natural world, you can think of data science as the scientific domain that’s dedicated to
knowledge discovery via data analysis. With respect to data science, the term domain-specific refers
to the industry sector or subject matter domain that data science methods are being used to explore.

Page 15 of 580

Data scientists use mathematical techniques and algorithmic approaches to derive solutions to
complex business and scientific problems. Data science practitioners use its predictive methods to
derive insights that are otherwise unattainable. In business and in science, data science methods can
provide more robust decisionmaking capabilities:
Using data science skills, you can do cool things like the following:
»»Use machine learning to optimize energy usage and lower corporate carbon footprints.
»»Optimize tactical strategies to achieve goals in business and science.
»»Predict for unknown contaminant levels from sparse environmental datasets.
»»Design automated theft- and fraud-prevention systems to detect anomalies and trigger alarms
based on algorithmic results.
»»Craft site-recommendation engines for use in land acquisitions and real estate development.
»»Implement and interpret predictive analytics and forecasting techniques for net increases in
business value.

Why Python?

Python has emerged over the last couple of decades as a first-class tool for scientific computing tasks,
including analyzing and visualizing large datasets. This may have surprised early proponents of the
Python language: the language itself was not explicitly designed with data analysis or scientific
computing in mind.
The usefulness of Python for data science stems primarily from the large and active ecosystem of third-
party packages: NumPy for manipulation of homogeneous array-based data, Pandas for manipulation
of heterogeneous and labeled data, SciPy for common scientific computing tasks, Matplotlib for
publication-quality visualizations, IPython for interactive execution and sharing of code, Scikit-Learn
for machine learning, and many more.

What is Artificial Intelligence?
Artificial intelligence is the simulation of human intelligence processes by machines, especially

computer systems. Specific applications of AI include expert systems, natural language processing,

speech recognition and machine vision.

What is Data Science & Machine Learning?
Data science is a field that studies data and how to extract meaning from it, whereas machine

learning is a field devoted to understanding and building methods that utilize data to improve

Page 16 of 580

performance or inform predictions. Machine learning is a branch of artificial intelligence

Different phases of a typical Analytics/Data Science projects and role of Python

Data Analytics Life Cycle Phases

• Phase 1: Data Discovery and Formation.

• Phase 2: Data Preparation and Processing.

• Phase 3: Design a Model.

• Phase 4: Model Building.

• Phase 5: Result Communication and Publication.

• Phase 6: Measuring Effectiveness.

Regression vs. Classification

Regression

In statistical modeling, regression analysis is a set of statistical processes for estimating the

relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a

'label' in machine learning parlance) and one or more independent variables (often called 'predictors',

'covariates', 'explanatory variables' or 'features'). The most common form of regression analysis is

linear regression, in which one finds the line (or a more complex linear combination) that most closely

fits the data according to a specific mathematical criterion. For example, the method of ordinary least

squares computes the unique line (or hyperplane) that minimizes the sum of squared differences

between the true data and that line (or hyperplane). For specific mathematical reasons (see linear

regression), this allows the researcher to estimate the conditional expectation (or population average

value) of the dependent variable when the independent variables take on a given set of values. Less

common forms of regression use slightly different procedures to estimate alternative location

parameters (e.g., quantile regression or Necessary Condition Analysis) or estimate the conditional

expectation across a broader collection of non-linear models (e.g., nonparametric regression).

Regression analysis is primarily used for two conceptually distinct purposes. First, regression analysis

is widely used for prediction and forecasting, where its use has substantial overlap with the field of

Page 17 of 580

machine learning. Second, in some situations regression analysis can be used to infer causal

relationships between the independent and dependent variables. Importantly, regressions by

themselves only reveal relationships between a dependent variable and a collection of independent

variables in a fixed dataset. To use regressions for prediction or to infer causal relationships,

respectively, a researcher must carefully justify why existing relationships have predictive power for a

new context or why a relationship between two variables has a causal interpretation. The latter is

especially important when researchers hope to estimate causal relationships using observational data.

Classification

Classification is a process related to categorization, the process in which ideas and objects are

recognized, differentiated and understood. Classification is the grouping of related facts into classes.

It may also refer to a process which brings together like things and separates unlike things.

Day 02 -PYTHON ESSENTIALS

Installing Python and the suite of libraries that enable scientific computing is straightforward. This

section will outline some of the considerations to keep in mind when setting up your computer.

Though there are various ways to install Python, the one I would suggest for use in data science is the

Anaconda distribution, which works similarly whether you use Windows, Linux, or Mac OS X. The

Anaconda distribution comes in two flavors:

Miniconda gives you the Python interpreter itself, along with a command-line tool called

conda that operates as a cross-platform package manager geared toward Python packages,

similar in spirit to the apt or yum tools that Linux users might be familiar with.

Anaconda includes both Python and conda, and additionally bundles a suite of other

preinstalled packages geared toward scientific computing. Because of the size of this bundle,

expect the installation to consume several gigabytes of disk space.

Introduction to the installation of Anaconda

Anaconda is a reasonably sophisticated installer. It supports installation from local and remote sources

such as CDs and DVDs, images stored on a hard drive, NFS, HTTP, and FTP. Installation can be scripted

with kickstart to provide a fully unattended installation that can be duplicated on scores of machines.

It can also be run over VNC on headless machines. A variety of advanced storage devices including

LVM, RAID, iSCSI, and multipath are supported from the partitioning program. Anaconda provides

advanced debugging features such as remote logging, access to the python interactive debugger, and

remote saving of exception dumps.

Introduction to Python Editors & IDE's (Anaconda, pycharm, Jupyter etc…)

Most data scientists and software developers prefer Python because of the various functionalities

provided by Python and the best among those is its open-source feature. Anyone all over the globe

can create their own package and make it public for others to use, hence improving the python

backend daily.

There are various IDEs in the market to select from such as Spyder, Atom, Pycharm, Pydev etc. Data

scientists prefer Spyder among all the different IDEs available and the driving fact behind this is that

Spyder was built specifically for data science. Its interface allows the user to scroll through various

data variables and also ready to use online help option. The output of the code can be viewed in the

Page 18 of 580

python console on the same screen. You can work on different scripts at a moment and then try them

out one by one in the same console or different as per your choice all the variables used will be stored

in the variable explorer tab. It also provides an option to view graphs and visualizations in the plot

window. You can also cover the basics concepts by taking up free Syder python and also check

out Python Libraries for Machine Learning from Great Learning Academy.

Understand Jupyter notebook & Customize Settings

The notebook extends the console-based approach to interactive computing in a qualitatively new

direction, providing a web-based application suitable for capturing the whole computation process:

developing, documenting, and executing code, as well as communicating the results. The Jupyter

notebook combines two components:

Overview of Python- Starting with Python

The Python interpreter can run Python programs that are saved in files or interactively execute Python

statements that are typed at the keyboard. Python comes with a program named IDLE that simplifies

the process of writing, executing, and testing programs.

Installing Python

Before you can try any of the programs shown in this book, or write any programs of your own, you
need to make sure that Python is installed on your computer and properly configured. If you are
working in a computer lab, this has probably been done already. If you are using your own computer,
you can follow the instructions in Appendix A to download and install Python.

The Python Interpreter

You learned earlier that Python is an interpreted language. When you install the Python language on
your computer, one of the items that is installed is the Python interpreter. The Python interpreter is a
program that can read Python programming statements and execute them. (Sometimes, we will refer
to the Python interpreter simply as the interpreter.) You can use the interpreter in two modes:
interactive mode and script mode. In interactive mode, the interpreter waits for you to type Python
statements on the keyboard. Once you type a statemen t, the interpreter executes it and then waits
for you to type another statement. In script mode, the interpreter reads the contents of a file that
contains Python statements. Such a file is known as a Python program or a Python script. The
interpreter executes each statement in the Python program as it reads it.

Interactive Mode

Once Python has been installed and set up on your system, you start the interpreter in interactive
mode by going to the operating system’s command line and typing the following command:

python
If you are using Windows, you can alternatively type Python in the Windows search box. In the search
results, you will see a program named something like Python 3.11. (The “ 3.11” is the version of Python
that is installed. At the time this is being written, Python 3.11 is the latest version.) Clicking this item
will start the Python interpreter in interactive mode.
When the Python interpreter is running in interactive mode, it is commonly called the Python shell.

The >>> that you see is a prompt that indicates the interpreter is waiting for you to type a Python
statement. Let’s try it out. One of the simplest things that you can do in Python is print a message on
the screen. For example, the following statement prints the message Python programming is fun! on
the screen:

print('Python programming is fun!')

Page 19 of 580

 You can think of this as a command that you are sending to the Python interpreter. If you type
the statement exactly as it is shown, the message Python programming is fun! Is printed on the screen.
Here is an example of how you type this statement at the interpreter’s
prompt:

>>> print('Python programming is fun!') Press Enter
After typing the statement, you press the Enter key, and the Python interpreter executes the
statement, as shown here:
>>> print('Python programming is fun!') Enter
Python programming is fun!

Launching the Jupyter Notebook

The Jupyter notebook is a browser-based graphical interface to the IPython shell, and builds

on it a rich set of dynamic display capabilities. As well as executing Python/ IPython

statements, the notebook allows the user to include formatted text, static and dynamic

visualizations, mathematical equations, JavaScript widgets, and much more. Furthermore,

these documents can be saved in a way that lets other people open them and execute the

code on their own systems.

Though the IPython notebook is viewed and edited through your web browser win‐

dow, it must connect to a running Python process in order to execute code. To start

this process (known as a “kernel”), run the following command in your system shell:

$ jupyter notebook

This command will launch a local web server that will be visible to your browser. It

immediately spits out a log showing what it is doing; that log will look something like this:

Upon issuing the command, your default browser should automatically open and navigate

to the listed local URL; the exact address will depend on your system. If the browser does

not open automatically, you can open a window and manually open this address

(http://localhost:8888/ in this example).

Help and Documentation in IPython

If you read no other section in this chapter, read this one: I find the tools discussed here to
be the most transformative contributions of IPython to my daily workflow.

When a technologically minded person is asked to help a friend, family member, or colleague

with a computer problem, most of the time it’s less a matter of knowing the answer as much

as knowing how to quickly find an unknown answer. In data science it’s the same: searchable

web resources such as online documentation, mailing-list threads, and Stack Overflow

answers contain a wealth of information, even (espe‐ cially?) if it is a topic you’ve found

yourself searching before. Being an effective prac‐ titioner of data science is less about

memorizing the tool or command you should use for every possible situation, and more

about learning to effectively find the informa‐ tion you don’t know, whether through a web

search engine or another means.

One of the most useful functions of IPython/Jupyter is to shorten the gap between the user

and the type of documentation and search that will help them do their work effectively.

While web searches still play a role in answering complicated questions, an amazing amount

of information can be found through IPython alone. Some examples of the questions IPython

Page 20 of 580

can help answer in a few keystrokes:

• How do I call this function? What arguments and options does it have?

• What does the source code of this Python object look like?

• What is in this package I imported? What attributes or methods does this object have?

Here we’ll discuss IPython’s tools to quickly access this information, namely the ? character
to explore documentation, the ?? characters to explore source code, and the Tab key for
autocompletion.

Accessing Documentation with ?

The Python language and its data science ecosystem are built with the user in mind,

and one big part of that is access to documentation. Every Python object contains

the

reference to a string, known as a docstring, which in most cases will contain a concise

summary of the object and how to use it. Python has a built-in help() function that can access

this information and print the results. For example, to see the documenta‐ tion of the built-

in len function, you can do the following:

In [1]: help(len)

Help on built-in function len in module builtins:

len(...)

len(object) -> integer

Return the number of items of a sequence or mapping.

Depending on your interpreter, this information may be displayed as inline text, or

in some separate pop-up window.

Because finding help on an object is so common and useful, IPython introduces the ?
character as a shorthand for accessing this documentation and other relevant information:

In [2]: len?

Type:
 builtin_function_or_meth
od String form: <built-in function len>
Namespace: Python builtin

Docstring:

len(object) -> integer

Return the number of items of a sequence or mapping.

Accessing Source Code with ??

Because the Python language is so easily readable, you can usually gain another level of

insight by reading the source code of the object you’re curious about. IPython pro‐ vides a

shortcut to the source code with the double question mark (??):

In [8]: square?? Type:
 function

Page 21 of 580

String form: <function square at
0x103713cb0> Definition: square(a)

Source:

def square(a):

"Return the square of a"

return a ** 2

For simple functions like this, the double question mark can give quick insight

into the under-the-hood details.

If you play with this much, you’ll notice that sometimes the ?? suffix doesn’t display any
source code: this is generally because the object in question is not implemented in Python,

but in C or some other compiled extension language. If this is the case, the ?? suffix gives the
same output as the ? suffix. You’ll find this particularly with many of Python’s built-in objects and
types, for example len from above:

In [9]: len??

Type:
 builtin_function_or_meth
od String form: <built-in function len>
Namespace: Python builtin

Docstring:

len(object) -> integer

Return the number of items of a sequence or mapping.

Using ? and/or ?? gives a powerful and quick interface for finding information about
what any Python function or module does.

Exploring Modules with Tab Completion

IPython’s other useful interface is the use of the Tab key for autocompletion and exploration

of the contents of objects, modules, and namespaces. In the examples that follow, we’ll use

<TAB> to indicate when the Tab key should be pressed.

Tab completion of object contents

Every Python object has various attributes and methods associated with it. Like with the help

function discussed before, Python has a built-in dir function that returns a list of these, but

the tab-completion interface is much easier to use in practice. To see a list of all available

attributes of an object, you can type the name of the object fol‐ lowed by a period (.)

character and the Tab key:

In [10]: L.<TAB>
L.appen
d

L.copy L.extend L.insert L.remove L.sort

L.clear L.coun
t

L.index L.pop L.reverse

To narrow down the list, you can type the first character or several characters of

the name, and the Tab key will find the matching attributes and methods:

In [10]: L.c<TAB>

L.clear L.copy L.count

Page 22 of 580

In [10]: L.co<TAB>

L.copy L.count

If there is only a single option, pressing the Tab key will complete the line for you.

For example, the following will instantly be replaced with L.count:

In [10]: L.cou<TAB>

Though Python has no strictly enforced distinction between public/external attributes and

private/internal attributes, by convention a preceding underscore is used to denote such

methods. For clarity, these private methods and special methods are omitted from the list

by default, but it’s possible to list them by explicitly typing the underscore:

In [10]: L._<TAB>L. add L. class

L. gt L. hash L. reduce

L. reduce_ex

For brevity, we’ve only shown the first couple lines of the output. Most of these are

Python’s special double-underscore methods (often nicknamed “dunder” methods).

Tab completion when importing

Tab completion is also useful when importing objects from packages. Here we’ll use

it to find all possible imports in the itertools package that start with co:

In [10]: from itertools import co<TAB>
combinations
 compres
s combinations_with_replacement
count

Similarly, you can use tab completion to see which imports are available on your sys‐ tem

(this will change depending on which third-party scripts and modules are visible to your

Python session):

In [10]: import <TAB>

Display all 399 possibilities? (y or n)
Crypto
Cython

dis
distutils

py_compi
le
pyclbr

...
difflib pwd zmq

In [10]: import h<TAB>

hashlib hmac http

heapq html husl

(Note that for brevity, I did not print here all 399 importable packages and modules

on my system.)

Beyond tab completion: Wildcard matching

Tab completion is useful if you know the first few characters of the object or attribute you’re

looking for, but is little help if you’d like to match characters at the middle or end of the

word. For this use case, IPython provides a means of wildcard matching for names using

the * character.

For example, we can use this to list every object in the namespace that ends with

Page 23 of 580

Warning:

In [10]: *Warning?

BytesWarning RuntimeWarning

DeprecationWarning SyntaxWarning

FutureWarning UnicodeWarning

ImportWarning UserWarning
PendingDeprecationWarning Warning
ResourceWarning

Notice that the * character matches any string, including the empty string.

Similarly, suppose we are looking for a string method that contains the word find
somewhere in its name. We can search for it this way:

Keyboard Shortcuts in the IPython Shell

If you spend any amount of time on the computer, you’ve probably found a use for keyboard

shortcuts in your workflow. Most familiar perhaps are Cmd-C and Cmd-V (or Ctrl-C and Ctrl-

V) for copying and pasting in a wide variety of programs and sys‐ tems. Power users tend to

go even further: popular text editors like Emacs, Vim, and others provide users an incredible

range of operations through intricate combina‐ tions of keystrokes.

The IPython shell doesn’t go this far, but does provide a number of keyboard short‐ cuts for

fast navigation while you’re typing commands. These shortcuts are not in fact provided by

IPython itself, but through its dependency on the GNU Readline library: thus, some of the

following shortcuts may differ depending on your system configu‐ ration. Also, while some

of these shortcuts do work in the browser-based notebook, this section is primarily about

shortcuts in the IPython shell.

Once you get accustomed to these, they can be very useful for quickly performing

certain commands without moving your hands from the “home” keyboard

position. If you’re an Emacs user or if you have experience with Linux-style shells,

the follow‐ ing will be very familiar. We’ll group these shortcuts into a few

categories: navigation shortcuts, text entry shortcuts, command history shortcuts, and

miscellaneous shortcuts.

Navigation Shortcuts

While the use of the left and right arrow keys to move backward and forward in the line is

quite obvious, there are other options that don’t require moving your hands from the

“home” keyboard position:

Ctrl-a Move cursor to the beginning of the line

Ctrl-e Move cursor to the end of the line

Ctrl-b (or the left arrow key) Move cursor back one character

Ctrl-f (or the right arrow key) Move cursor forward one character

Text Entry Shortcuts

While everyone is familiar with using the Backspace key to delete the previous char‐ acter,

Keystroke Action

Page 24 of 580

reaching for the key often requires some minor finger gymnastics, and it only deletes a single

character at a time. In IPython there are several shortcuts for remov‐ ing some portion of

the text you’re typing. The most immediately useful of these are the commands to delete

entire lines of text. You’ll know these have become second nature if you find yourself using

a combination of Ctrl-b and Ctrl-d instead of reach‐ ing for the Backspace key to delete the

previous character!

 Keystroke Action

Backspace key Delete previous character in line

Ctrl-d Delete next character in line

Ctrl-k Cut text from cursor to end of line

Ctrl-u Cut text from beginning fo line to cursor

Ctrl-y Yank (i.e., paste) text that was previously cut

Ctrl-t Transpose (i.e., switch) previous two characters

Command History Shortcuts

Perhaps the most impactful shortcuts discussed here are the ones IPython provides for

navigating the command history. This command history goes beyond your cur‐ rent IPython

session: your entire command history is stored in a SQLite database in your IPython profile

directory. The most straightforward way to access these is with the up and down arrow keys

to step through the history, but other options exist as well:

 Keystroke Action

Ctrl-p (or the up arrow key) Access previous command in history

Ctrl-n (or the down arrow key) Access next command in history

Ctrl-r Reverse-search through command history

The reverse-search can be particularly useful. Recall that in the previous section we defined

a function called square. Let’s reverse-search our Python history from a new IPython shell

and find this definition again. When you press Ctrl-r in the IPython terminal, you’ll see the

following prompt:

In [1]:

(reverse-i-search)`':

If you start typing characters at this prompt, IPython will auto-fill the most recent command,

if any, that matches those characters:

In [1]:

(reverse-i-search)`sqa': square??

At any point, you can add more characters to refine the search, or press Ctrl-r again to

search further for another command that matches the query. If you followed along in the

previous section, pressing Ctrl-r twice more gives:

Page 25 of 580

In [1]:

(reverse-i-search)`sqa': def square(a):

"""Return the square of a"""

return a ** 2

Once you have found the command you’re looking for, press Return and the search will end.

We can then use the retrieved command, and carry on with our session:

In [1]: def square(a):

"""Return the square of a"""

return a ** 2

In [2]: square(2)

Out[2]: 4

Note that you can also use Ctrl-p/Ctrl-n or the up/down arrow keys to search through

history, but only by matching characters at the beginning of the line. That is, if you type def

and then press Ctrl-p, it would find the most recent command (if any) in your history that

begins with the characters def.

Miscellaneous Shortcuts

Finally, there are a few miscellaneous shortcuts that don’t fit into any of the preceding

categories, but are nevertheless useful to know:

 Keystroke Action

Ctrl-l Clear terminal screen

Ctrl-c Interrupt current Python command

Ctrl-d Exit IPython session

The Ctrl-c shortcut in particular can be useful when you inadvertently start a very
long-running job.

While some of the shortcuts discussed here may seem a bit tedious at first, they quickly

become automatic with practice. Once you develop that muscle memory, I suspect you will

even find yourself wishing they were available in other contexts.

IPython Magic Commands

The previous two sections showed how IPython lets you use and explore Python effi‐ ciently

and interactively. Here we’ll begin discussing some of the enhancements that

IPython adds on top of the normal Python syntax. These are known in IPython as magic

commands, and are prefixed by the % character. These magic commands are designed to

succinctly solve various common problems in standard data analysis. Magic commands come

in two flavors: line magics, which are denoted by a single % prefix and operate on a single

line of input, and cell magics, which are denoted by a double %% prefix and operate on

multiple lines of input. We’ll demonstrate and dis‐ cuss a few brief examples here, and come

back to more focused discussion of several useful magic commands later in the chapter.

Page 26 of 580

Pasting Code Blocks: %paste and %cpaste

When you’re working in the IPython interpreter, one common gotcha is that pasting

multiline code blocks can lead to unexpected errors, especially when indentation and

interpreter markers are involved. A common case is that you find some example code on a

website and want to paste it into your interpreter. Consider the following simple function:

>>> def donothing(x):

... return x

The code is formatted as it would appear in the Python interpreter, and if you copy and paste

this directly into IPython you get an error:

In [2]: >>> def donothing(x):

...: ... return x

...:

File "<ipython-input-20-5a66c8964687>", line 2

... return x

^

SyntaxError: invalid syntax

The interpreter is confused by the additional prompt characters in the direct paste.

But never fear—IPython’s %paste magic function is designed to handle this exact

type of multiline, marked-up input:

In [3]: %paste

>>> def donothing(x):

... return x

-- End pasted text --

The %paste command both enters and executes the code, so now the function is ready
to be used:

In [4]: donothing(10)

Out[4]: 10

A command with a similar intent is %cpaste, which opens up an interactive multiline prompt
in which you can paste one or more chunks of code to be executed in a batch:

Page 27 of 580

In [5]: %cpaste

Pasting code; enter '--' alone on the line to stop or use Ctrl-D.

:>>> def donothing(x):

:... return x

:--

These magic commands, like others we will see, make available functionality that

would be difficult or impossible in a standard Python interpreter.

Running External Code: %run

As you begin developing more extensive code, you will likely find yourself working in both

IPython for interactive exploration and a text editor to store code you want to reuse. Rather

than running this code in a new window, running it within your IPython session can be

convenient. This can be done with the %run magic.

For example, imagine you’ve created a myscript.py file with the following contents:

#-------------------------------------

file: myscript.py

def square(x):

"""square a number"""

return x ** 2

for N in range(1, 4):

print(N, "squared is", square(N))

You can execute this from your IPython session as follows:

In [6]: %run myscript.py
1 squared is 1

2 squared is 4
3 squared is 9

Note also that after you’ve run this script, any functions defined within it are available for use

in your IPython session:

In [7]: square(5)

Out[7]: 25

There are several options to fine-tune how your code is run; you can see the docu‐ mentation

in the normal way, by typing %run? in the IPython interpreter.

Timing Code Execution: %timeit

Another example of a useful magic function is %timeit, which will automatically
determine the execution time of the single-line Python statement that follows it.
For example, we may want to check the performance of a list comprehension:

In [8]: %timeit L = [n ** 2 for n in range(1000)] 1000
loops, best of 3: 325 µs per loop

The benefit of %timeit is that for short commands it will automatically perform mul‐ tiple

Page 28 of 580

runs in order to attain more robust results. For multiline statements, adding a second % sign

will turn this into a cell magic that can handle multiple lines of input. For example, here’s the
equivalent construction with a for loop:

In [9]: %%timeit

...: L = []

...: for n in range(1000):

...: L.append(n ** 2)

...:

1000 loops, best of 3: 373 µs per loop

We can immediately see that list comprehensions are about 10% faster than the equivalent

for loop construction in this case. We’ll explore %timeit and other approaches to timing and

profiling code in “Profiling and Timing Code” on page 25.

Help on Magic Functions: ?, %magic, and %lsmagic

Like normal Python functions, IPython magic functions have docstrings, and this useful

documentation can be accessed in the standard manner. So, for example, to read the

documentation of the %timeit magic, simply type this:

In [10]: %timeit?

Documentation for other functions can be accessed similarly. To access a general description

of available magic functions, including some examples, you can type this:

In [11]: %magic

For a quick and simple list of all available magic functions, type this:

In [12]: %lsmagic

Profiling and Timing Code

In the process of developing code and creating data processing pipelines, there are often

trade-offs you can make between various implementations. Early in developing your

algorithm, it can be counterproductive to worry about such things. As Donald Knuth

famously quipped, “We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.”

But once you have your code working, it can be useful to dig into its efficiency a bit.

Sometimes it’s useful to check the execution time of a given command or set of com‐ mands;

other times it’s useful to dig into a multiline process and determine where the bottleneck lies

in some complicated series of operations. IPython provides access to a wide array of

functionality for this kind of timing and profiling of code. Here we’ll discuss the following

IPython magic commands:

%time Time the execution of a single statement

%timeit Time repeated execution of a single statement for more accuracy

%prun Run code with the profiler

%lprun Run code with the line-by-line profiler

Page 29 of 580

%memit Measure the memory use of a single statement

%mprun Run code with the line-by-line memory profiler

The last four commands are not bundled with IPython—you’ll need to install the line_profiler

and memory_profiler extensions, which we will discuss in the fol‐ lowing sections.

Timing Code Snippets: %timeit and %time

We saw the %timeit line magic and %%timeit cell magic in the introduction to magic functions
in “IPython Magic Commands” ; %%timeit can be used to time the repeated execution of
snippets of code:

In[1]: %timeit sum(range(100))

100000 loops, best of 3: 1.54 µs per loop

Note that because this operation is so fast, %timeit automatically does a large number of
repetitions. For slower commands, %timeit will automatically adjust and perform fewer
repetitions:

In[2]: %%timeit

total = 0

for i in range(1000):

for j in range(1000): total
+= i * (-1) ** j

1 loops, best of 3: 407 ms per loop

Sometimes repeating an operation is not the best option. For example, if we have a list that

we’d like to sort, we might be misled by a repeated operation. Sorting a pre- sorted list is

much faster than sorting an unsorted list, so the repetition will skew the result:

In[3]: import random

L = [random.random() for i in range(100000)]

%timeit L.sort()

100 loops, best of 3: 1.9 ms per loop

For this, the %time magic function may be a better choice. It also is a good choice for longer-
running commands, when short, system-related delays are unlikely to affect the result. Let’s
time the sorting of an unsorted and a presorted list:

In[4]: import random

L = [random.random() for i in range(100000)]

print("sorting an unsorted list:")

%time L.sort()

sorting an unsorted list:

CPU times: user 40.6 ms, sys: 896 µs, total: 41.5 ms
Wall time: 41.5 ms

In[5]: print("sorting an already sorted list:")

%time L.sort()

sorting an already sorted list:

Page 30 of 580

CPU times: user 8.18 ms, sys: 10 µs, total: 8.19 ms
Wall time: 8.24 ms

Notice how much faster the presorted list is to sort, but notice also how much longer the

timing takes with %time versus %timeit, even for the presorted list! This is a result of the

fact that %timeit does some clever things under the hood to prevent sys‐ tem calls from

interfering with the timing. For example, it prevents cleanup of unused Python objects

(known as garbage collection) that might otherwise affect the timing. For this reason,

%timeit results are usually noticeably faster than %time results.

For %time as with %timeit, using the double-percent-sign cell-magic syntax allows timing of
multiline scripts:

In[6]: %%time

total = 0

for i in range(1000):

for j in range(1000): total
+= i * (-1) ** j

CPU times: user 504 ms, sys: 979 µs, total: 505 ms
Wall time: 505 ms

For more information on %time and %timeit, as well as their available options, use the

IPython help functionality (i.e., type %time? at the IPython prompt).

Profiling Full Scripts: %prun

A program is made of many single statements, and sometimes timing these state‐ ments in

context is more important than timing them on their own. Python contains a built-in code

profiler (which you can read about in the Python documentation), but IPython offers a much

more convenient way to use this profiler, in the form of the magic function %prun.

By way of example, we’ll define a simple function that does some calculations:

In[7]: def sum_of_lists(N):

total = 0

for i in range(5):

L = [j ^ (j >> i) for j in range(N)] total
+= sum(L)

return total

Now we can call %prun with a function call to see the profiled results:

In[8]: %prun sum_of_lists(1000000)

In the notebook, the output is printed to the pager, and looks something like this:

14 function calls in 0.714 seconds

Ordered by: internal time

ncalls tottime percall cumti
me

percall filename:lineno(function)

5 0.599 0.120 0.599 0.120 <ipython-input-
19>:4(<listcomp>)

5 0.064 0.013 0.064 0.013 {built-in method sum}
1 0.036 0.036 0.699 0.699 <ipython-input-

Page 31 of 580

19>:1(sum_of_lists)
1 0.014 0.014 0.714 0.714 <string>:1(<module>)
1 0.000 0.000 0.714 0.714 {built-in method exec}

The result is a table that indicates, in order of total time on each function call, where the

execution is spending the most time. In this case, the bulk of execution time is in the list

comprehension inside sum_of_lists. From here, we could start thinking about what

changes we might make to improve the performance in the algorithm.

Day 03 – Designing a Program

Programs must be carefully designed before they are written. During the design process, programmers
use tools such as pseudocode and flowcharts
to create models of programs

Input, Processing, and Output

Input is data that the program receives. When a program receives data,
it usually processes it by performing some operation with it. The result
of the operation is sent out of the program as output.

Python Objects and data types

The following items are all considered objects in the Python programming
language:
»»Numbers
»»Strings
»»Lists
»»Tuples
»»Sets
»»Dictionaries
»»Functions
»»Classes
Additionally, all these items (except for the last two in the list) function as basic data types in plain
ol’ Python, which is Python with no external extensions added to it. (I introduce you to the external
Python libraries NumPy, SciPy, Pandas, MatPlotLib, and Scikit-learn in the later section “Checking out
some useful Python libraries.” When you add these libraries, additional data types become available
to you.)
In Python, functions do basically the same thing as they do in plain math — they accept data inputs,
process them, and output the result. Output results depend wholly on the task the function was
programmed to do. Classes, on the other hand, are prototypes of objects that are designed to
output additional objects.
If your goal is to write fast, reusable, easy-to-modify code in Python, you must
use functions and classes. Doing so helps to keep your code efficient and
organized.
Sorting out the various Python data types
If you do much work with Python, you need to know how to work with different
data types. The main data types in Python and the general forms they take are
described in this list:
»»Numbers: Plain old numbers, obviously
»»Strings: ‘. . .’ or “. . .”
»»Lists: [. . .] or [. . ., . . ., . . .]
»»Tuples: (. . .) or (. . ., . . ., . . .)

Page 32 of 580

Numbers in Python
The Numbers data type represents numeric values that you can use to handle all
types of mathematical operations. Numbers come in the following types:
»»Integer: A whole-number format
»»Long: A whole-number format with an unlimited digit size
»»Float: A real-number format, written with a decimal point
»»Complex: An imaginary-number format, represented by the square root of –1

Strings and String Literals

Programs almost always work with data of some type. For example, Program 2-1 uses the
following three pieces of data:
'Kate Austen'
'123 Full Circle Drive
'Asheville, NC 28899'
These pieces of data are sequences of characters. In programming terms, a sequence of characters
that is used as data is called a string. When a string appears in the actual code of a program,
it is called a string literal. In Python code, string literals must be enclosed in quote marks.
As mentioned earlier, the quote marks simply mark where the string data begins and ends.
In Python, you can enclose string literals in a set of single-quote marks (') or a set of
double-
quote marks (").

Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the Python interpreter
ignores them. They are intended for people who may be reading the
source code.

Variables

CONCEPT: A variable is a name that represents a value stored in the computer’s
memory.

Variable Naming Rules

Although you are allowed to make up your own names for variables, you must follow these
rules:
• You cannot use one of Python’s key words as a variable name. (See Table 1-2 for a
list of the key words.)
• A variable name cannot contain spaces.
• The first character must be one of the letters a through z, A through Z, or an underscore
character (_).
• After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.
• Uppercase and lowercase characters are distinct. This means the variable name
ItemsOrdered is not the same as itemsordered.

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name may suggest a camel’s humps.

Variable Name Legal or Illegal?
Table 1:Sample variable names

Variable Name Legal or Illegal? Reason

Page 33 of 580

units_per_day Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.

June1997 Legal

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

Numeric Data Types and Literals

Python
uses data types to categorize values in memory. When an integer is stored in memory, it is
classified as an int, and when a real number is stored in memory, it is classified as a float.
room = 503
dollars = 2.75

Storing Strings with the str Data Type

In addition to the int and float data types, Python also has a data type named str, which
is used for storing strings in memory. The code in Program 2-11 shows how strings can be
assigned to variables.

Reading Input from the Keyboard

CONCEPT: Programs commonly need to read input typed by the user on the keyboard.
We will use the Python functions to do this.

Performing Calculations

CONCEPT: Python has numerous operators that can be used to perform mathematical
calculations.

Python math operators

Symbol Operation Description

+ Addition Adds

− Subtraction Subtracts

* Multiplication Multiplies

/ Division Divides

a floating-point number

// Integer division

a whole number

% Remainder Divides

** Exponent Raises

Escape Character

Escape
Character

Effect

\n Causes output to be advanced to the next line.

\t Causes output to skip over to the next horizontal tab position.

\' Causes a single quote mark to be printed.

\" Causes a double quote mark to be printed.

Page 34 of 580

\\ Causes a backslash character to be printed.

Day 04-Core built-in data structures – Lists, Tuples, Dictionaries, Sets

A sequence is an object that holds multiple items of data, stored one after the other. You can perform
operations on a sequence to examine and manipulate the items stored in it.

A sequence is an object that contains multiple items of data. The items that are in a sequence
are stored one after the other. Python provides various ways to perform operations on the
items that are stored in a sequence.

Introduction to Lists

A list is an object that contains multiple data items. Lists are mutable, which means that their contents
can be changed during a program’s execution. Lists are dynamic data structures, meaning that items
may be added to them or removed from them. You can use indexing, slicing, and various methods to
work with lists in a program.
even_numbers = [2, 4, 6, 8, 10]

Country = [“Pakistan”, “ Iran”, “China”, “Iraq”]

Lists Are Mutable

Lists in Python are mutable, which means their elements can be changed. Consequently, an
expression in the form list[index] can appear on the left side of an assignment operator.
numbers = [1, 2, 3, 4, 5]
numbers[0] = 99

It will replace the first element with 99.

List Slicing

A slicing expression selects a range of elements from a sequence.

Copying Lists

To make a copy of a list, you must copy the list’s elements.

list1 = [1, 2, 3, 4]
Assign the list to the list2 variable.
list2 = list1

After this code executes, both variables list1 and list2 will reference the same list in
Memory

One way to do this is with a loop that copies each element of the list.
Here is an example:
Create a list with values.
list1 = [1, 2, 3, 4]
Create an empty list.
list2 = []
Copy the elements of list1 to list2.
for item in list1:
list2.append(item)

Page 35 of 580

Tuples

A tuple is an immutable sequence, which means that its contents cannot be changed.

A tuple is a sequence, very much like a list. The primary difference between tuples and lists
is that tuples are immutable. That means once a tuple is created, it cannot be changed.
When you create a tuple, you enclose its elements in a set of parentheses, as shown in the
following interactive session:
>>> my_tuple = (1, 2, 3, 4, 5)

In fact, tuples support all the same operations as lists, except those that change the contents
of the list. Tuples support the following:
• Subscript indexing (for retrieving element values only)
• Methods such as index
• Built-in functions such as len, min, and max
• Slicing expressions
• The in operator
• The + and * operators
Tuples do not support methods such as append, remove, insert, reverse, and sort.

Dictionaries

A dictionary is an object that stores a collection of data. Each element in a dictionary has two parts: a

key and a value. You use a key to locate a specific value.

Creating a Dictionary

You can create a dictionary by enclosing the elements inside a set of curly braces ({}). An element

consists of a key, followed by a colon, followed by a value. The elements are separated by commas.

The following statement shows an example:

phonebook = {'Chris':'555−1111', 'Katie':'555−2222', 'Joanne':'555−3333'}

This statement creates a dictionary and assigns it to the phonebook variable. The dictionary contains

the following three elements:

• The first element is 'Chris':'555−1111'. In this element, the key is 'Chris' and the value is

'555−1111'.

• The second element is 'Katie':'555−2222'. In this element, the key is 'Katie' and the value

is '555−2222'.

• The third element is 'Joanne':'555−3333'. In this element, the key is 'Joanne' and the value

is '555−3333'.

Retrieving a Value from a Dictionary

The elements in a dictionary are not stored in any particular order. For example, look at the

following interactive session in which a dictionary is created and its elements are displayed:

>>> phonebook = {'Chris':'555−1111', 'Katie':'555−2222', 'Joanne':'555−3333'} Enter

>>> phonebook Enter

{'Chris': '555−1111', 'Joanne': '555−3333', 'Katie': '555−2222'}

>>>

Notice the order in which the elements are displayed is different than the order in which they were

created. This illustrates how dictionaries are not sequences, like lists, tuples, and strings. As a result,

Page 36 of 580

you cannot use a numeric index to retrieve a value by its position from a dictionary. Instead, you use

a key to retrieve a value.

To retrieve a value from a dictionary, you simply write an expression in the following general format:

dictionary_name[key]

In the general format, dictionary_name is the variable that references the dictionary, and key is a

key. If the key exists in the dictionary, the expression returns the value that is associated with the

key. If the key does not exist, a KeyError exception is raised. The following interactive session

demonstrates:

Using the in and not in Operators to Test for a Value in a Dictionary

As previously demonstrated, a KeyError exception is raised if you try to retrieve a value from a

dictionary using a nonexistent key. To prevent such an exception, you can use the in operator to

determine whether a key exists before you try to use it to retrieve a value. The following interactive

session demonstrates:

1 >>> phonebook = {'Chris':'555−1111', 'Katie':'555−2222', 'Joanne':'555−3333'} Enter
2 >>> if 'Chris' in phonebook: Enter
3 print(phonebook['Chris']) Enter Enter
4
5 555−1111
6 >>>

Adding Elements to an Existing Dictionary

Dictionaries are mutable objects. You can add new key-value pairs to a dictionary

with an assignment statement in the following general format:

dictionary_name[key] = value

Deleting Elements

You can delete an existing key-value pair from a dictionary with the del statement.
Here is the general format:

del dictionary_name[key]

Some Dictionary Methods

Dictionary objects have several methods. In this section, we look at some of the

more useful ones, which are summarized in Table 9−1.

Some of the dictionary methods

Method Description

Clear Clears the contents of a dictionary.

get Gets the value associated with a specified key. If the key is not
found, the method does not raise an exception. Instead, it returns a
default value.

items Returns all the keys in a dictionary and their associated values as

Page 37 of 580

a sequence of tuples.

keys Returns all the keys in a dictionary as a sequence of tuples.

pop Returns the value associated with a specified key and removes

that key-value pair from the dictionary. If the key is not found,
the method returns a default value.

popitem Returns a randomly selected key-value pair as a tuple from the
dictionary and removes that key-value pair from the dictionary.

values Returns all the values in the dictionary as a sequence of tuples.

The get Method

You can use the get method as an alternative to the [] operator for getting a value
from a dictionary. The get method does not raise an exception if the specified key is
not found. Here is the method’s general format:

dictionary.get(key, default)

Sets

A set contains a collection of unique values and works like a mathematical set.

A set is an object that stores a collection of data in the same way as mathematical sets. Here are

some important things to know about sets:

• All the elements in a set must be unique. No two elements can have the same value.

• Sets are unordered, which means that the elements in a set are not stored in any par-

ticular order.

• The elements that are stored in a set can be of different data types.

Creating a Set

To create a set, you have to call the built-in set function. Here is an example of
how you create an empty set:

myset = set()

myset = set('abc')

Finding the Union of Sets

The union of two sets is a set that contains all the elements of both sets.

set1.union(set2)

Finding the Intersection of Sets

The intersection of two sets is a set that contains only the elements that are found in both sets.

set1.intersection(set2)

other functions

set1.difference(set2) and equivalent set1 − set2

set1.symmetric_difference(set2) and equivalent set1 ˆ set2

set2.issubset(set1) and equivalen set2 <= set1

Page 38 of 580

set1.issuperset(set2) and equivalen set1 >= set2

Lab activity -Sets
This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The

lines starting with # sign are comments in Python and are used to elaborate the code.

1 # This program demonstrates various set operations.
2 baseball = set(['Jodi', 'Carmen', 'Aida', 'Alicia'])
3 basketball = set(['Eva', 'Carmen', 'Alicia', 'Sarah']) 4
5 # Display members of the baseball set.
6 print('The following students are on the baseball team:')
7 for name in baseball:
8 print(name) 9
10 # Display members of the basketball set.
11 print()
12 print('The following students are on the basketball team:')
13 for name in basketball:
14 print(name) 15
16 # Demonstrate intersection
17 print()
18 print('The following students play both baseball and basketball:')
19 for name in baseball.intersection(basketball):
20 print(name) 21
22 # Demonstrate union
23 print()
24 print('The following students play either baseball or basketball:')
25 for name in baseball.union(basketball):
26 print(name) 27
28 # Demonstrate difference of baseball and basketball
29 print()
30 print('The following students play baseball, but not basketball:')
31 for name in baseball.difference(basketball):
32 print(name) 33
34 # Demonstrate difference of basketball and baseball
35 print()
36 print('The following students play basketball, but not baseball:')
37 for name in basketball.difference(baseball):
38 print(name) 39
40 # Demonstrate symmetric difference
41 print()
42 print('The following students play one sport, but not both:')
43 for name in baseball.symmetric_difference(basketball):
44 print(name)

Day-05: Decision Structures and Boolean Logic

The if Statement

CONCEPT: The if statement is used to create a decision structure, which allows a program to have

more than one path of execution. The if statement causes one or more statements to execute only

when a Boolean expression is true.

Page 39 of 580

A control structure is a logical design that controls the order in which a set of statements execute. So

far in this book, we have used only the simplest type of control structure: the sequence structure. A

sequence structure is a set of statements that execute in the order in which they appear.

if condition:

statement

statement

etc.

Code snippet

This program gets three test scores and displays

their average. It congratulates the user if the
 # average is a high score.The HIGH_SCORE named constant holds the value that is

 # considered a high score.

 HIGH_SCORE = 95

test1 = int(input('Enter the score for test 1: '))

test2 = int(input('Enter the score for test 2: '))

test3 = int(input('Enter the score for test 3: '))

Calculate the average test score.

average = (test1 + test2 + test3) / 3

Print the average.

print('The average score is', average)

If the average is a high score,

congratulate the user.

if average >= HIGH_SCORE:

print('Congratulations!')

print('That is a great average!')

Boolean Expressions and Relational Operators

As previously mentioned, the if statement tests an expression to determine whether it

is true or false. The expressions that are tested by the if statement are called Boolean

expres- sions, named in honor of the English mathematician George Boole. In the

1800s, Boole invented a system of mathematics in which the abstract concepts of true

and false can be used in computations.

Typically, the Boolean expression that is tested by an if statement is formed with a

relational operator. A relational operator determines whether a specific relationship

exists between two values. For example, the greater than operator (>) determines

whether one value is greater than another. The equal to the operator (==) determines

whether two values are equal.

The if-else Statement

CONCEPT: An if-else statement will execute one block of statements if its condition is true, or

another block if its condition is false.

The previous section introduced the single alternative decision structure (the if statement), which has

one alternative path of execution. Now, we will look at the dual alternative deci- sion structure, which

Page 40 of 580

has two possible paths of execution—one path is taken if a condition is true, and the other path is

taken if the condition is false.

Indentation in the if-else Statement

When you write an if-else statement, follow these guidelines for indentation:

• Make sure the if clause and the else clause are aligned.

• The if clause and the else clause are each followed by a block of statements. Make sure the

statements in the blocks are consistently indented.

Nested Decision Structures and the

if-elif-else Statement

CONCEPT: To test more than one condition, a decision structure can be nested inside another

decision structure.

Logical Operators

CONCEPT: The logical “and” operator and the logical “or” operator allow you to connect multiple

Boolean expressions to create a compound expression. The logical “not” operator reverses the truth

of a Boolean expression.

Boolean Variables

CONCEPT: A Boolean variable can reference one of two values: True or False.

Boolean variables are commonly used as flags, which indicate whether specific conditions exist.

Repetition Structures

CONCEPT: A repetition structure causes a statement or set of statements to execute repeatedly.

Condition-Controlled and Count-Controlled Loops

We will look at two broad categories of loops: condition-controlled and count-controlled. A condition-

controlled loop uses a true/false condition to control the number of times that it repeats. A count-

controlled loop repeats a specific number of times. In Python, you use the while statement to write a

condition-controlled loop, and you use the for statement to write a count-controlled loop. In this

chapter, we will demonstrate how to write both types of loops.

The while Loop: A Condition-Controlled Loop

A condition-controlled loop causes a statement or set of statements to repeat as long as a condition is

true. In Python, you use the while state- ment to write a condition-controlled loop.

The while loop gets its name from the way it works: while a condition is true, do some task. The loop

has two parts: (1) a condition that is tested for a true or false value, and (2) a statement or set of

statements that is repeated as long as the condition is true.

Syntax:

while condition:

statement

statement

etc.

Page 41 of 580

The while Loop Is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its condition before per- forming an

iteration. Because the test is done at the beginning of the loop, you usually have to perform some

steps prior to the loop to make sure that the loop executes at least once. For example,

while keep_going == 'y':

Infinite Loops

An infinite loop continues to repeat until the program is interrupted. Infinite loops usually occur when

the programmer forgets to write code inside the loop, making the test condition false. In most

circumstances, you should avoid writing infinite loops.

The for Loop: A Count-Controlled Loop

 A count-controlled loop iterates a specific number of times. In Python, you use the for the statement

to write a count-controlled loop.

As mentioned at the beginning of this chapter, a count-controlled loop iterates a specific number of

times. Count-controlled loops are commonly used in programs. For example, suppose a business is

open six days per week, and you are going to write a program that calculates the total sales for a week.

You will need a loop that iterates exactly six times. Each time the loop iterates, it will prompt the user

to enter the sales for one day.

You use the for statement to write a count-controlled loop. In Python, the for statement is designed

to work with a sequence of data items. When the statement executes, it iterates once for each item

in the sequence. Here is the general format:

for variable in [value1, value2, etc.]: statement

statement etc.

We will refer to the first line as the for clause. In the for clause, variable is the name of a variable.

Inside the brackets a sequence of values appears, with a comma separating each value. (In Python, a

comma-separated sequence of data items that are enclosed in a set of brackets is called a list.

Beginning at the next line is a block of statements that is executed each time the loop iterates.

The for statement executes in the following manner: The variable is assigned the first value in the list,

then the statements that appear in the block are executed. Then, variable is assigned the next value

in the list, and the statements in the block are executed again. This continues until variable has been

assigned the last value in the list.

 for x in range(5):
print('Hello world')

for num in range(1, 10, 2):

print(num)

Calculating a Running Total

A running total is a sum of numbers accumulating with each loop iteration. The variable used to keep

the running total is called an accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For example,

suppose you are writing a program that calculates a business’s total sales for a week. The program

would read the sales for each day as input and calculate the total of those numbers.

Page 42 of 580

Programs that calculate the total of a series of numbers typically use two elements:

• A loop that reads each number in the series.

• A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. It is often

said that the loop keeps a running total because it accumulates the total as it reads each number in

the series.

Statement What It Does Value of x after the Statement

x = x + 4 Add 4 to x 10

x = x − 3 Subtracts 3 from x 3

x = x * 10 Multiplies x by 10 60

x = x / 2 Divides x by 2 3

x = x % 4 Assigns the remainder of x / 4 to x 2

Sentinels

 A sentinel is a special value that marks the end of a sequence of values.

• Simply ask the user, at the end of each loop iteration, if there is another value to process. If

the sequence of values is long, however, asking this question at the end of each loop iteration might

make the program cumbersome for the user.

• Ask the user at the beginning of the program how many items are in the sequence. This might

also inconvenience the user, however. If the sequence is very long, and the user does not know the

number of items it contains, it will require the user to count them.

When processing a long sequence of values with a loop, perhaps a better technique is to use a

sentinel. A sentinel is a special value that marks the end of a sequence of items. When a program

reads the sentinel value, it knows it has reached the end of the sequence, so the loop terminates.

Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

10

11

total = 0.0

Page 43 of 580

Example:

for hours in range(24):

for minutes in range(60):

for seconds in range(60):

print(hours, ':', minutes, ':', seconds)

Lab Activity: Nested Loops

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The

lines starting with # sign are comments in Python and are used to elaborate the code.

1 # This program averages test scores. It asks the user for the

2 # number of students and the number of test scores per student. 3

4 # Get the number of students.

5 num_students = int(input('How many students do you have? ')) 6

7 # Get the number of test scores per student.

8 num_test_scores = int(input('How many test scores per student? ')) 9

10 # Determine each student's average test score.

11 for student in range(num_students):

12 # Initialize an accumulator for test scores.

13 total = 0.0

14 # Get a student's test scores.

15 print('Student number', student + 1)

16 print('–––––––––––––––––')

17 for test_num in range(num_test_scores):

18 print('Test number', test_num + 1, end='')

19 score = float(input(': '))

20 # Add the score to the accumulator.

21 total += score

22 23 # Calculate the average test score for this student.

24 average = total / num_test_scores 25

26 # Display the average.

27 print('The average for student number', student + 1,

28 'is:', average)

print()

Page 44 of 580

Week 2 -Data Manipulation and Cleaning

Day 01- Functions, Packages

A function is a group of statements that exist within a program for the
purpose of performing a specific task.

Benefits of Modularizing a Program with Functions

A program benefits in the following ways when it is broken down into functions:

Simpler Code

A program’s code tends to be simpler and easier to understand when it is broken down
into functions. Several small functions are much easier to read than one long sequence of
statements.

Code Reuse

Functions also reduce the duplication of code within a program. If a specific operation is performed in
several places in a program, a function can be written once to perform thatoperation, then be
executed any time it is needed. This benefit of using functions is known as code reuse because you are
writing the code to perform a task once, then reusing it each time you need to perform the task.

Better Testing

When each task within a program is contained in its own function, testing and debugging
becomes simpler. Programmers can test each function in a program individually, to determine
whether it correctly performs its operation. This makes it easier to isolate and fix errors.

Faster Development

Suppose a programmer or a team of programmers is developing multiple programs. They
discover that each of the programs perform several common tasks, such as asking for a username
and a password, displaying the current time, and so on. It doesn’t make sense to write
the code for these tasks multiple times. Instead, functions can be written for the commonly
needed tasks, and those functions can be incorporated into each program that needs them.

Easier Facilitation of Teamwork

Functions also make it easier for programmers to work in teams. When a program is developed
as a set of functions that each performs an individual task, then different programmers
can be assigned the job of writing different functions.

Void Functions and Value-Returning Functions

You will learn to write two types of functions: void functions and value- returning functions. When you

call a void function, it simply executes the statements it contains and then terminates. When you call

a value-returning function, it executes the statements that it contains, then returns a value back to

the statement that called it. The input function is an example of a value-returning function. When you

call the input func- tion, it gets the data that the user types on the keyboard and returns that data as

a string. The int and float functions are also examples of value-returning functions. You pass an

argument to the int function, and it returns that argument’s value converted to an integer. Likewise, you

pass an argument to the float function, and it returns that argument’s value converted to a floating-point

number.

The first type of function that you will learn to write is the void function.

Defining and Calling a Void Function

The code for a function is known as a function definition. To execute
the function, you write a statement that calls it.

Function Names

Before we discuss the process of creating and using functions, we should mention a few
things about function names. Just as you name the variables that you use in a program, you

Page 45 of 580

also name the functions. A function’s name should be descriptive enough so anyone reading
your code can reasonably guess what the function does.
Python requires that you follow the same rules that you follow when naming variables,
which we recap here:
• You cannot use one of Python’s key words as a function name. (See Table 1-2 for a
list of the key words.)
• A function name cannot contain spaces.
• The first character must be one of the letters a through z, A through Z, or an underscore
character (_).
• After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.
• Uppercase and lowercase characters are distinct.
Because functions perform actions, most programmers prefer to use verbs in function names.
For example, a function that calculates gross pay might be named calculate_gross_pay.
This name would make it evident to anyone reading the code that the function calculates
something. What does it calculate? The gross pay, of course. Other examples of good function
names would be get_hours, get_pay_rate, calculate_overtime, print_check,
and so on. Each function name describes what the function does.

Defining and Calling a Function

To create a function, you write its definition. Here is the general format of a function definition
in Python:
def function_name():
statement
statement
etc.

The first line is known as the function header. It marks the beginning of the function definition.
The function header begins with the keyword def, followed by the name of the
function, followed by a set of parentheses, followed by a colon.
Beginning at the following line is a set of statements known as a block. A block is simply a set
of statements that belong together as a group. These statements are performed any time the
function is executed. Notice in the general format that all of the statements in the block are
indented. This indentation is required, because the Python interpreter uses it to tell where
the block begins and ends.
Let’s look at an example of a function. Keep in mind that this is not a complete program.
We will show the entire program in a moment.
def message():
print('I am Arthur,')
print('King of the Britons.')
This code defines a function named message. The message function contains a block with
two statements. Executing the function will cause these statements to execute.

Calling a Function

A function definition specifies what a function does, but it does not cause the function to
execute. To execute a function, you must call it. This is how we would call the message
function:
message()

Local Variables

A local variable is created inside a function and cannot be accessed by statements that are outside the
function. Different functions can have local variables with the same names because the functions
cannot see each other's local variables.
Anytime you assign a value to a variable inside a function, you create a local variable. A

Page 46 of 580

local variable belongs to the function in which it is created, and only statements inside that
function can access the variable. (The term local is meant to indicate that the variable can
be used only locally, within the function in which it is created.)

Scope and Local Variables

A variable’s scope is the part of a program in which the variable may be accessed. A variable
is visible only to statements in the variable’s scope. A local variable’s scope is the
function in which the variable is created.

Passing Arguments to Functions

An argument is any piece of data that is passed into a function when the function is called. A parameter
is a variable that receives an argument that is passed into a function.

Sometimes it is useful not only to call a function, but also to send one or more pieces of
data into the function. Pieces of data that are sent into a function are known as arguments.
The function can use its arguments in calculations or other operations.

Keyword Arguments

Python language allows you to write an argument in the following format, to specify which parameter
variable the argument should be passed to:
parameter_name=value

Global Variables and Global Constants

A global variable is accessible to all the functions in a program file.

When a variable is created by an assignment statement that is written outside all the functions in a
program file, the variable is global. A global variable can be accessed by any statement in the program
file, including the statements in any function.

Global Constants

A global constant is a global name that references a value that cannot be changed. Because a global
constant’s value cannot be changed during the program’s execution, you do not have to worry about
many of the potential hazards that are associated with the use of global variables.

Although the Python language does not allow you to create true global constants, you can simulate
them with global variables. If you do not declare a global variable with the global key word inside a
function, then you cannot change the variable’s assignment inside that function. For example global
constant declaration as below
CONTRIBUTION_RATE = 0.05

Introduction to Value-Returning Functions: Generating Random Numbers

A value-returning function is a function that returns a value back to the part of the program that called
it. Python, as well as most other programming languages, provides a library of prewritten functions
that perform commonly needed tasks. These libraries typically contain a function that generates
random numbers.

A value-returning function is a special type of function. It is like a void function in the following ways.
• It is a group of statements that perform a specific task.
• When you want to execute the function, you call it.

Page 47 of 580

Standard Library Functions and the import Statement

Python, as well as most programming languages, comes with a standard library of functions
that have already been written for you. These functions, known as library functions, make a
programmer’s job easier because they perform many of the tasks that programmers commonly need
to perform. For example,

import math
This statement causes the interpreter to load the contents of the math module into memory
and makes all the functions in the math module available to the program.

The following statement shows an example of how you might call the randint function from Math
libarary:
number = random.randint (1, 100)

Writing Your Own Value-Returning Functions

A value-returning function has a return statement that returns a value back to the part of the program
that called it.
You write a value-returning function in the same way that you write a void function, with
one exception: a value-returning function must have a return statement. Here is the general
format of a value-returning function definition in Python:

def function_name():
statement
statement
etc.
return expression

Returning Multiple Values

def get_name():
Get the user's first and last names.
first = input('Enter your first name: ')
last = input('Enter your last name: ')
Return both names.
return first, last

When you call this function in an assignment statement, you need to use two variables on
the left side of the = operator. Here is an example:
first_name, last_name = get_name()

Symbol Operation Description

+ Addition Adds two numbers

− Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the result
as a floating-point number

// Integer division Divides one number by another and gives the result
as a whole number

% Remainder Divides one number by another and gives the
remainder

** Exponent Raises a number to a power

Page 48 of 580

Day-02: String, built-in String methods, String Manipulation, and regular expressions

Basic String Operations

CONCEPT: Python provides several ways to access the individual characters in a string. Strings also
have methods that allow you to perform operations on them.

Indexing

Another way that you can access the individual characters in a string is with an index. Each
character in a string has an index that specifies its position in the string. Indexing starts
at 0, so the index of the first character is 0, the index of the second character is 1, and so
forth.

Strings Are Immutable

In Python, strings are immutable, which means once they are created, they cannot be
changed. Some operations, such as concatenation, give the impression that they modify
strings, but in reality, they do not.

String Slicing

CONCEPT: You can use slicing expressions to select a range of characters from a string
When you take a slice from a string, you get a span of characters from within the string.
String slices are also called substrings.

To get a slice of a string, you write an expression in the following general format:
string[start : end]

Testing, Searching, and Manipulating Strings

CONCEPT: Python provides operators and methods for testing strings, searching the
contents of strings, and getting modified copies of strings.

Testing Strings with ‘in’ and ‘not in’

In Python, you can use the in operator to determine whether one string is contained in another string.
Here is the general format of an expression using the in operator with two strings:
string1 in string2
string1 and string2 can be either string literals or variables referencing strings. The expression returns
true if string1 is found in string2. For example, look at the following code:
text = 'Four score and seven years ago'
if 'seven' in text:
print('The string "seven" was found.')
else:
print('The string "seven" was not found.')
This code determines whether the string 'Four score and seven years ago' contains the string 'seven'.
If we run this code, it will display:
The string "seven" was found.
You can use the not in operator to determine whether one string is not contained in another string.
Here is an example:
names = 'Bill Joanne Susan Chris Juan Katie'
if 'Pierre' not in names:
print('Pierre was not found.')
else:
print('Pierre was found.')
If we run this code, it will display:
Pierre was not found.

Page 49 of 580

String Methods

Recall from Chapter 6 that a method is a function that belongs to an object and performs
some operation on that object. Strings in Python have numerous methods.1 In this section,
we will discuss several string methods for performing the following types of operations:
• Testing the values of strings
• Performing various modifications
• Searching for substrings and replacing sequences of characters

String Modification Methods

Lab Activtity- Python essentials

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The

lines starting with # sign are comments in Python and are used to elaborate the code.

x = 1
y = 2
x + y
y
def add_numbers(x, y):
 return x + y
add_numbers(1, 2)
`add_numbers` updated to take an optional 3rd parameter. Using `print` allows printing of multiple
expressions within a single cell.
def add_numbers(x, y, z=None):
 if (z == None):
 return x + y
 else:
 return x + y + z
print(add_numbers(1, 2))
print(add_numbers(1, 2, 3))

def add_numbers(x, y, z=None, flag=False):

• Returns a copy of the string with all alphabetic letters converted to lower- case. Any
character that is already lowercase, or is not an alphabetic letter, is unchanged.lower()

• Returns a copy of the string with all leading whitespace characters removed. Leading
whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the beginning
of the string.

lstrip()
• The char argument is a string containing a character. Returns a copy of the string with all

instances of char that appear at the beginning of the string removed.lstrip(char)
• Returns a copy of the string with all trailing whitespace characters removed. Trailing

whitespace characters are spaces, newlines (\n), and tabs (\t) that appear at the end of the
string.

rstrip()
• The char argument is a string containing a character. The method returns a copy of the

string with all instances of char that appear at the end of the string removed.rstrip(char)

• Returns a copy of the string with all leading and trailing whitespace characters removed.strip()
• Returns a copy of the string with all instances of char that appear at the beginning and the

end of the string removed.strip(char)
• Returns a copy of the string with all alphabetic letters converted to uppercase. Any

character that is already uppercase, or is not an alphabetic letter, is unchanged.upper()

Page 50 of 580

 if (flag):
 print('Flag is true!')
 if (z == None):
 return x + y
 else:
 return x + y + z

print(add_numbers(1, 2, flag=True))
def add_numbers(x, y):
 return x + y

a = add_numbers
a(1, 2)

type('This is a string')

type(None)

type(1)

type(1.0)

type(add_numbers)
x = (1, 'a', 2, 'b')
type(x)
Lists are a mutable data structure.
x = [1, 'a', 2, 'b']
type(x)

x.append(3.3)
print(x)

This is an example of how to loop through each item in the list.

for item in x:
 print(item)
Or using the indexing operator:
i = 0
while (i != len(x)):
 print(x[i])
 i = i + 1
Use `+` to concatenate lists.
[1, 2] + [3, 4]
Use `*` to repeat lists.

[1] * 3
Use the `in` operator to check if something is inside a list.
1 in [1, 2, 3]

Page 51 of 580

Now let's look at strings. Use bracket notation to slice a string.

x = 'This is a string'
print(x[0]) #first character
print(x[0:1]) #first character, but we have explicitly set the end character
print(x[0:2]) #first two characters
x[-1]

This will return the slice starting from the 4th element from the end and stopping before the 2nd
element from the end.
x[-4:-2]

This is a slice from the beginning of the string and stopping before the 3rd element.
x[:3]
And this is a slice starting from the 4th element of the string and going all the way to the end.
x[3:]
firstname = 'Christopher'
lastname = 'Brooks'
print(firstname + ' ' + lastname)
print(firstname * 3)
print('Chris' in firstname)
firstname = 'Christopher Arthur Hansen Brooks'.split(' ')[0] # [0] selects the first element of the list
lastname = 'Christopher Arthur Hansen Brooks'.split(' ')[-1] # [-1] selects the last element of the list
print(firstname)
print(lastname)
Make sure you convert objects to strings before concatenating.
'Chris' + 2
'Chris' + str(2)
Dictionaries associate keys with values.
x = {'Christopher Brooks': 'brooksch@umich.edu', 'Bill Gates': 'billg@microsoft.com'}
x['Christopher Brooks'] # Retrieve a value by using the indexing operator
x['Kevyn Collins-Thompson'] = None
x['Kevyn Collins-Thompson']
Iterate over all of the keys:
for name in x:
 print(x[name])
Iterate over all of the values:
for email in x.values():
 print(email)
Iterate over all of the items in the list:
for name, email in x.items():
 print(name)
 print(email)
You can unpack a sequence into different variables:
x = ('Christopher', 'Brooks', 'brooksch@umich.edu')
fname, lname, email = x
fname
lname

Page 52 of 580

Make sure the number of values you are unpacking matches the number of variables being
assigned.
x = ('Christopher', 'Brooks', 'brooksch@umich.edu', 'Ann Arbor')
fname, lname, email = x

The Python Programming Language: More on Strings
print('Chris' + 2)
print('Chris' + str(2))
Python has a built in method for convenient string formatting.
In[33]:
sales_record = {
 'price': 3.24,
 'num_items': 4,
 'person': 'Chris'}

sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}'

print(sales_statement.format(sales_record['person'],
 sales_record['num_items'],
 sales_record['price'],
 sales_record['num_items'] * sales_record['price']))

import datetime as dt
import time as tm

`time` returns the current time in seconds since the Epoch. (January 1st, 1970)
tm.time()
Convert the timestamp to datetime.
In[47]:
dtnow = dt.datetime.fromtimestamp(tm.time())
dtnow
Handy datetime attributes:
In[48]:
dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second # get year,
month, day, etc.from a datetime
`timedelta` is a duration expressing the difference between two dates.
In[49]:
delta = dt.timedelta(days=100) # create a timedelta of 100 days
delta
`date.today` returns the current local date.
In[50]:
today = dt.date.today()
In[51]:
today - delta # the date 100 days ago
In[52]:
today > today - delta # compare dates
The Python Programming Language: Objects and map()
An example of a class in python:

Page 53 of 580

In[54]:
class Person:
 department = 'School of Information' #a class variable

 def set_name(self, new_name): #a method
 self.name = new_name

 def set_location(self, new_location):
 self.location = new_location
person = Person()
person.set_name('Christopher Brooks')
person.set_location('Ann Arbor, MI, USA')
print('{} live in {} and works in the department {}'.format(person.name, person.location,
person.department))
Here's an example of mapping the `min` function between two lists.
store1 = [10.00, 11.00, 12.34, 2.34]
store2 = [9.00, 11.10, 12.34, 2.01]
cheapest = map(min, store1, store2)
cheapest
Now let's iterate through the map object to see the values.
for item in cheapest:
 print(item)

The Python Programming Language: Lambda and List Comprehensions
Here's an example of lambda that takes in three parameters and adds the first two.
my_function = lambda a, b, c: a + b
In[60]:
my_function(1, 2, 3)
Let's iterate from 0 to 999 and return the even numbers.
my_list = []
for number in range(0, 1000):
 if number % 2 == 0:
 my_list.append(number)
my_list

my_list = [number for number in range(0, 1000) if number % 2 == 0]
my_list

Day 03- EXPORTING DATA USING PYTHON MODULES (numpy)

Data manipulation in Python is nearly synonymous with NumPy array manipulation: even
newer tools like Pandas are built around the NumPy array. This sec‐ tion will present several

examples using NumPy array manipulation to access data and subarrays, and to split,

reshape, and join the arrays. While the types of operations shown here may seem a bit dry

and pedantic, they comprise the building blocks of many other examples used throughout

the book. Get to know them well!

We’ll cover a few categories of basic array manipulations here:

Page 54 of 580

Attributes of arrays

Determining the size, shape, memory consumption, and data types of arrays

Indexing of arrays

Getting and setting the value of individual array elements

Slicing of arrays

Getting and setting smaller subarrays within a larger array

Reshaping of arrays

Changing the shape of a given array

Joining and splitting of arrays

Combining multiple arrays into one, and splitting one array into many

NumPy Array Attributes

First let’s discuss some useful array attributes. We’ll start by defining three random arrays:

a one-dimensional, two-dimensional, and three-dimensional array. We’ll use NumPy’s

random number generator, which we will seed with a set value in order to ensure that the

same random arrays are generated each time this code is run:

In[1]: import numpy as np

np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array

Each array has attributes ndim (the number of dimensions), shape (the size of each

dimension), and size (the total size of the array):

In[2]: print("x3 ndim: ", x3.ndim)
print("x3 shape:", x3.shape)
print("x3 size: ", x3.size)

x3 ndim: 3

x3 shape: (3, 4, 5)

x3 size: 60

Another useful attribute is the dtype, the data type of the array:

In[3]: print("dtype:", x3.dtype)

dtype: int64

Other attributes include itemsize, which lists the size (in bytes) of each array ele‐ ment, and

nbytes, which lists the total size (in bytes) of the array:

In[4]: print("itemsize:", x3.itemsize, "bytes")

Page 55 of 580

print("nbytes:", x3.nbytes, "bytes")

itemsize: 8 bytes

nbytes: 480 bytes

In general, we expect that nbytes is equal to itemsize times size.

Array Indexing: Accessing Single Elements

If you are familiar with Python’s standard list indexing, indexing in NumPy will feel quite

familiar. In a one-dimensional array, you can access the ith value (counting from zero) by

specifying the desired index in square brackets, just as with Python lists:

In[5]: x1

Out[5]: array([5, 0, 3, 3, 7, 9])

In[6]: x1[0]

Out[6]: 5

In[7]: x1[4]

Out[7]: 7

To index from the end of the array, you can use negative indices:

In[8]: x1[-1]

Out[8]: 9

In[9]: x1[-2]

Out[9]: 7

In a multidimensional array, you access items using a comma-separated tuple of

indices:

In[10]: x2

Out[10]: array([[3, 5, 2, 4],

[7, 6, 8, 8],

[1, 6, 7, 7]])

In[11]: x2[0, 0]

Out[11]: 3

In[12]: x2[2, 0]

Out[12]: 1

In[13]: x2[2, -1]

Out[13]: 7

You can also modify values using any of the above index notation:

In[14]: x2[0, 0] = 12

x2

Page 56 of 580

Out[14]: array([[12, 5, 2, 4],
[7, 6, 8, 8],
[1, 6, 7, 7]])

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type. This means, for
example, that if you attempt to insert a floating-point value to an integer array, the value will

be silently truncated. Don’t be caught unaware by this behavior!

In[15]: x1[0] = 3.14159 # this will be truncated!

x1

Out[15]: array([3, 0, 3, 3, 7, 9])

Array Slicing: Accessing Subarrays

Just as we can use square brackets to access individual array elements, we can also use them

to access subarrays with the slice notation, marked by the colon (:) character. The NumPy

slicing syntax follows that of the standard Python list; to access a slice of an array x, use this:

x[start:stop:step]

If any of these are unspecified, they default to the values start=0, stop=size of dimension,
step=1. We’ll take a look at accessing subarrays in one dimension and in multiple dimensions.

One-dimensional subarrays

In[16]: x = np.arange(10)

x

Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In[17]: x[:5] # first five elements

Out[17]: array([0, 1, 2, 3, 4])

In[18]: x[5:] # elements after index 5

Out[18]: array([5, 6, 7, 8, 9])

In[19]: x[4:7] # middle subarray

Out[19]: array([4, 5, 6])

In[20]: x[::2] # every other element

Out[20]: array([0, 2, 4, 6, 8])

In[21]: x[1::2] # every other element, starting at index 1

Out[21]: array([1, 3, 5, 7, 9])

A potentially confusing case is when the step value is negative. In this case, the
defaults for start and stop are swapped. This becomes a convenient way to reverse
an array:

In[22]: x[::-1] # all elements, reversed

Out[22]: array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

Page 57 of 580

In[23]: x[5::-2] # reversed every other from index 5

Out[23]: array([5, 3, 1])

Multidimensional subarrays

Multidimensional slices work in the same way, with multiple slices separated by

com‐ mas. For example:

In[24]: x2

Out[24]: array([[12, 5, 2, 4],
[7, 6, 8, 8],
[1, 6, 7, 7]])

In[25]: x2[:2, :3] # two rows, three columns

Out[25]: array([[12, 5, 2],

[7, 6, 8]])

In[26]: x2[:3, ::2] # all rows, every other column

Out[26]: array([[12, 2],
[7, 8],
[1, 7]])

Finally, subarray dimensions can even be reversed together:

In[27]: x2[::-1, ::-1]

Out[27]: array([[7, 7, 6, 1],
[8, 8, 6, 7],
[4, 2, 5, 12]])

Accessing array rows and columns. One commonly needed routine is accessing single rows or

columns of an array. You can do this by combining indexing and slicing, using an empty slice

marked by a single colon (:):

In[28]: print(x2[:, 0]) # first column of x2

[12 7 1]

In[29]: print(x2[0, :]) # first row of x2

[12 5 2 4]

In the case of row access, the empty slice can be omitted for a more compact syntax:

In[30]: print(x2[0]) # equivalent to x2[0, :]

[12 5 2 4]

Subarrays as no-copy views

One important—and extremely useful—thing to know about array slices is that they return

views rather than copies of the array data. This is one area in which NumPy array slicing

Page 58 of 580

differs from Python list slicing: in lists, slices will be copies. Consider our two-dimensional

array from before:

In[31]: print(x2)

[[12 5 2 4]
[7 6 8 8]
[1 6 7 7]]

Let’s extract a 2×2 subarray from this:

In[32]: x2_sub = x2[:2, :2]

print(x2_sub)

[[12 5]

[7 6]]

Now if we modify this subarray, we’ll see that the original array is changed! Observe:

In[33]: x2_sub[0, 0] = 99

print(x2_sub)

[[99 5]

[7 6]]

In[34]: print(x2)

[[99 5 2 4]
[7 6 8 8]
[1 6 7 7]]

This default behavior is actually quite useful: it means that when we work with large

datasets, we can access and process pieces of these datasets without the need to

copy the underlying data buffer.

Creating copies of arrays

Despite the nice features of array views, it is sometimes useful to instead explicitly copy the

data within an array or a subarray. This can be most easily done with the copy() method:

In[35]: x2_sub_copy = x2[:2, :2].copy()

print(x2_sub_copy)

[[99 5]

[7 6]]

If we now modify this subarray, the original array is not touched:

In[36]: x2_sub_copy[0, 0] = 42

print(x2_sub_copy)

[[42 5]

[7 6]]

In[37]: print(x2)

[[99 5 2 4]
[7 6 8 8]

Page 59 of 580

[1 6 7 7]]

Reshaping of Arrays

Another useful type of operation is reshaping of arrays. The most flexible way of

doing this is with the reshape() method. For example, if you want to put the num‐

bers 1 through 9 in a 3×3 grid, you can do the following:

In[38]: grid = np.arange(1, 10).reshape((3, 3))

print(grid)

[[1 2 3]

[4 5 6]

[7 8 9]]

Note that for this to work, the size of the initial array must match the size of the reshaped

array. Where possible, the reshape method will use a no-copy view of the initial array, but

with noncontiguous memory buffers this is not always the case.

Another common reshaping pattern is the conversion of a one-dimensional array into a

two-dimensional row or column matrix. You can do this with the reshape method, or more
easily by making use of the newaxis keyword within a slice opera‐ tion:

In[39]: x = np.array([1, 2, 3])

row vector via reshape

x.reshape((1, 3))

Out[39]: array([[1, 2, 3]])

In[40]: # row vector via newaxis

x[np.newaxis, :]

Out[40]: array([[1, 2, 3]])

In[41]: # column vector via reshape

x.reshape((3, 1))

Out[41]: array([[1],

[2],

[3]])

In[42]: # column vector via newaxis

x[:, np.newaxis]

Out[42]: array([[1],

[2],

[3]])

We will see this type of transformation often throughout the remainder of the book.

Array Concatenation and Splitting

All of the preceding routines worked on single arrays. It’s also possible to combine multiple

arrays into one, and to conversely split a single array into multiple arrays. We’ll take a look

Page 60 of 580

at those operations here.

Concatenation of arrays

Concatenation, or joining of two arrays in NumPy, is primarily accomplished

through the routines np.concatenate, np.vstack, and np.hstack. np.concatenate

takes a tuple or list of arrays as its first argument, as we can see here:

In[43]: x = np.array([1, 2, 3])

y = np.array([3, 2, 1])
np.concatenate([x, y])

Out[43]: array([1, 2, 3, 3, 2, 1])

You can also concatenate more than two arrays at once:

In[44]: z = [99, 99, 99]

print(np.concatenate([x, y, z])) [

1 2 3 3 2 1 99 99 99]

np.concatenate can also be used for two-dimensional arrays:

In[45]: grid = np.array([[1, 2, 3],

[4, 5, 6]])

In[46]: # concatenate along the first axis

np.concatenate([grid, grid])

Out[46]: array([[1, 2, 3],

[4, 5, 6],

[1, 2, 3],

[4, 5, 6]])

In[47]: # concatenate along the second axis (zero-indexed)

np.concatenate([grid, grid], axis=1)

Out[47]: array([[1, 2, 3, 1, 2, 3],

[4, 5, 6, 4, 5, 6]])

For working with arrays of mixed dimensions, it can be clearer to use the np.vstack
(vertical stack) and np.hstack (horizontal stack) functions:

In[48]: x = np.array([1, 2, 3])

grid = np.array([[9, 8, 7],

[6, 5, 4]])

vertically stack the arrays

np.vstack([x, grid])

Out[48]: array([[1, 2, 3],

[9, 8, 7],

[6, 5, 4]])

Page 61 of 580

In[49]: # horizontally stack the arrays

y = np.array([[99],

[99]])

np.hstack([grid, y])

Out[49]: array([[9, 8, 7, 99],

[6, 5, 4, 99]])

Similarly, np.dstack will stack arrays along the third axis.

Splitting of arrays

The opposite of concatenation is splitting, which is implemented by the functions np.split,

np.hsplit, and np.vsplit. For each of these, we can pass a list of indices giving the split points:

In[50]: x = [1, 2, 3, 99, 99, 3, 2, 1]

x1, x2, x3 = np.split(x, [3, 5])

print(x1, x2, x3)

[1 2 3] [99 99] [3 2 1]

Notice that N split points lead to N + 1 subarrays. The related functions np.hsplit

and np.vsplit are similar:

In[51]: grid = np.arange(16).reshape((4, 4))
grid

Out[51]: array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

In[52]: upper, lower = np.vsplit(grid, [2])

print(upper)
print(lower)

[[0 1 2 3]

[4 5 6 7]]

[[8 9 10 11]

[12 13 14 15]]

In[53]: left, right = np.hsplit(grid, [2])

print(left)
print(right)

[[0 1]
[4 5]
[8 9]
[12 13]]

[[2 3]

[6 7]

Page 62 of 580

[10 11]

[14 15]]

Similarly, np.dsplit will split arrays along the third axis.

Computation on NumPy Arrays: Universal Functions

Up until now, we have been discussing some of the basic nuts and bolts of NumPy; in the next

few sections, we will dive into the reasons that NumPy is so important in the Python data

science world. Namely, it provides an easy and flexible interface to opti‐ mized computation

with arrays of data.

Computation on NumPy arrays can be very fast, or it can be very slow. The key to making

it fast is to use vectorized operations, generally implemented through Num‐ Py’s universal

functions (ufuncs). This section motivates the need for NumPy’s ufuncs, which can be used to

make repeated calculations on array elements much more effi‐ cient. It then introduces

many of the most common and useful arithmetic ufuncs available in the NumPy package.

Array arithmetic

NumPy’s ufuncs feel very natural to use because they make use of Python’s native

arithmetic operators. The standard addition, subtraction, multiplication, and

division can all be used:

In[7]: x = np.arange(4)

print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)
print("x * 2 =", x * 2)

print("x / 2 =", x / 2)

print("x // 2 =", x // 2) # floor division

x = [0 1 2 3]

x + 5 = [5 6 7 8]

x - 5 = [-5 -4 -3 -2]

x * 2 = [0 2 4 6]

x / 2 = [0. 0.5 1. 1.5]

x // 2 = [0 0 1 1]

There is also a unary ufunc for negation, a ** operator for exponentiation, and a %
operator for modulus:

In[8]: print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)

-x = [0 -1 -2 -3]

x ** 2 = [0 1 4 9]

x % 2 = [0 1 0 1]

In addition, these can be strung together however you wish, and the standard

order of operations is respected:

In[9]: -(0.5*x + 1) ** 2

Page 63 of 580

Out[9]: array([-1. , -2.25, -4. , -6.25])

All of these arithmetic operations are simply convenient wrappers around specific functions

built into NumPy; for example, the + operator is a wrapper for the add function:

In[10]: np.add(x, 2)

Out[10]: array([2, 3, 4, 5])

Table . Arithmetic operators implemented in NumPy

+ np.add Addition (e.g., 1 + 1 = 2)

- np.subtract Subtraction (e.g., 3 - 2 = 1)

- np.negative Unary negation (e.g., -2)

* np.multiply Multiplication (e.g., 2 * 3 = 6)

/ np.divide Division (e.g., 3 / 2 = 1.5)

// np.floor_divide Floor division (e.g., 3 // 2 = 1)

** np.power Exponentiation (e.g., 2 ** 3 = 8)

% np.mod Modulus/remainder (e.g., 9 % 4 = 1)

Absolute value

Just as NumPy understands Python’s built-in arithmetic operators, it also understands

Python’s built-in absolute value function:

In[11]: x = np.array([-2, -1, 0, 1, 2])

abs(x)

Out[11]: array([2, 1, 0, 1, 2])

The corresponding NumPy ufunc is np.absolute, which is also available under the
alias np.abs:

In[12]: np.absolute(x)

Out[12]: array([2, 1, 0, 1, 2])

In[13]: np.abs(x)

Out[13]: array([2, 1, 0, 1, 2])

This ufunc can also handle complex data, in which the absolute value returns the magnitude:

In[14]: x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
np.abs(x)

Out[14]: array([5., 5., 2., 1.])

Trigonometric functions

NumPy provides a large number of useful ufuncs, and some of the most useful for

Operator Equivalent ufunc Description

Page 64 of 580

the data scientist are the trigonometric functions. We’ll start by defining an array

of angles:

In[15]: theta = np.linspace(0, np.pi, 3)

Now we can compute some trigonometric functions on these values:

In[16]: print("theta = ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))

theta = [0. 1.57079633 3.14159265]
sin(theta) = [0.00000000e+

00
1.00000000e
+00

1.22464680e-
16]

cos(theta) = [1.00000000e+
00

6.12323400e
-17

-
1.00000000e+0
0]

tan(theta) = [0.00000000e+
00

1.63312394e
+16

-1.22464680e-
16]

The values are computed to within machine precision, which is why values that
should be zero do not always hit exactly zero. Inverse trigonometric functions are

also available:

In[17]: x = [-1, 0, 1]

print("x = ", x)

print("arcsin(x) = ", np.arcsin(x))

print("arccos(x) = ", np.arccos(x))

print("arctan(x) = ", np.arctan(x))

x = [-1, 0, 1]
arcsin(x) = [-

1.57079633
0. 1.5707963

3]
arccos(x) = [

3.14159265
1.570796
33

0.]

arctan(x) = [-
0.78539816

0. 0.7853981
6]

Exponents and logarithms

Another common type of operation available in a NumPy ufunc are the exponentials:

In[18]: x = [1, 2, 3]

print("x =", x)

print("e^x =", np.exp(x))

print("2^x =", np.exp2(x))

print("3^x =", np.power(3, x))

x = [1, 2, 3]
e^x = [2.71828183 7.389056

1
20.0855369
2]

2^x = [2. 4. 8.]
3^x = [3 9 27]

Page 65 of 580

The inverse of the exponentials, the logarithms, are also available. The basic np.log
gives the natural logarithm; if you prefer to compute the base-2 logarithm or the
base-10 logarithm, these are available as well:

In[19]: x = [1, 2, 4, 10]

print("x =", x)

print("ln(x) =", np.log(x))

print("log2(x) =", np.log2(x))

print("log10(x) =", np.log10(x))

x = [1, 2, 4, 10]
ln(x) = [0. 0.693147

18
1.386294
36

2.3025850
9]

log2(x) = [0. 1. 2. 3.3219280
9]

log10(x) = [0. 0.30103 0.602059
99

1.]

There are also some specialized versions that are useful for maintaining precision
with very small input:

In[20]: x = [0, 0.001, 0.01, 0.1]

print("exp(x) - 1 =", np.expm1(x))

print("log(1 + x) =", np.log1p(x))

exp(x) - 1 = [0. 0.0010005 0.01005017

0.10517092]
log(1 + x) = [0. 0.0009995 0.00995033

0.09531018]

When x is very small, these functions give more precise values than if the raw np.log
or np.exp were used.

Specialized ufuncs

NumPy has many more ufuncs available, including hyperbolic trig functions, bitwise

arithmetic, comparison operators, conversions from radians to degrees, rounding

and remainders, and much more. A look through the NumPy documentation

reveals a lot of interesting functionality.

Another excellent source for more specialized and obscure ufuncs is the submodule

scipy.special. If you want to compute some obscure mathematical function on your data,

chances are it is implemented in scipy.special. There are far too many functions to list them

all, but the following snippet shows a couple that might come up in a statistics context:

In[21]: from scipy import special

In[22]: # Gamma functions (generalized factorials) and related functions

x = [1, 5, 10]

print("gamma(x) =", special.gamma(x))
print("ln|gamma(x)| =",
special.gammaln(x)) print("beta(x, 2)
 =", special.beta(x, 2))

Page 66 of 580

gamma(x) = [1.00000000e+00 2.40000000e+01
 3.62880000e+05] ln|gamma(x)| = [0. 3.17805383
12.80182748]

beta(x, 2) = [0.5 0.03333333 0.00909091]

In[23]: # Error function (integral of
Gaussian) # its complement, and its
inverse

x = np.array([0, 0.3, 0.7, 1.0])

print("erf(x) =", special.erf(x))

print("erfc(x) =", special.erfc(x))

print("erfinv(x) =", special.erfinv(x))

erf(x) = [0. 0.32862676 0.67780119 0.84270079]

erfc(x) = [1. 0.67137324 0.32219881 0.15729921]

erfinv(x) = [0. 0.27246271 0.73286908 inf]

There are many, many more ufuncs available in both NumPy and scipy.special.
Because the documentation of these packages is available online, a web search
along the lines of “gamma function python” will generally find the relevant
information.

Advanced Ufunc Features

Many NumPy users make use of ufuncs without ever learning their full set of features. We’ll

outline a few specialized features of ufuncs here.

Specifying output

For large calculations, it is sometimes useful to be able to specify the array where the result
of the calculation will be stored. Rather than creating a temporary array, you can use this to
write computation results directly to the memory location where you’d like them to be.
For all ufuncs, you can do this using the out argument of the function:

In[24]: x = np.arange(5)

y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)

[0. 10. 20. 30. 40.]

This can even be used with array views. For example, we can write the results of a

computation to every other element of a specified array:

In[25]: y = np.zeros(10)

np.power(2, x, out=y[::2])

print(y)

[1. 0. 2. 0. 4. 0. 8. 0. 16. 0.]

If we had instead written y[::2] = 2 ** x, this would have resulted in the creation of a
temporary array to hold the results of 2 ** x, followed by a second operation copying those

values into the y array. This doesn’t make much of a difference for such a small computation,
but for very large arrays the memory savings from careful use of the out argument can be
significant.

Page 67 of 580

Aggregates

For binary ufuncs, there are some interesting aggregates that can be computed directly

from the object. For example, if we’d like to reduce an array with a particular operation, we

can use the reduce method of any ufunc. A reduce repeatedly applies a given operation to

the elements of an array until only a single result remains.

For example, calling reduce on the add ufunc returns the sum of all elements in
the array:

In[26]: x = np.arange(1, 6)
np.add.reduce(x)

Out[26]: 15

Similarly, calling reduce on the multiply ufunc results in the product of all array
elements:

In[27]: np.multiply.reduce(x)

Out[27]: 120

If we’d like to store all the intermediate results of the computation, we can instead use
accumulate:

In[28]: np.add.accumulate(x)

Out[28]: array([1, 3, 6, 10, 15])

Aggregations: Min, Max, and Everything in Between

Often when you are faced with a large amount of data, a first step is to compute sum‐ mary

statistics for the data in question. Perhaps the most common summary statistics are the

mean and standard deviation, which allow you to summarize the “typical” val‐ ues in a

dataset, but other aggregates are useful as well (the sum, product, median, minimum and

maximum, quantiles, etc.).

NumPy has fast built-in aggregation functions for working on arrays; we’ll discuss and

demonstrate some of them here.

Summing the Values in an Array

As a quick example, consider computing the sum of all values in an array. Python

itself can do this using the built-in sum function:

In[1]: import numpy as np

In[2]: L =
np.random.random(100)
sum(L)

Out[2]: 55.61209116604941

The syntax is quite similar to that of NumPy’s sum function, and the result is the
same in the simplest case:

In[3]: np.sum(L)

Out[3]: 55.612091166049424

However, because it executes the operation in compiled code, NumPy’s version of the

Page 68 of 580

operation is computed much more quickly:

In[4]: big_array = np.random.rand(1000000)

%timeit sum(big_array)

%timeit np.sum(big_array)

10 loops, best of 3: 104 ms per loop
1000 loops, best of 3: 442 µs per loop

Be careful, though: the sum function and the np.sum function are not identical, which can
sometimes lead to confusion! In particular, their optional arguments have differ‐ ent
meanings, and np.sum is aware of multiple array dimensions, as we will see in the following
section.

Minimum and Maximum

Similarly, Python has built-in min and max functions, used to find the minimum
value and maximum value of any given array:

In[5]: min(big_array), max(big_array)

Out[5]: (1.1717128136634614e-06, 0.9999976784968716)

NumPy’s corresponding functions have similar syntax, and again operate much

more quickly:

In[6]: np.min(big_array), np.max(big_array)

Out[6]: (1.1717128136634614e-06, 0.9999976784968716)

In[7]: %timeit min(big_array)

%timeit np.min(big_array)

10 loops, best of 3: 82.3 ms per loop
1000 loops, best of 3: 497 µs per loop

For min, max, sum, and several other NumPy aggregates, a shorter syntax is to use methods
of the array object itself:

In[8]: print(big_array.min(), big_array.max(), big_array.sum())

1.17171281366e-06 0.999997678497 499911.628197

Whenever possible, make sure that you are using the NumPy version of these

aggre‐ gates when operating on NumPy arrays!

Multidimensional aggregates

One common type of aggregation operation is an aggregate along a row or column.

Say you have some data stored in a two-dimensional array:

In[9]: M = np.random.random((3, 4))

print(M)

[[0.8967576 0.037837

39
0.759525
19

0.0668282
7]

[0.8354065 0.991968
18

0.195447
69

0.4344708
4]

[
0.66859307

0.150387
21

0.379114
23

0.6687194
]]

Page 69 of 580

By default, each NumPy aggregation function will return the aggregate over the entire array:

In[10]: M.sum()

Out[10]: 6.0850555667307118

Aggregation functions take an additional argument specifying the axis along which the

aggregate is computed. For example, we can find the minimum value within each column by

specifying axis=0:

In[11]: M.min(axis=0)

Out[11]: array([0.66859307, 0.03783739, 0.19544769, 0.06682827])

The function returns four values, corresponding to the four columns of numbers. Similarly,

we can find the maximum value within each row:

In[12]: M.max(axis=1)

Out[12]: array([0.8967576 , 0.99196818, 0.6687194])

The way the axis is specified here can be confusing to users coming from other lan‐ guages.

The axis keyword specifies the dimension of the array that will be collapsed, rather than the

dimension that will be returned. So specifying axis=0 means that the first axis will be

collapsed: for two-dimensional arrays, this means that values within each column will be

aggregated.

Table. Aggregation functions available in NumPy

np.sum np.nansum Compute sum of elements

np.prod np.nanprod Compute product of elements

np.mean np.nanmean Compute median of elements

np.std np.nanstd Compute standard deviation

np.var np.nanvar Compute variance

np.min np.nanmin Find minimum value

np.max np.nanmax Find maximum value

np.argmin np.nanargmin Find index of minimum value

np.argmax np.nanargmax Find index of maximum value

np.median np.nanmedian Compute median of elements

np.percentile np.nanpercentile Compute rank-based statistics of elements

np.any N/A Evaluate whether any elements are true

np.all N/A Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

Function Name NaN-safe Version Description

Page 70 of 580

Example: What Is the Average Height of US Presidents?

Aggregates available in NumPy can be extremely useful for summarizing a set of val‐ ues. As

a simple example, let’s consider the heights of all US presidents. This data is available in the

file president_heights.csv, which is a simple comma-separated list of labels and values:

In[13]: !head -4

data/president_heights.csv

order,name,height(cm)

1,George Washington,189

2,John Adams,170
3,Thomas
Jefferson,189

We’ll use the Pandas package, which we’ll explore more fully in Chapter 3, to read the file and

extract this information (note that the heights are measured in centimeters):

In[14]: import pandas as pd

data =
pd.read_csv('data/president_heights.csv')
heights = np.array(data['height(cm)'])
print(heights)

[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173

174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183

177 185 188 188 182 185]

Now that we have this data array, we can compute a variety of summary statistics:

In[15]: print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: ", heights.max())

Mean height: 179.738095238

Standard deviation: 6.93184344275

Minimum height: 163

Maximum height: 193

Note that in each case, the aggregation operation reduced the entire array to a

single summarizing value, which gives us information about the distribution of

values. We may also wish to compute quantiles:

In[16]: print("25th percentile: ", np.percentile(heights, 25))
print("Median: ", np.median(heights))
print("75th percentile: ", np.percentile(heights, 75))

25th percentile: 174.2

5
Median: 182.0
75th percentile: 183.0

We see that the median height of US presidents is 182 cm, or just shy of six feet.

Of course, sometimes it’s more useful to see a visual representation of this data, which we

Page 71 of 580

can accomplish using tools in Matplotlib (we’ll discuss Matplotlib more fully in Chapter 4).

For example, this code generates the chart shown in Figure 2-3:

In[17]: %matplotlib inline

import matplotlib.pyplot as plt

import seaborn; seaborn.set() # set plot style

In[18]: plt.hist(heights)

plt.title('Height Distribution of US Presidents')
plt.xlabel('height (cm)')

plt.ylabel('number');

Figure 1:Histogram of presidential heights

Computation on Arrays: Broadcasting

We saw in the previous section how NumPy’s universal functions can be used to vec‐ torize

operations and thereby remove slow Python loops. Another means of vectoriz‐ ing

operations is to use NumPy’s broadcasting functionality. Broadcasting is simply a set of rules

for applying binary ufuncs (addition, subtraction, multiplication, etc.) on arrays of different

sizes.

Introducing Broadcasting

Recall that for arrays of the same size, binary operations are performed on an

element-by-element basis:

In[1]: import numpy as np

In[2]: a = np.array([0, 1, 2])

b = np.array([5, 5, 5]) a +
b

Out[2]: array([5, 6, 7])

Broadcasting allows these types of binary operations to be performed on arrays of dif‐ ferent

sizes—for example, we can just as easily add a scalar (think of it as a zero- dimensional array)

to an array:

In[3]: a + 5

Page 72 of 580

Out[3]: array([5, 6, 7])

We can think of this as an operation that stretches or duplicates the value 5 into
the array [5, 5, 5], and adds the results. The advantage of NumPy’s broadcasting is
that this duplication of values does not actually take place, but it is a useful mental
model as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when we add

a one-dimensional array to a two-dimensional array:

In[4]: M = np.ones((3, 3)) M

Out[4]: array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

In[5]: M + a

Out[5]: array([[1., 2., 3.],
[1., 2., 3.],
[1., 2., 3.]])

Here the one-dimensional array a is stretched, or broadcast, across the second dimension in

order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can involve

broadcasting of both arrays. Consider the following example:

In[6]: a = np.arange(3)

b = np.arange(3)[:, np.newaxis]

print(a)
print(b)

[0 1 2]

[[0]

[1]

[2]]

In[7]: a + b

Out[7]: array([[0, 1, 2],

[1, 2, 3],

[2, 3, 4]])

Just as before we stretched or broadcasted one value to match the shape of the other, here we’ve

stretched both a and b to match a common shape, and the result is a two- dimensional array!

Example: Selecting Random Points

One common use of fancy indexing is the selection of subsets of rows from a matrix. For
example, we might have an N by D matrix representing N points in D dimen‐ sions, such as

the following points drawn from a two-dimensional normal distribu‐ tion:

In[13]: mean = [0, 0]

cov = [[1, 2],

Page 73 of 580

[2, 5]]

X = rand.multivariate_normal(mean, cov,
100) X.shape

Out[13]: (100, 2)

Using the plotting tools we will discuss in Chapter 4, we can visualize these points

as a scatter plot (Figure 2-7):

In[14]: %matplotlib inline

import matplotlib.pyplot as plt

import seaborn; seaborn.set() # for plot styling

plt.scatter(X[:, 0], X[:, 1]);

Let’s use fancy indexing to select 20 random points. We’ll do this by first choosing

20 random indices with no repeats, and use these indices to select a portion of the

origi‐ nal array:

In[15]: indices = np.random.choice(X.shape[0], 20,
replace=False) indices

Out[15]: array([93, 45, 73, 81, 50, 10, 98, 94, 4, 64, 65, 89, 47, 84, 82,

80, 25, 90, 63, 20])

In[16]: selection = X[indices] # fancy indexing here

selection.shape

Out[16]: (20, 2)

Now to see which points were selected, let’s over-plot large circles at the locations of the

selected points

In[17]: plt.scatter(X[:, 0], X[:, 1], alpha=0.3)

Page 74 of 580

plt.scatter(selection[:, 0], selection[:, 1],
facecolor='none', s=200);

Figure . Random selection among points

This sort of strategy is often used to quickly partition datasets, as is often needed in train/test

splitting for validation of statistical models and in sampling approaches to answering

statistical questions.

Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can also be used to modify
parts of an array. For example, imagine we have an array of indices and we’d like to set the

corresponding items in an array to some value:

In[18]: x = np.arange(10)

i = np.array([2, 1, 8, 4])

x[i] = 99

print(x)

[0 99 99 3 99 5 6 7 99 9]

We can use any assignment-type operator for this. For example:

In[19]: x[i] -= 10

print(x)

[0 89 89 3 89 5 6 7 89 9]

Notice, though, that repeated indices with these operations can cause some poten‐

tially unexpected results. Consider the following:

In[20]: x = np.zeros(10)

x[[0, 0]] = [4, 6]

print(x)

[6. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Where did the 4 go? The result of this operation is to first assign x[0] = 4, followed
by x[0] = 6. The result, of course, is that x[0] contains the value 6.

Fair enough, but consider this operation:

In[21]: i = [2, 3, 3, 4, 4, 4]

Page 75 of 580

x[i] += 1

x

Out[21]: array([6., 0., 1., 1., 1., 0., 0., 0., 0., 0.])

You might expect that x[3] would contain the value 2, and x[4] would contain the value 3, as
this is how many times each index is repeated. Why is this not the case? Conceptually, this
is because x[i] += 1 is meant as a shorthand of x[i] = x[i] + 1. x[i] + 1 is evaluated, and then the
result is assigned to the indices in x. With this in mind, it is not the augmentation that

happens multiple times, but the assignment, which leads to the rather nonintuitive results.

So what if you want the other behavior where the operation is repeated? For this,

you can use the at() method of ufuncs (available since NumPy 1.8), and do the

following:

In[22]: x = np.zeros(10)

np.add.at(x, i, 1)

print(x)

[0. 0. 1. 2. 3. 0. 0. 0. 0. 0.]

The at() method does an in-place application of the given operator at the specified indices
(here, i) with the specified value (here, 1). Another method that is similar in spirit is the
reduceat() method of ufuncs, which you can read about in the NumPy documentation.

Example: Binning Data

You can use these ideas to efficiently bin data to create a histogram by hand. For

example, imagine we have 1,000 values and would like to quickly find where they

fall within an array of bins. We could compute it using ufunc.at like this:

In[23]: np.random.seed(42)

x = np.random.randn(100)

compute a histogram by
hand bins = np.linspace(-5, 5,
20) counts =
np.zeros_like(bins)

find the appropriate bin for each x

i = np.searchsorted(bins, x)

add 1 to each of these bins

np.add.at(counts, i, 1)

The counts now reflect the number of points within each bin—in other words, a

his‐ togram

In[24]: # plot the results

Page 76 of 580

plt.plot(bins, counts, linestyle='steps');

Figure. A histogram computed by hand

Of course, it would be silly to have to do this each time you want to plot a histogram. This is

why Matplotlib provides the plt.hist() routine, which does the same in a single line:

plt.hist(x, bins, histtype='step');

This function will create a nearly identical plot to the one seen here. To compute

the binning, Matplotlib uses the np.histogram function, which does a very similar

com‐ putation to what we did before. Let’s compare the two here:

In[25]: print("NumPy routine:")

%timeit counts, edges = np.histogram(x, bins)

print("Custom routine:")

%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:

10000 loops, best of 3: 97.6 µs per loop
Custom routine:

10000 loops, best of 3: 19.5 µs per loop

Our own one-line algorithm is several times faster than the optimized algorithm in NumPy!

How can this be? If you dig into the np.histogram source code (you can do this in IPython by

typing np.histogram??), you’ll see that it’s quite a bit more involved than the simple search-

and-count that we’ve done; this is because NumPy’s algorithm is more flexible, and

particularly is designed for better performance when the number of data points becomes

large:

In[26]: x = np.random.randn(1000000)

print("NumPy routine:")

%timeit counts, edges = np.histogram(x, bins)

print("Custom routine:")

%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy routine:

Page 77 of 580

10 loops, best of 3: 68.7 ms per loop
Custom routine:

10 loops, best of 3: 135 ms per loop

Sorting Arrays

Up to this point we have been concerned mainly with tools to access and operate on array

data with NumPy. This section covers algorithms related to sorting values in NumPy arrays.

These algorithms are a favorite topic in introductory computer sci‐ ence courses: if you’ve

ever taken one, you probably have had dreams (or, depending on your temperament,

nightmares) about insertion sorts, selection sorts, merge sorts, quick sorts, bubble sorts, and

many, many more. All are means of accomplishing a similar task: sorting the values in a list

or array.

For example, a simple selection sort repeatedly finds the minimum value from a list, and

makes swaps until the list is sorted. We can code this in just a few lines of Python:

In[1]: import numpy as np

def selection_sort(x):

for i in range(len(x)):

swap = i + np.argmin(x[i:]) (x[i],
x[swap]) = (x[swap], x[i])

return x

In[2]: x = np.array([2, 1, 4, 3, 5])
selection_sort(x)

Out[2]: array([1, 2, 3, 4, 5])

Fortunately, Python contains built-in sorting algorithms that are much more efficient than

either of the simplistic algorithms just shown. We’ll start by looking at the Python built-ins,

and then take a look at the routines included in NumPy and opti‐ mized for NumPy arrays.

Fast Sorting in NumPy: np.sort and np.argsort

Although Python has built-in sort and sorted functions to work with lists, we won’t
discuss them here because NumPy’s np.sort function turns out to be much more

efficient and useful for our purposes. By default np.sort uses an N log N , quick‐ sort algorithm,
though mergesort and heapsort are also available. For most applica‐ tions, the default
quicksort is more than sufficient.

To return a sorted version of the array without modifying the input, you can use

np.sort:

In[5]: x = np.array([2, 1, 4, 3, 5])
np.sort(x)

Out[5]: array([1, 2, 3, 4, 5])

If you prefer to sort the array in-place, you can instead use the sort method of arrays:

In[6]: x.sort()

Page 78 of 580

print(x)

[1 2 3 4 5]

A related function is argsort, which instead returns the indices of the sorted
elements:

In[7]: x = np.array([2, 1, 4, 3, 5]) i =
np.argsort(x)

print(i)

[1 0 3 2 4]

The first element of this result gives the index of the smallest element, the second

value gives the index of the second smallest, and so on. These indices can then be

used (via fancy indexing) to construct the sorted array if desired:

In[8]: x[i]

Out[8]: array([1, 2, 3, 4, 5])

Sorting along rows or columns

A useful feature of NumPy’s sorting algorithms is the ability to sort along specific rows or

columns of a multidimensional array using the axis argument. For example:

In[9]: rand =
np.random.RandomState(42) X =
rand.randint(0, 10, (4, 6))
print(X)

[[6 3 7 4 6 9]

[2 6 7 4 3 7]

[7 2 5 4 1 7]

[5 1 4 0 9 5]]

In[10]: # sort each column of X

np.sort(X, axis=0)

Out[10]: array([[2, 1, 4, 0, 1, 5],

[5, 2, 5, 4, 3, 7],

[6, 3, 7, 4, 6, 7],

[7, 6, 7, 4, 9, 9]])

In[11]: # sort each row of X

np.sort(X, axis=1)

Out[11]: array([[3, 4, 6, 6, 7, 9],

[2, 3, 4, 6, 7, 7],

[1, 2, 4, 5, 7, 7],

[0, 1, 4, 5, 5, 9]])

Keep in mind that this treats each row or column as an independent array, and any

Page 79 of 580

relationships between the row or column values will be lost!

Partial Sorts: Partitioning

Sometimes we’re not interested in sorting the entire array, but simply want to find the K
smallest values in the array. NumPy provides this in the np.partition function. np.partition

takes an array and a number K; the result is a new array with the small‐ est K values to the

left of the partition, and the remaining values to the right, in arbi‐ trary order:

In[12]: x = np.array([7, 2, 3, 1, 6, 5, 4])

np.partition(x, 3)

Out[12]: array([2, 1, 3, 4, 6, 5, 7])

Note that the first three values in the resulting array are the three smallest in the array,

and the remaining array positions contain the remaining values. Within the two partitions,

the elements have arbitrary order.

Similarly to sorting, we can partition along an arbitrary axis of a multidimensional

array:

In[13]: np.partition(X, 2, axis=1)

Out[13]: array([[3, 4, 6, 7, 6, 9],

[2, 3, 4, 7, 6, 7],

[1, 2, 4, 5, 7, 7],

[0, 1, 4, 5, 9, 5]])

The result is an array where the first two slots in each row contain the smallest

values from that row, with the remaining values filling the remaining slots.

Finally, just as there is a np.argsort that computes indices of the sort, there is a
np.argpartition that computes indices of the partition. We’ll see this in action in the
following section.

Example: k-Nearest Neighbors

Let’s quickly see how we might use this argsort function along multiple axes to find
the nearest neighbors of each point in a set. We’ll start by creating a random set of
10 points on a two-dimensional plane. Using the standard convention, we’ll
arrange these in a 10×2 array:

In[14]: X = rand.rand(10, 2)

To get an idea of how these points look, let’s quickly scatter plot them:

In[15]: %matplotlib inline

import matplotlib.pyplot as plt

import seaborn; seaborn.set() # Plot styling

Page 80 of 580

plt.scatter(X[:, 0], X[:, 1], s=100);

Figure . Visualization of points in the k-neighbors example

Now we’ll compute the distance between each pair of points. Recall that the squared-

distance between two points is the sum of the squared differences in each dimension; using

the efficient broadcasting routines provided by NumPy, we can compute the matrix of

square distances in a sin‐ gle line of code:

In[16]: dist_sq = np.sum((X[:,np.newaxis,:] - X[np.newaxis,:,:]) ** 2, axis=-1)

This operation has a lot packed into it, and it might be a bit confusing if you’re unfa‐ miliar

with NumPy’s broadcasting rules. When you come across code like this, it can be useful to

break it down into its component steps:

In[17]: # for each pair of points, compute differences in their
coordinates differences = X[:, np.newaxis, :] -
X[np.newaxis, :, :] differences.shape

Out[17]: (10, 10, 2)

In[18]: # square the coordinate differences
sq_differences = differences ** 2
sq_differences.shape

Out[18]: (10, 10, 2)

In[19]: # sum the coordinate differences to get the squared distance

dist_sq = sq_differences.sum(-1)
dist_sq.shape

Out[19]: (10, 10)

Just to double-check what we are doing, we should see that the diagonal of this matrix (i.e.,

the set of distances between each point and itself) is all zero:

In[20]: dist_sq.diagonal()

Out[20]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

It checks out! With the pairwise square-distances converted, we can now use np.arg sort to
sort along each row. The leftmost columns will then give the indices of the nearest neighbors:

In[21]: nearest = np.argsort(dist_sq, axis=1)

Page 81 of 580

print(nearest)

[[0 3 9 7 1 4 2 5 6 8]
[1 4 7 9 3 6 8 5 0 2]
[2 1 4 6 3 0 8 9 7 5]
[3 9 7 0 1 4 5 8 6 2]
[4 1 8 5 6 7 9 3 0 2]
[5 8 6 4 1 7 9 3 2 0]
[6 8 5 4 1 7 9 3 2 0]
[7 9 3 1 4 0 5 8 6 2]
[8 5 6 4 1 7 9 3 2 0]
[9 7 3 0 1 4 5 8 6 2]]

Notice that the first column gives the numbers 0 through 9 in order: this is due to

the fact that each point’s closest neighbor is itself, as we would expect.

By using a full sort here, we’ve actually done more work than we need to in this case. If we’re

simply interested in the nearest k neighbors, all we need is to partition each row so that the

smallest k + 1 squared distances come first, with larger distances fill‐ ing the remaining

positions of the array. We can do this with the np.argpartition function:

In[22]: K = 2

nearest_partition = np.argpartition(dist_sq, K + 1, axis=1)

In order to visualize this network of neighbors, let’s quickly plot the points along with lines

representing the connections from each point to its two nearest neighbors :

In[23]: plt.scatter(X[:, 0], X[:, 1], s=100)

draw lines from each point to its two nearest neighbors

K = 2

for i in range(X.shape[0]):

for j in nearest_partition[i, :K+1]:

plot a line from X[i] to X[j]

use some zip magic to make it happen:

plt.plot(*zip(X[j], X[i]), color='black')

Figure : Visualization of the neighbors of each point

Page 82 of 580

Lab activity : Reading and Writing CSV files

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The

lines starting with # sign are comments in Python and are used to elaborate the code.

Reading and Writing CSV files
Let's import our datafile mpg.csv, which contains fuel economy data for 234 cars.

* mpg : miles per gallon
* class : car classification
* cty : city mpg
* cyl : # of cylinders
* displ : engine displacement in liters
* drv : f = front-wheel drive, r = rear wheel drive, 4 = 4wd
* fl : fuel (e = ethanol E85, d = diesel, r = regular, p = premium, c = CNG)
* hwy : highway mpg
* manufacturer : automobile manufacturer
* model : model of car
* trans : type of transmission
* year : model year
import csv
get_ipython().run_line_magic('precision', '2')

with open('datasets/mpg.csv') as csvfile:
 mpg = list(csv.DictReader(csvfile))

mpg[:3] # The first three dictionaries in our list.

`csv.Dictreader` has read in each row of our csv file as a dictionary. `len` shows that our list is
comprised of 234 dictionaries.
len(mpg)

`keys` gives us the column names of our csv.

mpg[0].keys()

This is how to find the average cty fuel economy across all cars. All values in the dictionaries are
strings, so we need to convert to float.
In[38]:
sum(float(d['cty']) for d in mpg) / len(mpg)
Similarly this is how to find the average hwy fuel economy across all cars.
In[39]:
sum(float(d['hwy']) for d in mpg) / len(mpg)
Use `set` to return the unique values for the number of cylinders the cars in our dataset have.
cylinders = set(d['cyl'] for d in mpg)
cylinders
Here's a more complex example where we are grouping the cars by number of cylinder, and finding
the average cty mpg for each group.
CtyMpgByCyl = []

for c in cylinders: # iterate over all the cylinder levels

Page 83 of 580

 summpg = 0
 cyltypecount = 0
 for d in mpg: # iterate over all dictionaries
 if d['cyl'] == c: # if the cylinder level type matches,
 summpg += float(d['cty']) # add the cty mpg
 cyltypecount += 1 # increment the count
 CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple ('cylinder', 'avg mpg')

CtyMpgByCyl.sort(key=lambda x: x[0])
CtyMpgByCyl
Use `set` to return the unique values for the class types in our dataset.
vehicleclass = set(d['class'] for d in mpg) # what are the class types
vehicleclass
And here's an example of how to find the average hwy mpg for each class of vehicle in our dataset.
HwyMpgByClass = []

for t in vehicleclass: # iterate over all the vehicle classes
 summpg = 0
 vclasscount = 0
 for d in mpg: # iterate over all dictionaries
 if d['class'] == t: # if the cylinder amount type matches,
 summpg += float(d['hwy']) # add the hwy mpg
 vclasscount += 1 # increment the count
 HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class', 'avg mpg')

HwyMpgByClass.sort(key=lambda x: x[1])
HwyMpgByClass
The Python Programming Language: Dates and Times

Day 04- Data Manipulation with Pandas

Pandas Introduction

This week we're going to deepen our investigation to how Python can be used to manipulate, clean,
and query data by looking at the Pandas data tool kit. Pandas was created by Wes McKinney in 2008,
and is an open source project under a very permissive license. As an open source project it's got a
strong community, with over one hundred software developers all committing code to help make it
better. Before pandas existed we had only a hodge podge of tools to use, such as numpy, the python
core libraries, and some python statistical tools. But pandas has quickly become the defacto library
for representing relational data for data scientists.

I want to take a moment here to introduce the question answersing site Stack Overflow. Stack
Overflow is used broadly within the software development community to post questions about
programming, programming languages, and programming toolkits. What's special about Stack
Overflow is that it's heavily curated by the community. And the Pandas community, in particular, uses
it as their number one resource for helping new members. It's quite possible if you post a question to
Stack Overflow, and tag it as being Pandas and Python related, that a core Pandas developer will
actually respond to your question. In addition to posting questions, Stack Overflow is a great place to
go to see what issues people are having and how they can be solved. You can learn a lot from browsing
Stacks at Stack Overflow and with pandas, this is where the developer community is.

Page 84 of 580

A second resource you might want to consider are books. In 2012 Wes McKinney wrote the definitive
Pandas reference book called Python for Data Analysis and published by O'Reilly, and it's recently been
update to a second edition. I consider this the go to book for understanding how Pandas works. I also
appreciate the more brief book "Learning the Pandas Library" by Matt Harrison. It's not a
comprehensive book on data analysis and statistics. But if you just want to learn the basics of Pandas
and want to do so quickly, I think it's a well laid out volume and it can be had for a good price.

The field of data science is rapidly changing. There's new toolkits and method being created everyday.
It can be tough to stay on top of it all. Marco Rodriguez and Tim Golden maintain a wonderful blog
aggregator site called Planet Python. You can visit the webpage at planetpython.org, subscribe with
an RSS reader, or get the latest articles from the @PlanetPython Twitter feed. There's lots of regular
Python data science contributors, and I highly recommend it if you follow RSS feeds.

Here's my last plug on how to deepen your learning. Kyle Polich runs an excellent podcast called Data
Skeptic. It isn't Python based per se, but it's well produced and it has a wonderful mixture of interviews
with experts in the field as well as short educational lessons. Much of the word he describes is specific
to machine learning methods. But if that's something you are planning to explore through this
specialization this course is in, I would really encourage you to subscribe to his podcast.

That's it for a little bit of an introduction to this week of the course. Next we're going to dive right into
Pandas library and talk about the series data structure.

Pandas is a newer package built on top of NumPy, and provides an efficient implementation

of a DataFrame. DataFrames are essentially multidimen‐ sional arrays with attached row and

column labels, and often with heterogeneous types and/or missing data. As well as offering

a convenient storage interface for labeled data, Pandas implements a number of powerful

data operations familiar to users of both database frameworks and spreadsheet programs.

As we saw, NumPy’s ndarray data structure provides essential features for the type of clean,
well-organized data typically seen in numerical computing tasks. While it serves this purpose

very well, its limitations become clear when we need more flexi‐ bility (attaching labels to
data, working with missing data, etc.) and when attempting operations that do not map well

to element-wise broadcasting (groupings, pivots, etc.), each of which is an important piece

of analyzing the less structured data avail‐ able in many forms in the world around us.

Pandas, and in particular its Series and DataFrame objects, builds on the NumPy array
structure and provides efficient access to these sorts of “data munging” tasks that occupy
much of a data scientist’s time.

In this chapter, we will focus on the mechanics of using Series, DataFrame, and
related structures effectively. We will use examples drawn from real datasets
where appropriate, but these examples are not necessarily the focus.

Installing and Using Pandas

Installing Pandas on your system requires NumPy to be installed, and if you’re

build‐ ing the library from source, requires the appropriate tools to compile

the C and

Cython sources on which Pandas is built. Details on this installation can be found in the

Pandas documentation. If you followed the advice outlined in the preface and used the

Anaconda stack, you already have Pandas installed.

Once Pandas is installed, you can import it and check the version:

Page 85 of 580

In[1]: import pandas

pandas. version

Out[1]: '0.18.1'

Just as we generally import NumPy under the alias np, we will import Pandas under the alias
pd:

In[2]: import pandas as pd

Introducing Pandas Objects

At the very basic level, Pandas objects can be thought of as enhanced versions of NumPy

structured arrays in which the rows and columns are identified with labels rather than simple

integer indices. As we will see during the course of this chapter, Pandas provides a host of

useful tools, methods, and functionality on top of the basic data structures, but nearly

everything that follows will require an understanding of what these structures are. Thus,

before we go any further, let’s introduce these three fundamental Pandas data structures:

the Series, DataFrame, and Index.

We will start our code sessions with the standard NumPy and Pandas imports:

In[1]: import numpy as np
import pandas as pd

The Pandas Series Object

A Pandas Series is a one-dimensional array of indexed data. It can be created from a list or
array as follows:

In[2]: data = pd.Series([0.25, 0.5, 0.75, 1.0])

data

Out[2]: 0 0.25
1 0.50
2 0.75
3 1.00

dtype: float64

As we see in the preceding output, the Series wraps both a sequence of values and a

sequence of indices, which we can access with the values and index attributes. The values

are simply a familiar NumPy array:

In[3]: data.values

Out[3]: array([0.25, 0.5 , 0.75, 1.])

The index is an array-like object of type pd.Index, which we’ll discuss in more detail
momentarily:

In[4]: data.index

Out[4]: RangeIndex(start=0, stop=4, step=1)

Like with a NumPy array, data can be accessed by the associated index via the

familiar Python square-bracket notation:

In[5]: data[1]

Page 86 of 580

Out[5]: 0.5

In[6]: data[1:3]

Out[6]: 1 0.50

2 0.75

dtype: float64

As we will see, though, the Pandas Series is much more general and flexible than the
one-dimensional NumPy array that it emulates.

Series as generalized NumPy array

From what we’ve seen so far, it may look like the Series object is basically inter‐ changeable
with a one-dimensional NumPy array. The essential difference is the pres‐ ence of the index:
while the NumPy array has an implicitly defined integer index used to access the values, the
Pandas Series has an explicitly defined index associated with the values.

This explicit index definition gives the Series object additional capabilities. For example, the
index need not be an integer, but can consist of values of any desired type. For example, if
we wish, we can use strings as an index:

In[7]: data = pd.Series([0.25, 0.5, 0.75, 1.0],

index=['a', 'b', 'c', 'd'])

data

Out[7]: a 0.25
b 0.50
c 0.75
d 1.00

dtype: float64

And the item access works as expected:

In[8]: data['b']

Out[8]: 0.5

We can even use noncontiguous or nonsequential indices:

In[9]: data = pd.Series([0.25, 0.5, 0.75, 1.0],

index=[2, 5, 3, 7])

data

Out[9]: 2 0.25
5 0.50
3 0.75
7 1.00

dtype: float64

In[10]: data[5]

Out[10]: 0.5

Page 87 of 580

Series as specialized dictionary

In this way, you can think of a Pandas Series a bit like a specialization of a Python dictionary.

A dictionary is a structure that maps arbitrary keys to a set of arbitrary values, and a Series
is a structure that maps typed keys to a set of typed values. This typing is important: just as
the type-specific compiled code behind a NumPy array makes it more efficient than a Python
list for certain operations, the type information of a Pandas Series makes it much more

efficient than Python dictionaries for certain operations.

We can make the Series-as-dictionary analogy even more clear by constructing a
Series object directly from a Python dictionary:

In[11]: population_dict = {'California': 38332521,

'Texas': 26448193,

'New York': 19651127,

'Florida': 19552860,

'Illinois': 12882135}
population = pd.Series(population_dict)
population

Out[11]: California 383325

21
Florida 195528

60
Illinois 128821

35
New York 196511

27
Texa
s

264481
93

dtype: int64

By default, a Series will be created where the index is drawn from the sorted keys. From
here, typical dictionary-style item access can be performed:

In[12]: population['California']

Out[12]: 38332521

Unlike a dictionary, though, the Series also supports array-style operations such
as slicing:

In[13]: population['California':'Illinois']

Out[13]: California 383325

21
Florida 195528

60
Illinois 128821

35
dtype: int64

Constructing Series objects

We’ve already seen a few ways of constructing a Pandas Series from scratch; all of them are

Page 88 of 580

some version of the following:

>>> pd.Series(data, index=index)

where index is an optional argument, and data can be one of many entities.

For example, data can be a list or NumPy array, in which case index defaults to an integer
sequence:

In[14]: pd.Series([2, 4, 6])

Out[14]: 0 2

1 4

2 6

dtype: int64

data can be a scalar, which is repeated to fill the specified index:

In[15]: pd.Series(5, index=[100, 200, 300])

Out[15]: 100 5

200 5

300 5

dtype: int64

data can be a dictionary, in which index defaults to the sorted dictionary keys:

In[16]: pd.Series({2:'a', 1:'b', 3:'c'})

Out[16]: 1 b

2 a
3 c
dtype: object

In each case, the index can be explicitly set if a different result is preferred:

In[17]: pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2])

Out[17]: 3 c

2 a
dtype: object

Notice that in this case, the Series is populated only with the explicitly identified keys.

The Pandas DataFrame Object

The next fundamental structure in Pandas is the DataFrame. Like the Series object discussed
in the previous section, the DataFrame can be thought of either as a gener‐ alization of a
NumPy array, or as a specialization of a Python dictionary. We’ll now take a look at each of
these perspectives.

DataFrame as a generalized NumPy array

If a Series is an analog of a one-dimensional array with flexible indices, a DataFrame is an
analog of a two-dimensional array with both flexible row indices and flexible column names.

Just as you might think of a two-dimensional array as an ordered sequence of aligned one-
dimensional columns, you can think of a DataFrame as a sequence of aligned Series objects.

Here, by “aligned” we mean that they share the same index.

To demonstrate this, let’s first construct a new Series listing the area of each of

Page 89 of 580

the five states discussed in the previous section:

In[18]:

area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,

'Florida': 170312, 'Illinois': 149995}

area = pd.Series(area_dict)
area

Out[18]: California 4239

67
Florida 1703

12
Illinois 1499

95
New York 1412

97
Texa
s

6956
62

dtype: int64

Now that we have this along with the population Series from before, we can use a dictionary
to construct a single two-dimensional object containing this information:

In[19]: states = pd.DataFrame({'population': population,

'area': area})

states

Out[19]
: area populatio

n
 California 423967 38332521
 Florida 170312 19552860
 Illinois 149995 12882135
 New York 141297 19651127
 Texas 695662 26448193

Like the Series object, the DataFrame has an index attribute that gives access to the

index labels:

In[20]: states.index

Out[20]:

Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object')

Additionally, the DataFrame has a columns attribute, which is an Index object holding

the column labels:

In[21]: states.columns

Out[21]: Index(['area', 'population'], dtype='object')

Thus the DataFrame can be thought of as a generalization of a two-dimensional NumPy
array, where both the rows and columns have a generalized index for access‐ ing the data.

Page 90 of 580

DataFrame as specialized dictionary

Similarly, we can also think of a DataFrame as a specialization of a dictionary. Where a
dictionary maps a key to a value, a DataFrame maps a column name to a Series of column
data. For example, asking for the 'area' attribute returns the Series object containing the
areas we saw earlier:

In[22]: states['area'] Out[22]:

California 423967

Florida 170312

Illinois 149995

New York 141297

Texas 695662

Name: area, dtype: int64

Notice the potential point of confusion here: in a two-dimensional NumPy array, data[0] will return

the first row. For a DataFrame, data['col0'] will return the first column. Because of this, it is probably

better to think about DataFrames as generalized dictionaries rather than generalized arrays, though

both ways of looking at the situa‐ tion can be useful.

Constructing DataFrame objects

A Pandas DataFrame can be constructed in a variety of ways. Here we’ll give several
examples.

From a single Series object. A DataFrame is a collection of Series objects, and a single- column
DataFrame can be constructed from a single Series:

In[23]: pd.DataFrame(population, columns=['population'])

Out[23]
: populatio

n
 California 38332521
 Florida 19552860
 Illinois 12882135
 New York 19651127
 Texas 26448193

From a list of dicts. Any list of dictionaries can be made into a DataFrame. We’ll use a

simple list comprehension to create some data:

In[24]: data = [{'a': i, 'b': 2 * i}

for i in range(3)]
pd.DataFrame(data)

Out[24]
: a b

 0 0 0
 1 1 2
 2 2 4

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN (i.e., “not a
number”) values:

Page 91 of 580

In[25]: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])

Out[25]: a b c

0 1.0 2 NaN

1 NaN 3 4.0

From a dictionary of Series objects. As we saw before, a DataFrame can be constructed from a
dictionary of Series objects as well:

In[26]: pd.DataFrame({'population': population,

'area': area})

Out[26]
: area populatio

n
 California 423967 38332521
 Florida 170312 19552860
 Illinois 149995 12882135
 New York 141297 19651127
 Texas 695662 26448193

From a two-dimensional NumPy array. Given a two-dimensional array of data, we can create a
DataFrame with any specified column and index names. If omitted, an integer index
will be used for each:

In[27]: pd.DataFrame(np.random.rand(3, 2),

columns=['foo', 'bar'],

index=['a', 'b', 'c'])

Out[27]
: foo bar

 a 0.86525
7

0.21316
9

 b 0.44275
9

0.10826
7

 c 0.04711
0

0.90571
8

From a NumPy structured array.

 A Pandas DataFrame operates much like a structured array, and can be created directly from
one:

In[28]: A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')]) A

Out[28]: array([(0, 0.0), (0, 0.0), (0, 0.0)],

dtype=[('A', '<i8'), ('B', '<f8')])

In[29]: pd.DataFrame(A)

Out[29]
: A B

 0 0 0.0
 1 0 0.0
 2 0 0.0

Page 92 of 580

The Pandas Index Object

We have seen here that both the Series and DataFrame objects contain an explicit index that
lets you reference and modify data. This Index object is an interesting structure in itself, and
it can be thought of either as an immutable array or as an ordered set (technically a multiset,
as Index objects may contain repeated values). Those views have some interesting
consequences in the operations available on Index objects. As a simple example, let’s construct

an Index from a list of integers:

In[30]: ind = pd.Index([2, 3, 5, 7, 11]) ind

Out[30]: Int64Index([2, 3, 5, 7, 11], dtype='int64')

Index as immutable array

The Index object in many ways operates like an array. For example, we can use stan‐
dard Python indexing notation to retrieve values or slices:

In[31]: ind[1]

Out[31]: 3

In[32]: ind[::2]

Out[32]: Int64Index([2, 5, 11], dtype='int64')

Index objects also have many of the attributes familiar from NumPy arrays:

In[33]: print(ind.size, ind.shape, ind.ndim, ind.dtype) 5

(5,) 1 int64

One difference between Index objects and NumPy arrays is that indices are
immuta‐ ble—that is, they cannot be modified via the normal means:

In[34]: ind[1] = 0

TypeError Traceback (most recent call last)

<ipython-input-34-40e631c82e8a> in <module>()

----> 1 ind[1] = 0

/Users/jakevdp/anaconda/lib/python3.5/site-packages/pandas/indexes/base.py ...

1243

1244 def setitem (self, key, value):

-> 1245 raise TypeError("Index does not support mutable
operations") 1246

1247 def getitem (self, key):

Page 93 of 580

TypeError: Index does not support mutable operations

This immutability makes it safer to share indices between multiple DataFrames
and arrays, without the potential for side effects from inadvertent index
modification.

Index as ordered set

Pandas objects are designed to facilitate operations such as joins across datasets, which

depend on many aspects of set arithmetic. The Index object follows many of

the conventions used by Python’s built-in set data structure, so that unions, intersec‐ tions,
differences, and other combinations can be computed in a familiar way:

In[35]: indA = pd.Index([1, 3, 5, 7, 9])

indB = pd.Index([2, 3, 5, 7, 11]) In[36]:

indA & indB # intersection

Out[36]: Int64Index([3, 5, 7], dtype='int64')

In[37]: indA | indB # union

Out[37]: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64')

In[38]: indA ^ indB # symmetric difference

Out[38]: Int64Index([1, 2, 9, 11], dtype='int64')

These operations may also be accessed via object methods—for example,
indA.inter section(indB).

Data Indexing and Selection

We looked in detail at methods and tools to access, set, and modify val‐ ues in NumPy arrays.

These included indexing (e.g., arr[2, 1]), slicing (e.g., arr[:, 1:5]), masking (e.g., arr[arr > 0]),
fancy indexing (e.g., arr[0, [1, 5]]), and combinations thereof (e.g., arr[:, [1, 5]]). Here we’ll
look at similar means of accessing and modifying values in Pandas Series and DataFrame objects.

If you have used the NumPy patterns, the corresponding patterns in Pandas will feel very
famil‐ iar, though there are a few quirks to be aware of.

We’ll start with the simple case of the one-dimensional Series object, and then move on to
the more complicated two-dimensional DataFrame object.

Data Selection in Series

As we saw in the previous section, a Series object acts in many ways like a one- dimensional
NumPy array, and in many ways like a standard Python dictionary. If we keep these two

overlapping analogies in mind, it will help us to understand the pat‐ terns of data indexing
and selection in these arrays.

Series as dictionary

Like a dictionary, the Series object provides a mapping from a collection of keys to a collection
of values:

In[1]: import pandas as pd

data = pd.Series([0.25, 0.5, 0.75, 1.0],

index=['a', 'b', 'c', 'd'])

Page 94 of 580

data

Out[1]: a 0.25
b 0.50
c 0.75
d 1.00

dtype: float64

In[2]: data['b'] Out[2]:

0.5

We can also use dictionary-like Python expressions and methods to examine the

keys/indices and values:

In[3]: 'a' in data

Out[3]: True In[4]:

data.keys()

Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object') In[5]:

list(data.items())

Out[5]: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]

Series objects can even be modified with a dictionary-like syntax. Just as you can extend a
dictionary by assigning to a new key, you can extend a Series by assigning to a new index
value:

In[6]: data['e'] = 1.25

data

Out[6]: a 0.25
b 0.50
c 0.75
d 1.00
e 1.25

dtype: float64

This easy mutability of the objects is a convenient feature: under the hood, Pandas is making

decisions about memory layout and data copying that might need to take place; the user

generally does not need to worry about these issues.

Series as one-dimensional array

A Series builds on this dictionary-like interface and provides array-style item selec‐ tion via
the same basic mechanisms as NumPy arrays—that is, slices, masking, and fancy indexing.
Examples of these are as follows:

In[7]: # slicing by explicit index

data['a':'c']

Out[7]: a 0.25

b 0.50

c 0.75

dtype: float64

Page 95 of 580

In[8]: # slicing by implicit integer index

data[0:2]

Out[8]: a 0.25

b 0.50

dtype: float64

In[9]: # masking

data[(data > 0.3) & (data < 0.8)]

Out[9]: b 0.50

c 0.75

dtype: float64

In[10]: # fancy indexing

data[['a', 'e']]

Out[10]: a 0.25

e 1.25

dtype: float64

Among these, slicing may be the source of the most confusion. Notice that when you are

slicing with an explicit index (i.e., data['a':'c']), the final index is included in the slice, while
when you’re slicing with an implicit index (i.e., data[0:2]), the final index is excluded from the

slice.

Indexers: loc, iloc, and ix

These slicing and indexing conventions can be a source of confusion. For example, if your
Series has an explicit integer index, an indexing operation such as data[1] will use the explicit

indices, while a slicing operation like data[1:3] will use the implicit Python-style index.

In[11]: data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5]) data

Out[11]: 1 a

3 b
5 c

dtype: object

In[12]: # explicit index when indexing

data[1]

Out[12]: 'a'

In[13]: # implicit index when slicing

data[1:3]

Out[13]: 3 b

5 c

dtype: object

Because of this potential confusion in the case of integer indexes, Pandas provides some

special indexer attributes that explicitly expose certain indexing schemes. These are not

functional methods, but attributes that expose a particular slicing interface to the data in

Page 96 of 580

the Series.

First, the loc attribute allows indexing and slicing that always references the explicit
index:

In[14]: data.loc[1]

Out[14]: 'a'

In[15]: data.loc[1:3]

Out[15]: 1 a

3 b

dtype: object

The iloc attribute allows indexing and slicing that always references the implicit Python-
style index:

In[16]: data.iloc[1]

Out[16]: 'b'

In[17]: data.iloc[1:3]

Out[17]: 3 b

5 c

dtype: object

A third indexing attribute, ix, is a hybrid of the two, and for Series objects is equiva‐ lent to

standard []-based indexing. The purpose of the ix indexer will become more apparent in the
context of DataFrame objects, which we will discuss in a moment.

One guiding principle of Python code is that “explicit is better than implicit.” The explicit

nature of loc and iloc make them very useful in maintaining clean and read‐ able code;

especially in the case of integer indexes, I recommend using these both to make code easier

to read and understand, and to prevent subtle bugs due to the mixed indexing/slicing

convention.

Data Selection in DataFrame

Recall that a DataFrame acts in many ways like a two-dimensional or structured array, and in
other ways like a dictionary of Series structures sharing the same index. These analogies can
be helpful to keep in mind as we explore data selection within this structure.

DataFrame as a dictionary

The first analogy we will consider is the DataFrame as a dictionary of related Series
objects. Let’s return to our example of areas and populations of states:

In[18]: area = pd.Series({'California': 423967, 'Texas': 695662,

'New York': 141297, 'Florida': 170312,

'Illinois': 149995})

pop = pd.Series({'California': 38332521, 'Texas': 26448193,

'New York': 19651127, 'Florida': 19552860,

'Illinois': 12882135})

Page 97 of 580

data = pd.DataFrame({'area':area,
'pop':pop}) data

Out[18]
: area pop

 California 42396
7

383325
21

 Florida 17031
2

195528
60

 Illinois 14999
5

128821
35

 New York 14129
7

196511
27

 Texas 69566
2

264481
93

The individual Series that make up the columns of the DataFrame can be accessed via
dictionary-style indexing of the column name:

In[19]: data['area']

Out[19]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Equivalently, we can use attribute-style access with column names that are strings:

In[20]: data.area

Out[20]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

This attribute-style column access actually accesses the exact same object as the

dictionary-style access:

In[21]: data.area is data['area'] Out[21]:

True

Though this is a useful shorthand, keep in mind that it does not work for all cases! For

example, if the column names are not strings, or if the column names conflict with methods

of the DataFrame, this attribute-style access is not possible. For exam‐ ple, the DataFrame

has a pop() method, so data.pop will point to this rather than the "pop" column:

In[22]: data.pop is data['pop']

Out[22]: False

Page 98 of 580

In particular, you should avoid the temptation to try column assignment via

attribute (i.e., use data['pop'] = z rather than data.pop = z).

Like with the Series objects discussed earlier, this dictionary-style syntax can also be used to
modify the object, in this case to add a new column:

In[23]: data['density'] = data['pop'] / data['area']
data

Out[23]
: area pop density

 California 42396
7

383325
21

90.41392
6

 Florida 17031
2

195528
60

114.8061
21

 Illinois 14999
5

128821
35

85.88376
3

 New York 14129
7

196511
27

139.0767
46

 Texas 69566
2

264481
93

38.01874
0

This shows a preview of the straightforward syntax of element-by-element arithmetic
between Series objects; we’ll dig into this further in “Operating on Data in Pandas” on page

115.

DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced two- dimensional
array. We can examine the raw underlying data array using the values attribute:

In[24]: data.values

Out[24]: array([[4.23967000e+0

5,
3.83325210e+0
7,

9.04139261e+0
1],

[1.70312000e+0
5,

1.95528600e+0
7,

1.14806121e+0
2],

[1.49995000e+0
5,

1.28821350e+0
7,

8.58837628e+0
1],

[1.41297000e+0
5,

1.96511270e+0
7,

1.39076746e+0
2],

[6.95662000e+0
5,

2.64481930e+0
7,

3.80187404e+0
1]])

With this picture in mind, we can do many familiar array-like observations on the DataFrame

itself. For example, we can transpose the full DataFrame to swap rows and columns:

In[25]: data.T

Out[25]:

 California Florida Illinois New York Texas

area 4.239670e+
05

1.703120e+
05

1.499950e+
05

1.412970e+
05

6.956620e+
05

pop 3.833252e+
07

1.955286e+
07

1.288214e+
07

1.965113e+
07

2.644819e+
07

density 9.041393e+
01

1.148061e+
02

8.588376e+
01

1.390767e+
02

3.801874e+
01

When it comes to indexing of DataFrame objects, however, it is clear that the dictionary-

Page 99 of 580

style indexing of columns precludes our ability to simply treat it as a NumPy array. In
particular, passing a single index to an array accesses a row:

In[26]: data.values[0]

Out[26]: array([4.23967000e+05, 3.83325210e+07,

 9.04139261e+01])

and passing a single “index” to a DataFrame accesses a column:

In[27]: data['area']

Out[27]: California 423967

Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Thus for array-style indexing, we need another convention. Here Pandas again uses the loc,

iloc, and ix indexers mentioned earlier. Using the iloc indexer, we can index the underlying

array as if it is a simple NumPy array (using the implicit Python-style index), but the

DataFrame index and column labels are maintained in the result:

In[28]: data.iloc[:3, :2]

Out[28]
: area pop

 California 42396
7

383325
21

 Florida 17031
2

195528
60

 Illinois 14999
5

128821
35

In[29]: data.loc[:'Illinois', :'pop']

Out[29]
: area pop

 California 42396
7

383325
21

 Florida 17031
2

195528
60

 Illinois 14999
5

128821
35

The ix indexer allows a hybrid of these two approaches:

In[30]: data.ix[:3, :'pop']

Out[30]
: area pop

 California 42396
7

383325
21

 Florida 17031
2

195528
60

 Illinois 14999
5

128821
35

Page 100 of 580

Keep in mind that for integer indices, the ix indexer is subject to the same potential sources

of confusion as discussed for integer-indexed Series objects.

Any of the familiar NumPy-style data access patterns can be used within these index‐ ers. For

example, in the loc indexer we can combine masking and fancy indexing as in the following:

In[31]: data.loc[data.density > 100, ['pop', 'density']]

Out[31]: pop density

Florida 19552860 114.806121

New York 19651127 139.076746

Any of these indexing conventions may also be used to set or modify values; this is done in

the standard way that you might be accustomed to from working with NumPy:

In[32]: data.iloc[0, 2] = 90
data

Out[32]
: area pop density

 California 42396
7

383325
21

90.00000
0

 Florida 17031
2

195528
60

114.8061
21

 Illinois 14999
5

128821
35

85.88376
3

 New York 14129
7

196511
27

139.0767
46

 Texas 69566
2

264481
93

38.01874
0

To build up your fluency in Pandas data manipulation, I suggest spending some time with a
simple DataFrame and exploring the types of indexing, slicing, masking, and fancy indexing

that are allowed by these various indexing approaches.

Additional indexing conventions

There are a couple extra indexing conventions that might seem at odds with the pre‐ ceding

discussion, but nevertheless can be very useful in practice. First, while index‐ ing refers to

columns, slicing refers to rows:

In[33]: data['Florida':'Illinois']

Out[33]: area pop density
Florida 170312 19552860
114.806121

Illinois 149995 12882135 85.883763

Such slices can also refer to rows by number rather than by index:

In[34]: data[1:3]

Out[34]: area pop density
Florida 170312 19552860
114.806121

Illinois 149995 12882135 85.883763

Similarly, direct masking operations are also interpreted row-wise rather than

Page 101 of 580

column-wise:

In[35]: data[data.density > 100]

Out[35]: area pop density
Florida 170312 19552860
114.806121

New York 141297 19651127 139.076746

These two conventions are syntactically similar to those on a NumPy array, and

while these may not precisely fit the mold of the Pandas conventions, they are

nevertheless quite useful in practice.

Operating on Data in Pandas

One of the essential pieces of NumPy is the ability to perform quick element-wise
operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with

more sophisticated operations (trigonometric functions, exponential and loga‐ rithmic

functions, etc.). Pandas inherits much of this functionality from NumPy, and the ufuncs that

we introduced in “Computation on NumPy Arrays: Universal Func‐ tions” on page 50 are key

to this.

Pandas includes a couple useful twists, however: for unary operations like negation and

trigonometric functions, these ufuncs will preserve index and column labels in the output, and

for binary operations such as addition and multiplication, Pandas will automatically align

indices when passing the objects to the ufunc. This means that keeping the context of data

and combining data from different sources—both poten‐ tially error-prone tasks with raw

NumPy arrays—become essentially foolproof ones with Pandas. We will additionally see that

there are well-defined operations between one-dimensional Series structures and two-

dimensional DataFrame structures.

Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas

Series and DataFrame objects. Let’s start by defining a simple Series and DataFrame on which

to demonstrate this:

In[1]: import pandas as pd
import numpy as np

In[2]: rng = np.random.RandomState(42)

ser = pd.Series(rng.randint(0, 10, 4))
ser

Out[2]: 0 6
1 3
2 7
3 4

dtype: int64

In[3]: df = pd.DataFrame(rng.randint(0, 10, (3, 4)),

columns=['A', 'B', 'C', 'D'])

df

Out[3]
:

A B C D

Page 102 of 580

 0 6 9 2 6
 1 7 4 3 7
 2 7 2 5 4

If we apply a NumPy ufunc on either of these objects, the result will be another
Pan‐ das object with the indices preserved:

In[4]: np.exp(ser)

Out[4]: 0 403.428793
1 20.085537
2 1096.63315

8
3 54.598150

dtype: float64

Or, for a slightly more complex calculation:

In[5]: np.sin(df * np.pi / 4)

Out[5]
:

A B C D

 0 -
1.000000

7.071068e-
01

1.00000
0

-
1.000000e+
00

 1 -
0.707107

1.224647e-
16

0.70710
7

-7.071068e-
01

 2 -
0.707107

1.000000e+
00

-
0.70710
7

1.224647e-
16

Any of the ufuncs discussed in “Computation on NumPy Arrays: Universal Func‐
tions” on page 50 can be used in a similar manner.

UFuncs: Index Alignment

For binary operations on two Series or DataFrame objects, Pandas will align indices in the
process of performing the operation. This is very convenient when you are working with
incomplete data, as we’ll see in some of the examples that follow.

Index alignment in Series

As an example, suppose we are combining two different data sources, and find only the top

three US states by area and the top three US states by population:

In[6]: area = pd.Series({'Alaska': 1723337, 'Texas': 695662,

'California': 423967}, name='area')

population = pd.Series({'California': 38332521, 'Texas': 26448193,

'New York': 19651127}, name='population')

Let’s see what happens when we divide these to compute the population density:

In[7]: population / area Out[7]:

Alaska NaN

California 90.413926

New York NaN

Texas 38.018740

dtype: float64

Page 103 of 580

The resulting array contains the union of indices of the two input arrays, which we

could determine using standard Python set arithmetic on these indices:

In[8]: area.index | population.index

Out[8]: Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object')

Any item for which one or the other does not have an entry is marked with NaN, or “Not a

Number,” which is how Pandas marks missing data. This index matching is imple mented this

way for any of Python’s built-in arithmetic expressions; any missing val‐ ues are filled in with

NaN by default:

In[9]: A = pd.Series([2, 4, 6], index=[0, 1, 2])

B = pd.Series([1, 3, 5], index=[1, 2, 3]) A +
B

Out[9]: 0 NaN

1 5.0

2 9.0

3 NaN

dtype: float64

If using NaN values is not the desired behavior, we can modify the fill value using

appropriate object methods in place of the operators. For example, calling

A.add(B) is equivalent to calling A + B, but allows optional explicit specification of the

fill value for any elements in A or B that might be missing:

In[10]: A.add(B, fill_value=0)

Out[10]: 0 2.0
1 5.0
2 9.0
3 5.0

dtype: float64

Index alignment in DataFrame

A similar type of alignment takes place for both columns and indices when you are

performing operations on DataFrames:

In[11]: A = pd.DataFrame(rng.randint(0, 20, (2, 2)),

columns=list('AB'))

A

Out[11]: A B

0 1 11

1 5 1

In[12]: B = pd.DataFrame(rng.randint(0, 10, (3, 3)),

columns=list('BAC'))

B

Page 104 of 580

Out[12]: B A C 0
4 0 9

1 5 8 0

2 9 2 6

In[13]: A + B

Out[13]: A B C 0
 1.0 15.0 NaN

1 13.0 6.0 NaN

2 NaN NaN NaN

Notice that indices are aligned correctly irrespective of their order in the two objects, and

indices in the result are sorted. As was the case with Series, we can use the asso‐ ciated

object’s arithmetic method and pass any desired fill_value to be used in place of missing

entries. Here we’ll fill with the mean of all values in A (which we compute by first stacking the

rows of A):

In[14]: fill = A.stack().mean()
A.add(B, fill_value=fill)

Out[14]
:

A B C

 0 1.0 15.0 13.5
 1 13.0 6.0 4.5
 2 6.5 13.5 10.5

Table. Lists Python operators and their equivalent Pandas object methods.

Table . Mapping between Python operators and Pandas methods

 Python operator Pandas method(s)

+ add()

- sub(), subtract()

* mul(), multiply()

/ truediv(), div(), divide()

// floordiv()

% mod()

** pow()

Ufuncs: Operations Between DataFrame and Series

When you are performing operations between a DataFrame and a Series, the index and
column alignment is similarly maintained. Operations between a DataFrame and a Series are

similar to operations between a two-dimensional and one-dimensional NumPy array.

Consider one common operation, where we find the difference of a two-dimensional array
and one of its rows:

Page 105 of 580

In[15]: A = rng.randint(10, size=(3, 4)) A

Out[15]: array([[3, 8, 2, 4],

[2, 6, 4, 8],

[6, 1, 3, 8]])

In[16]: A - A[0]
Out[16]: array([[0, 0, 0, 0],

[-1, -2, 2, 4],
[3, -7, 1, 4]])

In Pandas, the convention similarly operates row-wise by default:

In[17]: df = pd.DataFrame(A,
columns=list('QRST')) df - df.iloc[0]

Out[17]
:

Q R S T

 0 0 0 0 0
 1 -1 -2 2 4
 2 3 -7 1 4

If you would instead like to operate column-wise, you can use the object methods

mentioned earlier, while specifying the axis keyword:

In[18]: df.subtract(df['R'], axis=0)

Out[18]
:

Q R S T

 0 -5 0 -6 -4
 1 -4 0 -2 2
 2 5 0 2 7

Note that these DataFrame/Series operations, like the operations discussed before, will
automatically align indices between the two elements:

In[19]: halfrow = df.iloc[0, ::2]
halfrow

Out[19]: Q 3

S 2

Name: 0, dtype: int64

In[20]: df - halfrow

Out[20]
:

Q R S T

 0 0.0 Na
N

0.0 Na
N

 1 -1.0 Na
N

2.0 Na
N

 2 3.0 Na
N

1.0 Na
N

This preservation and alignment of indices and columns means that operations on data

in Pandas will always maintain the data context, which prevents the types of silly errors that

might come up when you are working with heterogeneous and/or mis‐ aligned data in raw

Page 106 of 580

NumPy arrays.

Handling Missing Data

The difference between data found in many tutorials and data in the real world is that real-
world data is rarely clean and homogeneous. In particular, many interesting datasets will

have some amount of data missing. To make matters even more compli‐ cated, different data

sources may indicate missing data in different ways.

we will discuss some general considerations for missing data, discuss how Pandas chooses

to represent it, and demonstrate some built-in Pandas tools for handling missing data in

Python. Here and throughout the book, we’ll refer to miss‐ ing data in general as null, NaN,

or NA values.

Trade-Offs in Missing Data Conventions

A number of schemes have been developed to indicate the presence of missing data in a table
or DataFrame. Generally, they revolve around one of two strategies: using a mask that

globally indicates missing values, or choosing a sentinel value that indicates a missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or

it may involve appropriation of one bit in the data representation to locally indicate

the null status of a value.

In the sentinel approach, the sentinel value could be some data-specific convention, such as

indicating a missing integer value with –9999 or some rare bit pattern, or it could be a more

global convention, such as indicating a missing floating-point value with NaN (Not a

Number), a special value which is part of the IEEE floating-point specification.

None of these approaches is without trade-offs: use of a separate mask array requires

allocation of an additional Boolean array, which adds overhead in both storage and

computation. A sentinel value reduces the range of valid values that can be repre‐ sented,

and may require extra (often non-optimized) logic in CPU and GPU arith‐ metic. Common

special values like NaN are not available for all data types.

As in most cases where no universally optimal choice exists, different languages and systems
use different conventions. For example, the R language uses reserved bit pat‐ terns within

each data type as sentinel values indicating missing data, while the SciDB system uses an extra

byte attached to every cell to indicate a NA state.

Missing Data in Pandas

The way in which Pandas handles missing values is constrained by its reliance on

the NumPy package, which does not have a built-in notion of NA values for non-

floating-point data types.

Pandas could have followed R’s lead in specifying bit patterns for each individual data type to

indicate nullness, but this approach turns out to be rather unwieldy. While R contains four

basic data types, NumPy supports far more than this: for example, while R has a single

integer type, NumPy supports fourteen basic integer types once you account for available

precisions, signedness, and endianness of the encoding. Reserving a specific bit pattern in

all available NumPy types would lead to an unwieldy amount of overhead in special-

casing various operations for various types, likely even requiring a new fork of the NumPy

package. Further, for the smaller data types (such as 8-bit integers), sacrificing a bit to use

as a mask will significantly reduce the range of values it can represent.

NumPy does have support for masked arrays—that is, arrays that have a separate Boolean

Page 107 of 580

mask array attached for marking data as “good” or “bad.” Pandas could have derived from

this, but the overhead in both storage, computation, and code mainte‐ nance makes that an

unattractive choice.

With these constraints in mind, Pandas chose to use sentinels for missing data, and further

chose to use two already-existing Python null values: the special floating- point NaN value,

and the Python None object. This choice has some side effects, as we will see, but in practice

ends up being a good compromise in most cases of interest.

None: Pythonic missing data

The first sentinel value used by Pandas is None, a Python singleton object that is often used

for missing data in Python code. Because None is a Python object, it cannot be used in any
arbitrary NumPy/Pandas array, but only in arrays with data type 'object' (i.e., arrays of Python

objects):

In[1]: import numpy as np
import pandas as pd

In[2]: vals1 = np.array([1, None, 3, 4])
vals1

Out[2]: array([1, None, 3, 4], dtype=object)

This dtype=object means that the best common type representation NumPy could infer for
the contents of the array is that they are Python objects. While this kind of object array is

useful for some purposes, any operations on the data will be done at the Python level, with
much more overhead than the typically fast operations seen for arrays with native types:

In[3]: for dtype in ['object', 'int']:

print("dtype =", dtype)

%timeit np.arange(1E6, dtype=dtype).sum()

print()

dtype = object

10 loops, best of 3: 78.2 ms per loop

dtype = int

100 loops, best of 3: 3.06 ms per loop

The use of Python objects in an array also means that if you perform aggregations like

sum() or min() across an array with a None value, you will generally get an error:

In[4]: vals1.sum()

TypeError Traceback (most recent call last)

<ipython-input-4-749fd8ae6030> in <module>()

----> 1 vals1.sum()

/Users/jakevdp/anaconda/lib/python3.5/site-packages/numpy/core/_methods.py ...

30

Page 108 of 580

31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):

---> 32 return umr_sum(a, axis, dtype, out,
keepdims) 33

34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

This reflects the fact that addition between an integer and None is undefined.

NaN: Missing numerical data

The other missing data representation, NaN (acronym for Not a Number), is
different; it is a special floating-point value recognized by all systems that use the
standard IEEE floating-point representation:

In[5]: vals2 = np.array([1, np.nan, 3, 4])
vals2.dtype

Out[5]: dtype('float64')

Notice that NumPy chose a native floating-point type for this array: this means that unlike

the object array from before, this array supports fast operations pushed into compiled code.

You should be aware that NaN is a bit like a data virus—it infects any other object it touches.

Regardless of the operation, the result of arithmetic with NaN will be another NaN:

In[6]: 1 + np.nan

Out[6]: nan

In[7]: 0 * np.nan

Out[7]: nan

Note that this means that aggregates over the values are well defined (i.e., they

don’t result in an error) but not always useful:

In[8]: vals2.sum(), vals2.min(), vals2.max()

Out[8]: (nan, nan, nan)

NumPy does provide some special aggregations that will ignore these missing values:

In[9]: np.nansum(vals2), np.nanmin(vals2),

np.nanmax(vals2) Out[9]: (8.0, 1.0, 4.0)

Keep in mind that NaN is specifically a floating-point value; there is no equivalent
NaN value for integers, strings, or other types.

NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle the two of them
nearly interchangeably, converting between them where appropriate:

In[10]: pd.Series([1, np.nan, 2, None])

Out[10]: 0 1.0

1 NaN

Page 109 of 580

2 2.0

3 NaN

dtype: float64

For types that don’t have an available sentinel value, Pandas automatically type-casts when

NA values are present. For example, if we set a value in an integer array to np.nan, it will

automatically be upcast to a floating-point type to accommodate the NA:

In[11]: x = pd.Series(range(2), dtype=int) x

Out[11]: 0 0

1 1

dtype: int64

In[12]: x[0] = None x

Out[12]: 0 NaN

1 1.0

dtype: float64

Notice that in addition to casting the integer array to floating point, Pandas automati‐ cally

converts the None to a NaN value. (Be aware that there is a proposal to add a native integer

NA to Pandas in the future; as of this writing, it has not been included.)

While this type of magic may feel a bit hackish compared to the more unified approach to

NA values in domain-specific languages like R, the Pandas sentinel/cast‐ ing approach works

quite well in practice and in my experience only rarely causes issues.

Operating on Null Values

As we have seen, Pandas treats None and NaN as essentially interchangeable for indi‐ cating

missing or null values. To facilitate this convention, there are several useful methods for

detecting, removing, and replacing null values in Pandas data structures. They are:

isnull()

Generate a Boolean mask indicating missing values

notnull()

Opposite of isnull()

dropna()

Return a filtered version of the data

fillna()

Return a copy of the data with missing values filled or imputed

We will conclude this section with a brief exploration and demonstration of these
routines.

Detecting null values

Pandas data structures have two useful methods for detecting null data: isnull() and

notnull(). Either one will return a Boolean mask over the data. For example:

Page 110 of 580

In[13]: data = pd.Series([1, np.nan, 'hello', None])

In[14]: data.isnull()

Out[14]: 0 False

1 True
2 False
3 True
dtype: bool

In[15]: data[data.notnull()]

Out[15]: 0 1

2 hello
dtype: object

The isnull() and notnull() methods produce similar Boolean results for Data Frames.

Dropping null values

In addition to the masking used before, there are the convenience methods,
dropna() (which removes NA values) and fillna() (which fills in NA values). For a
Series, the result is straightforward:

In[16]: data.dropna()

Out[16]: 0 1

2 hello
dtype: object

For a DataFrame, there are more options. Consider the following DataFrame:

In[17]: df = pd.DataFrame([[1, np.nan, 2],

[2, 3, 5],

[np.nan, 4, 6]])

df

Out[17]: 0 1 2

0 1.0 NaN 2

1 2.0 3.0 5

2 NaN 4.0 6

We cannot drop single values from a DataFrame; we can only drop full rows or full columns.

Depending on the application, you might want one or the other, so dropna() gives a number

of options for a DataFrame.

By default, dropna() will drop all rows in which any null value is present:

In[18]: df.dropna()

Out[18]: 0 1 2

1 2.0 3.0 5

Alternatively, you can drop NA values along a different axis; axis=1 drops all col‐
umns containing a null value:

In[19]: df.dropna(axis='columns')

Page 111 of 580

Out[19]
: 2

 0 2
 1 5
 2 6

But this drops some good data as well; you might rather be interested in dropping rows or

columns with all NA values, or a majority of NA values. This can be specified through the how

or thresh parameters, which allow fine control of the number of nulls to allow through.

The default is how='any', such that any row or column (depending on the axis key‐
word) containing a null value will be dropped. You can also specify how='all', which
will only drop rows/columns that are all null values:

In[20]: df[3] = np.nan

df

Out[20]
: 0 1 2 3

 0 1.0 Na
N

2 Na
N

 1 2.0 3.0 5 Na
N

 2 Na
N

4.0 6 Na
N

In[21]: df.dropna(axis='columns', how='all')

Out[21]
: 0 1 2

 0 1.0 Na
N

2

 1 2.0 3.0 5
 2 Na

N
4.0 6

For finer-grained control, the thresh parameter lets you specify a minimum number
of non-null values for the row/column to be kept:

In[22]: df.dropna(axis='rows', thresh=3)

Out[22]: 0 1 2 3

1 2.0 3.0 5 NaN

Here the first and last row have been dropped, because they contain only two non- null

values.

Filling null values

Sometimes rather than dropping NA values, you’d rather replace them with a valid value.

This value might be a single number like zero, or it might be some sort of imputation or

interpolation from the good values. You could do this in-place using the isnull() method as

a mask, but because it is such a common operation Pandas provides the fillna() method,

which returns a copy of the array with the null values replaced.

Consider the following Series:

In[23]: data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))
data

Page 112 of 580

Out[23]: a 1.0

b NaN

c 2.0

d NaN

e 3.0

dtype: float64

We can fill NA entries with a single value, such as zero:

In[24]: data.fillna(0)

Out[24]: a 1.0
b 0.0
c 2.0
d 0.0
e 3.0

dtype: float64

We can specify a forward-fill to propagate the previous value forward:

In[25]: # forward-fill

data.fillna(method='ffill')

Out[25]: a 1.0
b 1.0
c 2.0
d 2.0
e 3.0

dtype: float64

Or we can specify a back-fill to propagate the next values backward:

In[26]: # back-fill

data.fillna(method='bfill')

Out[26]: a 1.0
b 2.0
c 2.0
d 3.0
e 3.0

dtype: float64

For DataFrames, the options are similar, but we can also specify an axis along which
the fills take place:

In[27]: df

Out[27]
: 0 1 2 3

 0 1.0 Na
N

2 Na
N

 1 2.0 3.0 5 Na
N

Page 113 of 580

 2 Na
N

4.0 6 Na
N

In[28]: df.fillna(method='ffill', axis=1)

Out[28]
: 0 1 2 3

 0 1.0 1.0 2.0 2.0
 1 2.0 3.0 5.0 5.0
 2 Na

N
4.0 6.0 6.0

Notice that if a previous value is not available during a forward fill, the NA value remains.

Hierarchical Indexing

Up to this point we’ve been focused primarily on one-dimensional and two- dimensional
data, stored in Pandas Series and DataFrame objects, respectively. Often it is useful to go

beyond this and store higher-dimensional data—that is, data indexed by more than one or

two keys. While Pandas does provide Panel and Panel4D objects that natively handle three-

dimensional and four-dimensional data a far more common pattern in practice is to make

use of hierarchical indexing (also known as multi-indexing) to incorporate multiple index

levels within a single index. In this way, higher-dimensional data can be compactly

represented within the familiar one-dimensional Series and two-dimensional DataFrame

objects.

In this section, we’ll explore the direct creation of MultiIndex objects; considerations around
indexing, slicing, and computing statistics across multiply indexed data; and useful routines

for converting between simple and hierarchically indexed representa‐ tions of your data.

We begin with the standard imports:

In[1]: import pandas as pd
import numpy as np

A Multiply Indexed Series

Let’s start by considering how we might represent two-dimensional data within a

one-dimensional Series. For concreteness, we will consider a series of data where

each point has a character and numerical key.

The bad way

Suppose you would like to track data about states from two different years. Using the Pandas

tools we’ve already covered, you might be tempted to simply use Python tuples as keys:

In[2]: index = [('California', 2000), ('California', 2010),

('New York', 2000), ('New York', 2010),

('Texas', 2000), ('Texas', 2010)]

populations = [33871648, 37253956,

18976457, 19378102,

20851820, 25145561]

pop = pd.Series(populations,
index=index) pop

Out[2]: (California, 2000) 3387164

Page 114 of 580

8
(California, 2010) 3725395

6
(New York, 2000) 1897645

7
(New York, 2010) 1937810

2
(Texas, 2000) 2085182

0
(Texas, 2010) 25145561

dtype: int64

With this indexing scheme, you can straightforwardly index or slice the series based

on this multiple index:

In[3]: pop[('California', 2010):('Texas', 2000)]

Out[3]: (California, 2010) 3725395

6
(New York, 2000) 1897645

7
(New York, 2010) 1937810

2
(Texas, 2000) 2085182

0
dtype: int64

But the convenience ends there. For example, if you need to select all values from 2010,

you’ll need to do some messy (and potentially slow) munging to make it happen:

In[4]: pop[[i for i in pop.index if i[1] == 2010]]

Out[4]: (California, 2010) 3725395

6
(New York, 2010) 1937810

2
(Texas, 2010) 2514556

1
dtype: int64

This produces the desired result, but is not as clean (or as efficient for large datasets) as the

slicing syntax we’ve grown to love in Pandas.

The better way: Pandas MultiIndex

Fortunately, Pandas provides a better way. Our tuple-based indexing is essentially a

rudimentary multi-index, and the Pandas MultiIndex type gives us the type of opera‐ tions we

wish to have. We can create a multi-index from the tuples as follows:

In[5]: index =
pd.MultiIndex.from_tuples(index) index

Out[5]: MultiIndex(levels=[['California', 'New York', 'Texas'], [2000, 2010]],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

Notice that the MultiIndex contains multiple levels of indexing—in this case, the state names
and the years, as well as multiple labels for each data point which encode these levels.

Page 115 of 580

If we reindex our series with this MultiIndex, we see the hierarchical representation of the
data:

In[6]: pop = pop.reindex(index)
pop

Out[6]: California 2000 3387164

8
2010 3725395

6
New York 2000 1897645

7
2010 1937810

2
Texas 2000 20851820

2010 25145561

dtype: int64

First two columns of the Series representation show the multiple index val‐ ues, while the
third column shows the data. Notice that some entries are missing in the first column:in
this multi-index representation, any blank entry indicates the same value as the line above

it.

Now to access all data for which the second index is 2010, we can simply use the Pan‐ das

slicing notation:

In[7]: pop[:, 2010]

Out[7]: California 372539

56
New York 193781

02
Texa
s

251455
61

dtype: int64

The result is a singly indexed array with just the keys we’re interested in. This syntax is much
more convenient (and the operation is much more efficient!) than the home- spun tuple-

based multi-indexing solution that we started with. We’ll now further dis‐ cuss this sort of

indexing operation on hierarchically indexed data.

MultiIndex as extra dimension

You might notice something else here: we could easily have stored the same data using a

simple DataFrame with index and column labels. In fact, Pandas is built with this equivalence

in mind. The unstack() method will quickly convert a multiply- indexed Series into a

conventionally indexed DataFrame:

In[8]: pop_df = pop.unstack()
pop_df

Out[8]
: 2000 2010

 California 338716
48

372539
56

 New York 189764 193781

Page 116 of 580

57 02
 Texas 208518

20
251455
61

Naturally, the stack() method provides the opposite operation:

In[9]: pop_df.stack()

Out[9]: California 2000 3387164

8
 2010 3725395

6
New York 2000 1897645

7
 2010 1937810

2
Texas 2000 2085182

0
 2010 2514556

1
dtype: int64

Seeing this, you might wonder why would we would bother with hierarchical index‐ ing at

all. The reason is simple: just as we were able to use multi-indexing to represent two-

dimensional data within a one-dimensional Series, we can also use it to repre‐ sent data of

three or more dimensions in a Series or DataFrame. Each extra level in a multi-index

represents an extra dimension of data; taking advantage of this property gives us much more

flexibility in the types of data we can represent. Concretely, we might want to add another

column of demographic data for each state at each year (say, population under 18); with a

MultiIndex this is as easy as adding another col‐ umn to the DataFrame:

In[10]: pop_df = pd.DataFrame({'total': pop,

'under18': [9267089, 9284094,

4687374, 4318033,

5906301, 6879014]})

pop_df

Out[10]
: total under

18
 California 200

0
338716
48

92670
89

 201
0

372539
56

92840
94

 New York 200
0

189764
57

46873
74

 201
0

193781
02

43180
33

 Texas 200
0

208518
20

59063
01

 201
0

251455
61

68790
14

Here we compute the fraction of people under 18 by year, given the above data:

In[11]: f_u18 = pop_df['under18'] / pop_df['total']
f_u18.unstack()

Page 117 of 580

Out[11]
: 2000 2010

 California 0.27359
4

0.24921
1

 New York 0.24701
0

0.22283
1

 Texas 0.28325
1

0.27356
8

This allows us to easily and quickly manipulate and explore even high-dimensional

data.

Methods of MultiIndex Creation

The most straightforward way to construct a multiply indexed Series or DataFrame
is to simply pass a list of two or more index arrays to the constructor. For example:

In[12]: df = pd.DataFrame(np.random.rand(4, 2),

index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],

columns=['data1', 'data2'])

df

Out[12]
: data1 data2

 a 1 0.55423
3

0.35607
2

 2 0.92524
4

0.21947
4

 b 1 0.44175
9

0.61005
4

 2 0.17149
5

0.88668
8

The work of creating the MultiIndex is done in the background.

Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will auto‐ matically

recognize this and use a MultiIndex by default:

In[13]: data = {('California', 2000): 33871648,

('California', 2010): 37253956,

('Texas', 2000): 20851820,

('Texas', 2010): 25145561,

('New York', 2000): 18976457,

('New York', 2010): 19378102}

pd.Series(data)

Out[13]: California 2000 3387164

8
 2010 3725395

6
New York 2000 1897645

7
 2010 1937810

2

Page 118 of 580

Texas 2000 2085182
0

 2010 2514556
1

dtype: int64

Nevertheless, it is sometimes useful to explicitly create a MultiIndex; we’ll see a cou‐ ple of
these methods here.

Explicit MultiIndex constructors

For more flexibility in how the index is constructed, you can instead use the class method
constructors available in the pd.MultiIndex. For example, as we did before, you can construct
the MultiIndex from a simple list of arrays, giving the index values within each level:

In[14]: pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]])

Out[14]: MultiIndex(levels=[['a', 'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can construct it from a list of tuples, giving the multiple index values of each

point:

In[15]: pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)])

Out[15]: MultiIndex(levels=[['a', 'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can even construct it from a Cartesian product of single indices:

In[16]: pd.MultiIndex.from_product([['a', 'b'], [1, 2]])

Out[16]: MultiIndex(levels=[['a', 'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Similarly, you can construct the MultiIndex directly using its internal encoding by
passing levels (a list of lists containing available index values for each level) and
labels (a list of lists that reference these labels):

In[17]: pd.MultiIndex(levels=[['a', 'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Out[17]: MultiIndex(levels=[['a', 'b'], [1, 2]],

labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

You can pass any of these objects as the index argument when creating a Series or

DataFrame, or to the reindex method of an existing Series or DataFrame.

MultiIndex level names

Sometimes it is convenient to name the levels of the MultiIndex. You can
accomplish this by passing the names argument to any of the above MultiIndex
constructors, or by setting the names attribute of the index after the fact:

In[18]: pop.index.names = ['state', 'year']
pop

Out[18]: state year

California 2000 3387164

Page 119 of 580

8
 2010 3725395

6
New York 2000 1897645

7
 2010 1937810

2
Texas 2000 2085182

0
 2010 2514556

1
dtype: int64

With more involved datasets, this can be a useful way to keep track of the meaning of various

index values.

MultiIndex for columns

In a DataFrame, the rows and columns are completely symmetric, and just as the rows can
have multiple levels of indices, the columns can have multiple levels as well. Con‐ sider the
following, which is a mock-up of some (somewhat realistic) medical data:

In[19]:

hierarchical indices and columns

index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],

names=['year', 'visit'])

columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],

names=['subject', 'type'])

mock some data

data = np.round(np.random.randn(4, 6), 1)

data[:, ::2] *= 10

data += 37

create the DataFrame

health_data = pd.DataFrame(data, index=index,
columns=columns) health_data

Here we see where the multi-indexing for both rows and columns can come in very handy.

Out[19]:

subject Bob Guido Sue
type HR Temp HR Temp HR Temp

year visit

2013 1 31.0 38.7 32.0 36.7 35.0 37.2
2 44.0 37.7 50.0 35.0 29.0 36.7

2014 1 30.0 37.4 39.0 37.8 61.0 36.9
2 47.0 37.8 48.0 37.3 51.0 36.5

Page 120 of 580

This is fundamentally four-dimensional data, where the dimensions are the subject, the

measurement type, the year, and the visit number. With this in place we can, for example,

index the top-level column by the person’s name and get a full Data Frame containing just

that person’s information:

For complicated records containing multiple labeled measurements across multiple times

for many subjects (people, countries, cities, etc.), use of hierarchical rows and columns can

be extremely convenient!

Indexing and Slicing a MultiIndex

Indexing and slicing on a MultiIndex is designed to be intuitive, and it helps if you think about

the indices as added dimensions. We’ll first look at indexing multiply indexed Series, and

then multiply indexed DataFrames.

Multiply indexed Series

Consider the multiply indexed Series of state populations we saw earlier:

In[21]: pop

Out[21]: state year

California 2000 33871648
 2010 37253956

New York 2000 18976457
 2010 19378102

Texas 2000 20851820
 2010 25145561

dtype: int64

We can access single elements by indexing with multiple terms:

In[22]: pop['California', 2000]

Out[22]: 33871648

The MultiIndex also supports partial indexing, or indexing just one of the levels in the index.
The result is another Series, with the lower-level indices maintained:

In[23]: pop['California']

Out[23]: year

2000 33871648

2010 37253956

dtype: int64

Partial slicing is available as well, as long as the MultiIndex is sorted (see discussion
in “Sorted and unsorted indices” on page 137):

In[20]: health_data['Guido']

Out[20]: type
year visit

HR Temp

2013 1 32.0 36.7
2 50.0 35.0

2014 1 39.0 37.8
2 48.0 37.3

Page 121 of 580

In[24]: pop.loc['California':'New York']

Out[24]: state year

California 2000 3387164
8

 2010 3725395
6

New York 2000 1897645
7

 2010 1937810
2

dtype: int64

With sorted indices, we can perform partial indexing on lower levels by passing

an empty slice in the first index:

In[25]: pop[:, 2000]

Out[25]: state

California 33871648

New York 18976457

Texas 20851820

dtype: int64

For example, selection based on Boolean masks:

In[26]: pop[pop > 22000000]

Out[26]: state year

California 2000 3387164
8

 2010 3725395
6

Texas 2010 2514556
1

dtype:
int64

Selection based on fancy indexing also works:

In[27]: pop[['California', 'Texas']]

Out[27]: state year

California 2000 3387164
8

 2010 3725395
6

Texas 2000 2085182
0

 2010 2514556
1

dtype: int64

Page 122 of 580

Multiply indexed DataFrames

A multiply indexed DataFrame behaves in a similar manner. Consider our toy medical
DataFrame from before:

In[28]: health_data

Out[28]:

Remember that columns are primary in a DataFrame, and the syntax used for multi‐ ply
indexed Series applies to the columns. For example, we can recover Guido’s heart rate data
with a simple operation:

In[29]: health_data['Guido', 'HR']

Out[29]:
year

visit

2013 1 32.0
 2 50.0
2014 1 39.0
 2 48.0

Name: (Guido, HR), dtype: float64

Also, as with the single-index case, we can use the loc, iloc, and ix indexers intro‐ duced in
“Data Indexing and Selection” on page 107. For example:

In[30]: health_data.iloc[:2, :2]

Out[30]: subject

type
year visit

Bo
b
H
R

Te
mp

2013 1 31.0 38.
7

2 44.0 37.
7

These indexers provide an array-like view of the underlying two-dimensional data, but each

individual index in loc or iloc can be passed a tuple of multiple indices. For example:

In[31]: health_data.loc[:, ('Bob', 'HR')]

Out[31]:
year

visit

2013 1 31.0
 2 44.0
2014 1 30.0
 2 47.0

Name: (Bob, HR), dtype: float64

Working with slices within these index tuples is not especially convenient; trying to

subject Bob Guid
o

Su
e

type HR Tem

p

HR Tem

p

HR Temp

year

visit

2013 1 31.

0

38.

7

32.0 36.

7

35.0 37.2

2 44.

0

37.

7

50.0 35.

0

29.0 36.7

2014 1 30.

0

37.

4

39.0 37.

8

61.0 36.9

2 47.
0

37.
8

48.0 37.
3

51.0 36.5

Page 123 of 580

create a slice within a tuple will lead to a syntax error:

In[32]: health_data.loc[(:, 1), (:, 'HR')]

File "<ipython-input-32-8e3cc151e316>", line
1 health_data.loc[(:, 1), (:, 'HR')]

^
SyntaxError: invalid syntax

You could get around this by building the desired slice explicitly using Python’s

built- in slice() function, but a better way in this context is to use an IndexSlice

object, which Pandas provides for precisely this situation. For example:

In[33]: idx = pd.IndexSlice
health_data.loc[idx[:, 1], idx[:, 'HR']]

Out[33]: subject Bob Guido Sue
type HR HR HR
year visit

2013 1 31.0 32.0 35.0

2014 1 30.0 39.0 61.0

There are so many ways to interact with data in multiply indexed Series and Data
Frames, and as with many tools in this book the best way to become familiar with
them is to try them out!

Rearranging Multi-Indices

One of the keys to working with multiply indexed data is knowing how to effectively

transform the data. There are a number of operations that will preserve all the infor‐

mation in the dataset, but rearrange it for the purposes of various computations. We saw

a brief example of this in the stack() and unstack() methods, but there are many more

ways to finely control the rearrangement of data between hierarchical indices and

columns, and we’ll explore them here.

Sorted and unsorted indices

Earlier, we briefly mentioned a caveat, but we should emphasize it more here. Many

of the MultiIndex slicing operations will fail if the index is not sorted. Let’s take a look at

this here.

We’ll start by creating some simple multiply indexed data where the indices are not

lexographically sorted:

In[34]: index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]])
data = pd.Series(np.random.rand(6), index=index)
data.index.names = ['char', 'int']

data

Out[34]: char int
a 1 0.003001

 2 0.164974
c 1 0.741650

2 0.569264

Page 124 of 580

b 1 0.001693

2 0.526226

dtype: float64

If we try to take a partial slice of this index, it will result in an error:

In[35]: try:

data['a':'b']

except KeyError as e:
print(type(e))
print(e)

<class 'KeyError'>

'Key length (1) was greater than MultiIndex lexsort depth (0)'

Although it is not entirely clear from the error message, this is the result of the Multi Index
not being sorted. For various reasons, partial slices and other similar opera‐ tions require

the levels in the MultiIndex to be in sorted (i.e., lexographical) order. Pandas provides a
number of convenience routines to perform this type of sorting; examples are the
sort_index() and sortlevel() methods of the DataFrame. We’ll use the simplest, sort_index(),

here:

In[36]: data = data.sort_index()
data

Out[36]: char int
a 1 0.003001

 2 0.164974
b 1 0.001693

 2 0.526226
c 1 0.741650

 2 0.569264

dtype: float64

With the index sorted in this way, partial slicing will work as expected:

In[37]: data['a':'b']

Out[37]: char int
a 1 0.003001

 2 0.164974
b 1 0.001693

 2 0.526226

dtype: float64

Stacking and unstacking indices

As we saw briefly before, it is possible to convert a dataset from a stacked multi-

index to a simple two-dimensional representation, optionally specifying the level

to use:

In[38]: pop.unstack(level=0)

Page 125 of 580

Out[38]:
state
year

California New
York

Texas

2000 33871648 189764
57

208518
20

2010 37253956 193781
02

251455
61

In[39]: pop.unstack(level=1)

Out[39]:
year
state

2000 2010

California 338716
48

372539
56

New York 189764
57

193781
02

Texas 208518
20

251455
61

The opposite of unstack() is stack(), which here can be used to recover the original
series:

In[40]: pop.unstack().stack()

Out[40]: state year

California 2000 3387164
8

 2010 3725395
6

New York 2000 1897645
7

 2010 1937810
2

Texas 2000 2085182
0

 2010 2514556
1

dtype: int64

Index setting and resetting

Another way to rearrange hierarchical data is to turn the index labels into columns; this

can be accomplished with the reset_index method. Calling this on the popula‐ tion

dictionary will result in a DataFrame with a state and year column holding the information

that was formerly in the index. For clarity, we can optionally specify the name of the data

for the column representation:

In[41]: pop_flat =
pop.reset_index(name='population')
pop_flat

Out[41]: state year population

0 California 2000 33871648
1 California 2010 37253956

Page 126 of 580

2 New York 2000 18976457
3 New York 2010 19378102
4 Texas 2000 20851820
5 Texas 2010 25145561

Often when you are working with data in the real world, the raw input data looks like this

and it’s useful to build a MultiIndex from the column values. This can be done with the

set_index method of the DataFrame, which returns a multiply indexed Data Frame:

In[42]: pop_flat.set_index(['state', 'year'])

Out[42]
:

state

yea

r

populatio
n

 California 200
0

33871648

 201
0

37253956

 New York 200
0

18976457

 201
0

19378102

 Texas 200
0

20851820

 201
0

25145561

In practice, I find this type of reindexing to be one of the more useful patterns

when I encounter real-world datasets.

Data Aggregations on Multi-Indices

We’ve previously seen that Pandas has built-in data aggregation methods, such as

mean(), sum(), and max(). For hierarchically indexed data, these can be passed a

level parameter that controls which subset of the data the aggregate is computed

on.

For example, let’s return to our health data:

In[43]: health_data

Out[43]:

Perhaps we’d like to average out the measurements in the two visits each year. We

can do this by naming the index level we’d like to explore, in this case the year:

In[44]: data_mean =
health_data.mean(level='year')
data_mean

subject Bob Guid
o

Su
e

type HR Tem

p

HR Tem

p

HR Temp

year

visit

2013 1 31.0 38.

7

32.0 36.

7

35.0 37.2

2 44.0 37.

7

50.0 35.

0

29.0 36.7

2014 1 30.0 37.

4

39.0 37.

8

61.0 36.9

2 47.0 37.
8

48.0 37.
3

51.0 36.5

Page 127 of 580

Out[44]: subject Bob Guido Sue

type HR Temp HR Temp HR
 Temp year

2013 37.5 38.2 41.0 35.85 32.0 36.95

2014 38.5 37.6 43.5 37.55 56.0 36.70

By further making use of the axis keyword, we can take the mean among levels on the
columns as well:

In[45]: data_mean.mean(axis=1, level='type')

Out[45]:
type
year

HR Temp

2013 36.83333
3

37.00000
0

2014 46.00000
0

37.28333
3

Combining Datasets: Merge and Join

One essential feature offered by Pandas is its high-performance, in-memory join and

merge operations. If you have ever worked with databases, you should be familiar with this

type of data interaction. The main interface for this is the pd.merge func‐ tion, and we’ll

see a few examples of how this can work in practice.

Categories of Joins

The pd.merge() function implements a number of types of joins: the one-to-one, many-to-

one, and many-to-many joins. All three types of joins are accessed via an identical call to
the pd.merge() interface; the type of join performed depends on the form of the input

data. Here we will show simple examples of the three types of merges, and discuss detailed
options further below.

One-to-one joins

Perhaps the simplest type of merge expression is the one-to-one join, which is in many

ways very similar to the column-wise concatenation. As a concrete example, consider the

following two DataFrames, which contain information on several employees in a company:

In[2]:

df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],

'group': ['Accounting', 'Engineering', 'Engineering', 'HR']})

df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],

'hire_date': [2004, 2008, 2012, 2014]})

print(df1); print(df2)

df1 df2

 employee group employee hire_date
0 Bob Accountin

g
0 Lisa 2004

1 Jake Engineerin 1 Bob 2008

Page 128 of 580

g
2 Lisa Engineerin

g
2 Jake 2012

3 Sue HR 3 Sue 2014

To combine this information into a single DataFrame, we can use the pd.merge()

function:

In[3]: df3 = pd.merge(df1, df2)
df3

Out[3]
: employ

ee
group hire_dat

e
 0 Bob Accounting 2008
 1 Jake Engineerin

g
2012

 2 Lisa Engineerin
g

2004

 3 Sue HR 2014

The pd.merge() function recognizes that each DataFrame has an “employee” column, and

automatically joins using this column as a key. The result of the merge is a new DataFrame that

combines the information from the two inputs. Notice that the order of entries in each column is not

necessarily maintained: in this case, the order of the “employee” column differs between df1 and

df2, and the pd.merge() function cor‐ rectly accounts for this.

Many-to-one joins

Many-to-one joins are joins in which one of the two key columns contains duplicate

entries. For the many-to-one case, the resulting DataFrame will preserve those dupli‐ cate

entries as appropriate. Consider the following example of a many-to-one join:

In[4]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],

'supervisor': ['Carly', 'Guido', 'Steve']})

print(df3); print(df4); print(pd.merge(df3, df4))

df3 df4

employee group hire_date group supervisor

0 Bob Accounting 2008 0 Accounting Carly
1 Jake Engineering 2012 1 Engineering Guido
2 Lisa Engineering 2004 2 HR Steve
3 Sue HR 2014

pd.merge(df3, df4)
employee group hire_dat

e
superviso
r

0
 Bo
b

Accounting 2008 Carly

1 Jake Engineerin
g

2012 Guido

2 Lisa Engineerin
g

2004 Guido

3 HR 2014 Steve

Page 129 of 580

 Su
e

The resulting DataFrame has an additional column with the “supervisor” information, where
the information is repeated in one or more locations as required by the inputs.

Many-to-many joins

Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined. If

the key column in both the left and right array contains duplicates, then the result is a

many-to-many merge. This will be perhaps most clear with a concrete example. Consider

the following, where we have a DataFrame showing one or more skills associated with a

particular group.

By performing a many-to-many join, we can recover the skills associated with any

individual person:

In[5]: df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',

'Engineering', 'Engineering', 'HR', 'HR'],

'skills': ['math', 'spreadsheets', 'coding', 'linux',
'spreadsheets', 'organization']})

print(df1); print(df5); print(pd.merge(df1, df5))

df1 df5

 employ
ee

group group skills

0 Bob Accounting 0 Accounting math
1 Jake Engineerin

g
1 Accounting spreadsheet

s
2 Lisa Engineerin

g
2 Engineerin

g
coding

3 Sue HR 3 Engineerin
g

linux

 4 HR spreadsheet
s

 5 HR organizatio
n

pd.merge(df1, df5)
employee group skills
0
 Bo
b

Accounting math

1
 Bo
b

Accounting spreadsheet
s

2 Jake Engineerin
g

coding

3 Jake Engineerin
g

linux

4 Lisa Engineerin
g

coding

5 Lisa Engineerin
g

linux

6 HR spreadsheet

Page 130 of 580

 Su
e

s

7
 Su
e

HR organizatio
n

These three types of joins can be used with other Pandas tools to implement a wide array

of functionality. But in practice, datasets are rarely as clean as the one we’re working with

here. In the following section, we’ll consider some of the options pro‐ vided by pd.merge()

that enable you to tune how the join operations work.

Specification of the Merge Key

We’ve already seen the default behavior of pd.merge(): it looks for one or more matching
column names between the two inputs, and uses this as the key. However, often the
column names will not match so nicely, and pd.merge() provides a variety of options for
handling this.

The on keyword

Most simply, you can explicitly specify the name of the key column using the on key‐ word,
which takes a column name or a list of column names:

In[6]: print(df1); print(df2); print(pd.merge(df1, df2, on='employee'))

df1 df2

 employ
ee

group employ
ee

hire_dat
e

0 Bob Accounting 0 Lisa 2004
1 Jake Engineerin

g
1 Bob 2008

2 Lisa Engineerin
g

2 Jake 2012

3 Sue HR 3 Sue 2014

pd.merge(df1, df2, on='employee')
employee group hire_dat

e
0
 Bo
b

Accounting 2008

1 Jake Engineerin
g

2012

2 Lisa Engineerin
g

2004

3
 Su
e

HR 2014

This option works only if both the left and right DataFrames have the specified col‐ umn
name.

The left_on and right_on keywords

At times you may wish to merge two datasets with different column names; for exam‐ ple,

we may have a dataset in which the employee name is labeled as “name” rather than

“employee”. In this case, we can use the left_on and right_on keywords to specify the two

column names:

In[7]:

Page 131 of 580

df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],

'salary': [70000, 80000, 120000, 90000]})

print(df1); print(df3);

print(pd.merge(df1, df3, left_on="employee", right_on="name"))

df1 df3

employee group name salary
0 Bob Accounting 0 Bo

b
7000

0
1 Jake Engineerin

g
1 Jak

e
8000

0
2 Lisa Engineerin

g
2 Lisa 1200

00
3 Sue HR 3 Su

e
9000

0

pd.merge(df1, df3, left_on="employee", right_on="name")
employee group na

me
salary

0
 Bo
b

Accounting Bo
b

70000

1 Jake Engineerin
g

Jak
e

80000

2 Lisa Engineerin
g

Lisa 12000
0

3
 Su
e

HR Su
e

90000

The result has a redundant column that we can drop if desired—for example, by using

the drop() method of DataFrames:

In[8]:

pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1)

Out[8]
:

employee group salary

 0
 Bo
b

Accounting 70000

 1
 Jak
e

Engineerin
g

80000

 2 Lisa Engineerin
g

12000
0

 3
 Su
e

HR 90000

The left_index and right_index keywords

Sometimes, rather than merging on a column, you would instead like to merge on an

index. For example, your data might look like this:

In[9]: df1a = df1.set_index('employee')
df2a =

Page 132 of 580

df2.set_index('employee')
print(df1a); print(df2a)

df1a df2a

 group hire_dat
e

employ
ee

 employ
ee

Bob Accounting Lisa 2004
Jake Engineerin

g
Bob 2008

Lisa Engineerin
g

Jak
e

2012

Sue HR Sue 2014

You can use the index as the key for merging by specifying the left_index and/or
right_index flags in pd.merge():

In[10]:

print(df1a); print(df2a);

print(pd.merge(df1a, df2a, left_index=True, right_index=True))

df1a df2a

 group hire_dat
e

employ
ee

 employ
ee

Bob Accounting Lisa 2004
Jake Engineerin

g
Bob 2008

Lisa Engineerin
g

Jake 2012

Sue HR Sue 2014

pd.merge(df1a, df2a, left_index=True, right_index=True)

 group hire_dat
e

employ
ee

Lisa Engineering 2004
Bob Accounting 2008
Jake Engineering 2012
Sue HR 2014

For convenience, DataFrames implement the join() method, which performs a merge that
defaults to joining on indices:

In[11]: print(df1a); print(df2a); print(df1a.join(df2a))

df1a df2a

 group hire_dat
e

employ employ

Page 133 of 580

ee ee
Bob Accounting Lisa 2004
Jake Engineerin

g
Bob 2008

Lisa Engineerin
g

Jake 2012

Sue HR Sue 2014
df1a.join(df2a)

group hire_dat
e

employee
Bob
 Accountin
g

2008

Jake
 Engineerin
g

2012

Lisa
 Engineerin
g

2004

Sue
 H
R

2014

If you’d like to mix indices and columns, you can combine left_index with right_on

or left_on with right_index to get the desired behavior:

In[12]:

print(df1a); print(df3);

print(pd.merge(df1a, df3, left_index=True, right_on='name'))

df1a

employ
ee

group

 df3

nam
e

salary

Bob Accounting 0 Bo
b

70000

Jake Engineerin
g

1 Jak
e

80000

Lisa Engineerin
g

2 Lisa 12000
0

Sue HR 3 Su
e

90000

pd.merge(df1a, df3, left_index=True,

right_on='name') group name salary

0 Accounting Bob 70000
1 Engineering Jake 80000
2 Engineering Lisa
120000 3 HR Sue 90000

Page 134 of 580

Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important consideration

in performing a join: the type of set arithmetic used in the join. This comes up

when a value appears in one key column but not the other. Consider this example:

In[13]: df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'],

'food': ['fish', 'beans', 'bread']},
columns=['name', 'food'])

df7 = pd.DataFrame({'name': ['Mary', 'Joseph'],

'drink': ['wine', 'beer']},
columns=['name', 'drink'])

print(df6); print(df7); print(pd.merge(df6, df7))

df
6 df7 pd.merge(df6, df7)

 nam
e

food name
drink

name food drink

0 Pete
r

fish 0 Mary
wine

0 Mary bread wine

1 Paul bean
s

1 Joseph beer

2 Mar
y

brea
d

Here we have merged two datasets that have only a single “name” entry in common:

Mary. By default, the result contains the intersection of the two sets of inputs; this is what

is known as an inner join. We can specify this explicitly using the how keyword, which defaults

to 'inner':

In[14]: pd.merge(df6, df7,

how='inner') Out[14]: name

 food drink

0 Mary bread wine

Other options for the how keyword are 'outer', 'left', and 'right'. An outer join returns a join
over the union of the input columns, and fills in all missing values with NAs:

In[15]: print(df6); print(df7); print(pd.merge(df6, df7,

how='outer')) df6 df7 pd.merge(df6, df7,

how='outer')

name food name drink name food drink
0 Pete

r
fish 0 Mary wine 0 Peter fish Na

N
1 Pau

l
bean
s

1 Josep
h

beer 1 Paul bean
s

Na
N

2 Mar
y

brea
d

 2 Mary brea
d

win
e

 3 Josep
h

NaN bee
r

The left join and right join return join over the left entries and right entries,
respec‐ tively. For example:

In[16]: print(df6); print(df7); print(pd.merge(df6, df7, how='left'))

df6 df7 pd.merge(df6, df7, how='left')

Page 135 of 580

name food name drink name food drink
0 Peter fish 0 Mary wine 0 Peter fish Na

N
1 Paul bean

s
1 Josep

h
beer 1 Paul bean

s
Na
N

2
 Mar
y

brea
d 2 Mary brea

d
win

e

The output rows now correspond to the entries in the left input. Using how='right'
works in a similar manner.

All of these options can be applied straightforwardly to any of the preceding

join types.

Overlapping Column Names: The suffixes Keyword

Finally, you may end up in a case where your two input DataFrames have conflicting
column names. Consider this example:

In[17]: df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],

'rank': [1, 2, 3, 4]})

df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],

'rank': [3, 1, 4, 2]})

print(df8); print(df9); print(pd.merge(df8, df9, on="name"))

df8 df9 pd.merge(df8, df9,
on="name") name rank name rank
 name rank_x rank_y

0 Bob 1 0 Bob 3 0 Bob 1 3
1 Jake 2 1 Jake 1 1 Jake 2 1
2 Lisa 3 2 Lisa 4 2 Lisa 3 4
3 Sue 4 3 Sue 2 3 Sue 4 2

Because the output would have two conflicting column names, the merge function
automatically appends a suffix _x or _y to make the output columns unique. If these

defaults are inappropriate, it is possible to specify a custom suffix using the suffixes
keyword:

In[18]:

print(df8); print(df9);

print(pd.merge(df8, df9, on="name", suffixes=["_L", "_R"]))

df
8

nam
e

ran
k

df
9

nam
e

ran
k

0 Bob 1 0 Bob 3
1 Jake 2 1 Jake 1
2 Lisa 3 2 Lisa 4
3 Sue 4 3 Sue 2

pd.merge(df8, df9, on="name", suffixes=["_L",
"_R"]) name rank_L rank_R

0 Bob 1 3
1 Jake 2 1
2 Lisa 3 4

Page 136 of 580

3 Sue 4 2

These suffixes work in any of the possible join patterns, and work also if there are

multiple overlapping columns.

Day 05- Descriptive Statistics

Cleansing Data with Pandas

Example: US States Data

Merge and join operations come up most often when one is combining data from dif‐

ferent sources. Here we will consider an example of some data about US states and their

populations. The data files can be found at http://github.com/jakevdp/data- USstates/:

In[19]:

Following are shell commands to download the data

!curl -O

https://raw.githubusercontent.com/jakevdp/ #

 data-USstates/master/state-

population.csv

!curl -O

https://raw.githubusercontent.com/jakevdp/ #

 data-USstates/master/state-areas.csv

!curl -O

https://raw.githubusercontent.com/jakevdp/ #

 data-USstates/master/state-abbrevs.csv

Let’s take a look at the three datasets, using the Pandas read_csv() function:

In[20]: pop = pd.read_csv('state-population.csv')
areas = pd.read_csv('state-areas.csv')
abbrevs = pd.read_csv('state-
abbrevs.csv')

print(pop.head()); print(areas.head()); print(abbrevs.head())

pop.head()

state/region ages

yea

r

populatio
n

areas.head()
state

area (sq. mi)

0 AL under1
8

201
2

1117489.
0

0 Alabama 52423

1 AL total 201
2

4817528.
0

1 Alaska 656425

2 AL under1
8

201
0

1130966.
0

2 Arizona 114006

3 AL total 201
0

4785570.
0

3 Arkansas 53182

4 AL under1
8

201
1

1125763.
0

3 Arkansas 53182

 4 California 163707

abbrevs.head()

state abbreviation

Page 137 of 580

0 Alabama AL
1 Alaska AK
2 Arizona AZ
3 Arkansas AR
4 California CA

Given this information, say we want to compute a relatively straightforward

result: rank US states and territories by their 2010 population density. We clearly

have the data here to find this result, but we’ll have to combine the datasets to

get it.

We’ll start with a many-to-one merge that will give us the full state name within the
population DataFrame. We want to merge based on the state/region column of pop, and

the abbreviation column of abbrevs. We’ll use how='outer' to make sure no data is thrown

away due to mismatched labels.

In[21]: merged = pd.merge(pop, abbrevs, how='outer',

left_on='state/region', right_on='abbreviation')
merged = merged.drop('abbreviation', 1) # drop duplicate
info merged.head()

Out[21]: state/region ages year population state

 0 AL under18 2012 1117489.0 Alabama
 1 AL total 2012 4817528.0 Alabama
 2 AL under18 2010 1130966.0 Alabama
 3 AL total 2010 4785570.0 Alabama
 4 AL under18 2011 1125763.0 Alabama

Let’s double-check whether there were any mismatches here, which we can do by looking

for rows with nulls:

In[22]: merged.isnull().any()

Out[22]: state/region False
ages False

year False

population True

state True

dtype: bool

Some of the population info is null; let’s figure out which these are!

In[23]: merged[merged['population'].isnull()].head()

Out[23]
:

state/region ages year populatio
n

state

 2448
 P
R

under1
8

199
0

NaN NaN

 2449
 P
R

total 199
0

NaN NaN

 2450
 P

total 199
1

NaN NaN

Page 138 of 580

R
 2451

 P
R

under1
8

199
1

NaN NaN

 2452
 P
R

total 199
3

NaN NaN

It appears that all the null population values are from Puerto Rico prior to the

year 2000; this is likely due to this data not being available from the original

source.

More importantly, we see also that some of the new state entries are also null, which means
that there was no corresponding entry in the abbrevs key! Let’s figure out which regions
lack this match:

In[24]: merged.loc[merged['state'].isnull(), 'state/region'].unique()

Out[24]: array(['PR', 'USA'], dtype=object)

We can quickly infer the issue: our population data includes entries for Puerto

Rico (PR) and the United States as a whole (USA), while these entries do not

appear in the state abbreviation key. We can fix these quickly by filling in

appropriate entries:

In[25]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'
merged.isnull().any()

Out[25]: state/region False
ages False

year False

population True

state False

dtype: bool

No more nulls in the state column: we’re all set!

Now we can merge the result with the area data using a similar procedure. Examining our

results, we will want to join on the state column in both:

In[26]: final = pd.merge(merged, areas, on='state', how='left')
final.head()

Out[26]
:

state/region ages yea
r

populatio
n

state area (sq. mi)

 0
 A
L

under1
8

201
2

1117489
.0

Alabam
a

52423.0

 1
 A
L

total 201
2

4817528
.0

Alabam
a

52423.0

 2
 A
L

under1
8

201
0

1130966
.0

Alabam
a

52423.0

Page 139 of 580

 3
 A
L

total 201
0

4785570
.0

Alabam
a

52423.0

 4
 A
L

under1
8

201
1

1125763
.0

Alabam
a

52423.0

Again, let’s check for nulls to see if there were any mismatches:

In[27]: final.isnull().any()

Out[27]: state/region False
ages False

year False

population True

state False

area (sq. mi) True
dtype: bool

There are nulls in the area column; we can take a look to see which regions were
ignored here:

In[28]: final['state'][final['area (sq. mi)'].isnull()].unique()

Out[28]: array(['United States'], dtype=object)

We see that our areas DataFrame does not contain the area of the United States as a

whole. We could insert the appropriate value (using the sum of all state areas, for
instance), but in this case we’ll just drop the null values because the population den‐ sity of
the entire United States is not relevant to our current discussion:

In[29]: final.dropna(inplace=True)
final.head()

Out[29]
:

state/region ages yea
r

populatio
n

state area (sq. mi)

 0
 A
L

under1
8

201
2

1117489
.0

Alabam
a

52423.0

 1
 A
L

total 201
2

4817528
.0

Alabam
a

52423.0

 2
 A
L

under1
8

201
0

1130966
.0

Alabam
a

52423.0

 3
 A
L

total 201
0

4785570
.0

Alabam
a

52423.0

 4
 A
L

under1
8

201
1

1125763
.0

Alabam
a

52423.0

Now we have all the data we need. To answer the question of interest, let’s first select the

portion of the data corresponding with the year 2000, and the total population. We’ll use

the query() function to do this quickly (this requires the numexpr package to be installed;

Page 140 of 580

In[30]: data2010 = final.query("year == 2010 & ages ==
'total'") data2010.head()

Out[30]: state/region ages year population state area (sq. mi) 3
 AL total 2010 4785570.0 Alabama 52423.0

91 AK total 2010 713868.0 Alaska 656425.0

101 AZ total 201
0

6408790 Arizona 114006.0

189 AR total 201
0

2922280 Arkansas 53182.0

197 CA total 201
0

3733360
1

California 163707.0

Now let’s compute the population density and display it in order. We’ll start by

rein‐ dexing our data on the state, and then compute the result:

In[31]: data2010.set_index('state', inplace=True)

density = data2010['population'] / data2010['area (sq. mi)']

In[32]: density.sort_values(ascending=False,
inplace=True) density.head()

Out[32]: state
District of Columbia 8898.89705

9
Puerto Rico 1058.66514

9
New Jersey 1009.25326

8
Rhode Island 681.339159
Connecticut 645.600649
dtype: float64

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of their

2010 population density, in residents per square mile. We can see that by far the densest

region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the

densest is New Jersey.

We can also check the end of the list:

In[33]: density.tail()

Out[33]: state

We see that the least dense state, by far, is Alaska, averaging slightly over one resident per

square mile.

This type of messy data merging is a common task when one is trying to answer questions

using real-world data sources. I hope that this example has given you an idea of the ways

you can combine tools we’ve covered in order to gain insight from your data!

South Dakota 10.583512

North Dakota 9.537565

Montana 6.736171

Wyoming 5.768079

Alaska 1.087509

dtype:
float64

Page 141 of 580

Aggregation and Grouping

An essential piece of analysis of large data is efficient summarization: computing
aggregations like sum(), mean(), median(), min(), and max(), in which a single num‐ ber

gives insight into the nature of a potentially large dataset. In this section, we’ll explore

aggregations in Pandas, from simple operations akin to what we’ve seen on NumPy arrays,

to more sophisticated operations based on the concept of a groupby.

Planets Data

Here we will use the Planets dataset, available via the Seaborn package (see “Visuali‐ zation with

Seaborn” on page 311). It gives information on planets that astronomers have discovered around

other stars (known as extrasolar planets or exoplanets for short). It can be downloaded with a simple

Seaborn command:

In[2]: import seaborn as sns

planets = sns.load_dataset('planets')
planets.shape

Out[2]: (1035, 6)

In[3]: planets.head()

Out[3]: method numbe

r
orbital_perio
d

mass distance year

0 Radial Velocity 1 269.300 7.10 77.40 200
6

1 Radial Velocity 1 874.774 2.21 56.95 200
8

2 Radial Velocity 1 763.000 2.60 19.84 201
1

3 Radial Velocity 1 326.030 19.40 110.62 200
7

4 Radial Velocity 1 516.220 10.50 119.47 200
9

This has some details on the 1,000+ exoplanets discovered up to 2014.

Simple Aggregation in Pandas

Earlier we explored some of the data aggregations available for NumPy arrays

(“Aggregations: Min, Max, and Everything in Between” on page 58). As with a one-

dimensional NumPy array, for a Pandas Series the aggregates return a single value:

In[4]: rng =
np.random.RandomState(42)
ser = pd.Series(rng.rand(5)) ser

Out[4]: 0 0.374540
1 0.950714
2 0.731994
3 0.598658
4 0.156019

dtype: float64

In[5]: ser.sum()

Out[5]: 2.8119254917081569

Page 142 of 580

In[6]: ser.mean()

Out[6]: 0.56238509834163142

For a DataFrame, by default the aggregates return results within each column:

In[7]: df = pd.DataFrame({'A': rng.rand(5),

'B': rng.rand(5)})

df

Out[7]
: A B

 0 0.15599
5

0.02058
4

 1 0.05808
4

0.96991
0

 2 0.86617
6

0.83244
3

 3 0.60111
5

0.21233
9

 4 0.70807
3

0.18182
5

In[8]: df.mean()

Out[8]: A 0.477888

B 0.443420

dtype: float64

By specifying the axis argument, you can instead aggregate within each row:

In[9]: df.mean(axis='columns')

Out[9]: 0 0.088290
1 0.513997
2 0.849309
3 0.406727
4 0.444949

dtype: float64

Pandas Series and DataFrames include all of the common aggregates mentioned in

“Aggregations: Min, Max, and Everything in Between” on page 58; in addition, there is a
convenience method describe() that computes several common aggregates for each

column and returns the result. Let’s use this on the Planets data, for now drop‐ ping rows
with missing values:

In[10]: planets.dropna().describe()

Out[10]: number orbital_perio

d
mass distance year

count 498.0000
0

498.000000 498.0000
00

498.0000
00

498.00000
0

mean 1.73494 835.778671 2.509320 52.06821
3

2007.3775
10

Page 143 of 580

std 1.17572 1469.128259 3.636274 46.59604
1

4.167284

min 1.00000 1.328300 0.003600 1.350000 1989.0000
00

25% 1.00000 38.272250 0.212500 24.49750
0

2005.0000
00

50% 1.00000 357.000000 1.245000 39.94000
0

2009.0000
00

75% 2.00000 999.600000 2.867500 59.33250
0

2011.0000
00

max 6.00000 17337.50000
0

25.00000
0

354.0000
00

2014.0000
00

This can be a useful way to begin understanding the overall properties of a dataset. For

example, we see in the year column that although exoplanets were discovered as far back

as 1989, half of all known exoplanets were not discovered until 2010 or after. This is largely

thanks to the Kepler mission, which is a space-based telescope specifi‐ cally designed for

finding eclipsing planets around other stars.

GroupBy: Split, Apply, Combine

Simple aggregations can give you a flavor of your dataset, but often we would prefer to

aggregate conditionally on some label or index: this is implemented in the so- called

groupby operation. The name “group by” comes from a command in the SQL database

language, but it is perhaps more illuminative to think of it in the terms first coined by

Hadley Wickham of Rstats fame: split, apply, combine.

Split, apply, combine

• The split step involves breaking up and grouping a DataFrame depending on
the value of the specified key.

• The apply step involves computing some function, usually an aggregate,

transfor‐ mation, or filtering, within the individual groups.

• The combine step merges the results of these operations into an output array.

Page 144 of 580

While we could certainly do this manually using some combination of the masking,

aggregation, and merging commands covered earlier, it’s important to realize that the

intermediate splits do not need to be explicitly instantiated. Rather, the GroupBy can (often)

do this in a single pass over the data, updating the sum, mean, count, min, or other

aggregate for each group along the way. The power of the GroupBy is that it abstracts

away these steps: the user need not think about how the computation is done under

the hood, but rather thinks about the operation as a whole.

We’ll start by creating the input DataFrame:
In[11]: df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

'data': range(6)}, columns=['key', 'data'])

df

Out[11]: key data

0 A 0

1 B 1

2 C 2

3 A 3

4 B 4

5 C 5

We can compute the most basic split-apply-combine operation with the groupby()
method of DataFrames, passing the name of the desired key column:

In[12]: df.groupby('key')

Out[12]: <pandas.core.groupby.DataFrameGroupBy object at 0x117272160>

Notice that what is returned is not a set of DataFrames, but a DataFrameGroupBy object.

This object is where the magic is: you can think of it as a special view of the DataFrame,

which is poised to dig into the groups but does no actual computation until the

aggregation is applied. This “lazy evaluation” approach means that common aggregates

can be implemented very efficiently in a way that is almost transparent to the user.
To produce a result, we can apply an aggregate to this DataFrameGroupBy object, which
will perform the appropriate apply/combine steps to produce the desired result:
In[13]: df.groupby('key').sum()

Data key

A 3

Page 145 of 580

B 5

C 7

The sum() method is just one possibility here; you can apply virtually any
common Pandas or NumPy aggregation function, as well as virtually any valid
DataFrame operation, as we will see in the following discussion.
The GroupBy object

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if
it’s a collection of DataFrames, and it does the difficult things under the hood. Let’s see
some examples using the Planets data.
Perhaps the most important operations made available by a GroupBy are aggregate,
filter, transform, and apply. We’ll discuss each of these more fully in “Aggregate, filter,
transform, apply” on page 165, but before that let’s introduce some of the other func‐
tionality that can be used with the basic GroupBy operation.
Column indexing

 The GroupBy object supports column indexing in the same way as the DataFrame, and returns

a modified GroupBy object. For example:

In[14]: planets.groupby('method')

Out[14]: <pandas.core.groupby.DataFrameGroupBy object at

0x1172727b8> In[15]: planets.groupby('method')['orbital_period']

Out[15]: <pandas.core.groupby.SeriesGroupBy object at 0x117272da0>

Here we’ve selected a particular Series group from the original DataFrame group by
reference to its column name. As with the GroupBy object, no computation is done until
we call some aggregate on the object:

In[16]: planets.groupby('method')['orbital_period'].median()

Out[16]: method

Astrometry 631.180000

Eclipse Timing Variations 4343.500000

Imaging 27500.000000

Microlensing 3300.000000

Orbital Brightness Modulation 0.342887

Pulsar Timing 66.541900

Page 146 of 580

Pulsation Timing Variations 1170.000000

Radial Velocity 360.200000

Transit 5.714932

Transit Timing Variations 57.011000

Name: orbital_period, dtype: float64

Iteration over groups. The GroupBy object supports direct iteration over the groups,

returning each group as a Series or DataFrame:
In[17]: for (method, group) in planets.groupby('method'):

print("{0:30s} shape={1}".format(method, group.shape))

Astrometry shape=(2, 6)
Eclipse Timing Variations shape=(9, 6)
Imaging shape=(38,
6)

Microlensing shape=(23,
6) Orbital Brightness Modulation
shape=(3, 6) Pulsar Timing shape=(5, 6)
Pulsation Timing Variations shape=(1, 6)
Radial Velocity shape=(553,
6)

Transit shape=(397, 6)

Transit Timing Variations shape=(4, 6)

This can be useful for doing certain things manually, though it is often much faster to use

the built-in apply functionality, which we will discuss momentarily.

Dispatch methods. Through some Python class magic, any method not explicitly

implemented by the GroupBy object will be passed through and called on the groups,
whether they are DataFrame or Series objects. For example, you can use the describe()
method of DataFrames to perform a set of aggregations that describe each group in the
data:

In[18]: planets.groupby('method')['year'].describe().unstack()

Out[18]:

method

count

mean

std

min

25% \\

Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75

Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00

Imaging 38.0 2009.131579 2.781901 2004.0 2008.00

Page 147 of 580

Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00
Orbital Brightness
Modulation

3.0 2011.666667 1.154701 2011.0 2011.00

Aggregate, filter, transform, apply.

The preceding discussion focused on aggregation for the combine operation, but
there are more options available. In particular, GroupBy objects have aggregate(), filter(),
transform(), and apply() methods that efficiently implement a variety of useful operations

before combining the grouped data.

For the purpose of the following subsections, we’ll use this DataFrame:
In[19]: rng = np.random.RandomState(0)

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

'data1': range(6),

'data2': rng.randint(0, 10, 6)},

columns = ['key', 'data1', 'data2'])

df

Out[19]
:

key data
1

data
2

 0 A 0 5
 1 B 1 0
 2 C 2 3

3 A 3 3
4 B 4 7
5 C 5 9

Aggregation. We’re now familiar with GroupBy aggregations with sum(), median(), and the
like, but the aggregate() method allows for even more flexibility. It can take a string, a
function, or a list thereof, and compute all the aggregates at once. Here is a quick example
combining all these:

In[20]: df.groupby('key').aggregate(['min', np.median, max])

Out[20]: data1 data2

min median max min median max
key
A 0 1.5 3 3 4.0 5
B 1 2.5 4 0 3.5 7
C 2 3.5 5 3 6.0 9

Another useful pattern is to pass a dictionary mapping column names to

operations to be applied on that column:
In[21]: df.groupby('key').aggregate({'data1': 'min',

Page 148 of 580

'data2': 'max'})

Out[21]: data1
data2 key

A 0 5

B 1 7

C 2 9

Filtering. A filtering operation allows you to drop data based on the group proper‐ ties.

For example, we might want to keep all groups in which the standard deviation is larger

than some critical value:
In[22]:

def filter_func(x):

return x['data2'].std() > 4

print(df); print(df.groupby('key').std());
print(df.groupby('key').filter(filter_func))

df df.groupby('key').std()
key data1 data2 key data1
 data2

0 A 0 5 A 2.12132 1.4142
14

1 B 1 0 B 2.12132 4.9497
47

2 C 2 3 C 2.12132 4.2426
41

3 A 3 3
4 B 4 7
5 C 5 9

df.groupby('key').filter(filter_func)

key data1 data2

1 B 1 0

2 C 2 3
4 B 4 7
5 C 5 9

The filter() function should return a Boolean value specifying whether the group passes
the filtering. Here because group A does not have a standard deviation greater than 4, it
is dropped from the result.

Page 149 of 580

Transformation. While aggregation must return a reduced version of the data, trans‐

formation can return some transformed version of the full data to recombine. For

such a transformation, the output is the same shape as the input. A common example is

to center the data by subtracting the group-wise mean:

In[23]: df.groupby('key').transform(lambda x: x -

x.mean()) Out[23]: data1 data2

0 -1.5 1.0

1 -1.5 -3.5

2 -1.5 -3.0

3 1.5 -1.0

4 1.5 3.5

5 1.5 3.0

The apply() method. The apply() method lets you apply an arbitrary function to the group
results. The function should take a DataFrame, and return either a Pandas object
(e.g., DataFrame, Series) or a scalar; the combine operation will be tailored to the type of
output returned.

For example, here is an apply() that normalizes the first column by the sum of
the second:

In[24]: def norm_by_data2(x):

x is a DataFrame of group
values x['data1'] /=
x['data2'].sum() return x

print(df);

print(df.groupby('key').apply(norm_by_data2)) df

 df.groupby('key').apply(norm_by_data

2)

 ke
y

data
1

data
2

key data1 data
2

0 A 0 5 0 A 0.00000

0

5

1 B 1 0 1 B 0.14285

7

0

2 C 2 3 2 C 0.16666

7

3

3 A 3 3 3 A 0.37500

0

3

4 B 4 7 4 B 0.57142

9

7

5 C 5 9 5 C 0.41666
7

9

Page 150 of 580

apply() within a GroupBy is quite flexible: the only criterion is that the function takes a
DataFrame and returns a Pandas object or scalar; what you do in the middle is up to you!

Specifying the split key

In the simple examples presented before, we split the DataFrame on a single column
name. This is just one of many options by which the groups can be defined, and we’ll go
through some other options for group specification here.

A list, array, series, or index providing the grouping keys. The key can be any series or list

with a length matching that of the DataFrame. For example:

In[25]: L = [0, 1, 0, 1, 2, 0]

print(df); print(df.groupby(L).sum())

df df.groupby(L).sum()

key data1 data2 data1
data2 0 A 0 5 0 7
 17

1 B 1 0 1 4 3

2 C 2 3 2 4 7

3 A 3 3

4 B 4 7

5 C 5 9

Of course, this means there’s another, more verbose way of accomplishing the
df.groupby('key') from before:

In[26]: print(df);

print(df.groupby(df['key']).sum()) df

 df.groupby(df['key']).sum

()

key data1 data2 data1 data
2

0 A 0 5 A 3 8

1 B 1 0 B 5 7

2 C 2 3 C 7 12

3 A 3 3

4 B 4 7

5 C 5 9

Page 151 of 580

A dictionary or series mapping index to group. Another method is to provide a dictionary that
maps index values to the group keys:

In[27]: df2 = df.set_index('key')

mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'}

print(df2); print(df2.groupby(mapping).sum())

df2
key

data
1

data
2

df2.groupby(mapping).s
um()

data1 data2

A 0 5 consonant 12 19
B 1 0 vowel 3 8
C 2 3
A 3 3
B 4 7
C 5 9

Page 152 of 580

Week 3- Data Cleaning and Summarization

Descriptive statistics and data summarization

Data visualization using Matplotlib and Seaborn

Exploring relationships and patterns in data

Day 01- Pandas String Operations

We saw in previous sections how tools like NumPy and Pandas generalize

arithmetic operations so that we can easily and quickly perform the same

operation on many array elements. For example:

In[1]: import numpy as np

x = np.array([2, 3, 5, 7, 11, 13])

x * 2

Out[1]: array([4, 6, 10, 14, 22, 26])

This vectorization of operations simplifies the syntax of operating on arrays of data: we

no longer have to worry about the size or shape of the array, but just about what

operation we want done. For arrays of strings, NumPy does not provide such simple

access, and thus you’re stuck using a more verbose loop syntax:

In[2]: data = ['peter', 'Paul', 'MARY', 'gUIDO']
[s.capitalize() for s in data]

Out[2]: ['Peter', 'Paul', 'Mary', 'Guido']

This is perhaps sufficient to work with some data, but it will break if there are any missing

values. For example:

In[3]: data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
[s.capitalize() for s in data]

Pandas includes features to address both this need for vectorized string operations
and for correctly handling missing data via the str attribute of Pandas Series and Index
objects containing strings. So, for example, suppose we create a Pandas Series with this
data:

In[4]: import pandas as pd
names =
pd.Series(data) names

Page 153 of 580

Out[4]: 0 peter

1 Paul
2 None
3 MARY
4 gUIDO
dtype:
object

We can now call a single method that will capitalize all the entries, while

skipping over any missing values:

In[5]: names.str.capitalize()

Out[5]: 0 Peter

1 Paul
2 None
3 Mary
4 Guido
dtype:
object

Using tab completion on this str attribute will list all the vectorized string
methods available to Pandas.

Tables of Pandas String Methods

If you have a good understanding of string manipulation in Python, most of Pandas’ string

syntax is intuitive enough that it’s probably sufficient to just list a table of avail‐ able

methods; we will start with that here, before diving deeper into a few of the sub‐ tleties.

The examples in this section use the following series of names:

In[6]: monte = pd.Series(['Graham Chapman', 'John Cleese', 'Terry Gilliam',

'Eric Idle', 'Terry Jones', 'Michael Palin'])

Methods similar to Python string methods

Nearly all Python’s built-in string methods are mirrored by a Pandas vectorized

string method. Here is a list of Pandas str methods that mirror Python string

methods:

len() lower() translate() islower()

ljust() upper() startswith() isupper()

rjust() find() endswith() isnumeric()

center() rfind() isalnum() isdecimal()

Page 154 of 580

zfill() index() isalpha() split()

strip() rindex() isdigit() rsplit()

rstrip() capitalize() isspace() partition()

lstrip() swapcase() istitle() rpartition()

Notice that these have various return values. Some, like lower(), return a series of strings:

In[7]: monte.str.lower()

Out[7]: 0 graham

chapman

1 john cleese
2 terry gilliam
3 eric idle
4 terry jones
5 michael
palin dtype:
object

But some others return numbers:

In[8]: monte.str.len()

Out[8]: 0 14
1 11
2 13
3 9
4 11
5 13

dtype: int64

Or Boolean values:

In[9]: monte.str.startswith('T')

Out[9]: 0 False

1 False
2 True
3 False
4 True
5 False
dtype:
bool

Still others return lists or other compound values for each element:

Page 155 of 580

In[10]: monte.str.split()

Out[10]: 0 [Graham,

Chapman]

1 [John, Cleese]
2 [Terry, Gilliam]
3 [Eric, Idle]
4 [Terry, Jones]
5 [Michael,
Palin] dtype: object

We’ll see further manipulations of this kind of series-of-lists object as we

continue our discussion.

Methods using regular expressions

In addition, there are several methods that accept regular expressions to

examine the content of each string element, and follow some of the API

conventions of Python’s built-in re module.

Table . Mapping between Pandas methods and functions in Python’s re module

match() Call re.match() on each element, returning a Boolean.

extract() Call re.match() on each element, returning matched groups as strings.

findall() Call re.findall() on each element.

replace() Replace occurrences of pattern with some other string.

contains() Call re.search() on each element, returning a

Boolean. count() Count occurrences of pattern.

split() Equivalent to str.split(), but accepts regexps.

rsplit() Equivalent to str.rsplit(), but accepts regexps.

With these, you can do a wide range of interesting operations. For example, we

can extract the first name from each by asking for a contiguous group of

characters at the beginning of each element:

In[11]: monte.str.extract('([A-Za-z]+)')

Out[11]: 0 Graham

Method Description

Page 156 of 580

1 John
2 Terry
3 Eric
4 Terry
5 Michae
l dtype:
object

Or we can do something more complicated, like finding all names that start and end with

a consonant, making use of the start-of-string (^) and end-of-string ($) regular expression

characters:

In[12]:

monte.str.findall(r'^[^AEIOU].*[^aeiou]$')

Out[12]: 0 [Graham Chapman]

1 []

2 [Terry Gilliam]

3 []

4 [Terry Jones]
5 [Michael
Palin] dtype: object

The ability to concisely apply regular expressions across Series or DataFrame entries opens up
many possibilities for analysis and cleaning of data.

Vectorized item access and slicing. The get() and slice() operations, in particular, enable

vectorized element access from each array. For example, we can get a slice of the

first three characters of each array using str.slice(0, 3). Note that this behav‐ ior

is also available through Python’s normal indexing syntax—for example,

df.str.slice(0, 3) is equivalent to df.str[0:3]:

In[13]:

monte.str[0:3]

Out[13]: 0 Gra

1 Joh
2 Ter
3 Eri
4 Ter
5 Mic
dtype: object

Indexing via df.str.get(i) and df.str[i] is similar.

These get() and slice() methods also let you access elements of arrays returned

Page 157 of 580

by split(). For example, to extract the last name of each entry, we can

combine split() and get():

In[14]: monte.str.split().str.get(-1)

Out[14]: 0 Chapman

1 Cleese
2 Gilliam
3 Idle
4 Jones
5 Palin
dtype: object

Indicator variables. Another method that requires a bit of extra explanation is the get_dummies()
method. This is useful when your data has a column containing some sort of coded

indicator. For example, we might have a dataset that contains informa‐ tion in the form
of codes, such as A=“born in America,” B=“born in the United King‐ dom,” C=“likes

cheese,” D=“likes spam”:

In[15]:

full_monte = pd.DataFrame({'name': monte,

'info': ['B|C|D', 'B|D', 'A|C', 'B|D', 'B|C',
'B|C|D']})

full_monte

Out[15]: info name

0 B|C|D Graham Chapman
1 B|D John Cleese
2 A|C Terry Gilliam
3 B|D Eric Idle
4 B|C Terry Jones

5 B|C|D Michael Palin

The get_dummies() routine lets you quickly split out these indicator variables into a

DataFrame:

In[16]: full_monte['info'].str.get_dummies('|')

Page 158 of 580

With these operations as building blocks, you can construct an endless range of

string processing procedures when cleaning your data.

Miscellaneous methods

Finally, there are some miscellaneous methods that enable other convenient operations.

Table . Other Pandas string methods

get() Index each element

slice() Slice each element

slice_replace() Replace slice in each element with passed value

cat() Concatenate strings

repeat() Repeat values

normalize() Return Unicode form of string

pad() Add whitespace to left, right, or both sides of strings

wrap() Split long strings into lines with length less than a given

width join() Join strings in each element of the Series with passed

separator get_dummies() Extract dummy variables as a DataFrame

Dates and Times in Python

The Python world has several available representations of dates, times, deltas, and

timespans. While the time series tools provided by Pandas tend to be the most useful for

data science applications, it is helpful to see their relationship to other packages used in

Python.

Native Python dates and times: datetime and dateutil

Python’s basic objects for working with dates and times reside in the built-in date time
module. Along with the third-party dateutil module, you can use it to quickly perform a

Out[16]: A B C D
 0 0 1 1 1
 1 0 1 0 1
 2 1 0 1 0
 3 0 1 0 1
 4 0 1 1 0
 5 0 1 1 1

Method Description

Page 159 of 580

host of useful functionalities on dates and times. For example, you can manually build a

date using the datetime type:

In[1]: from datetime import datetime
datetime(year=2015, month=7,
day=4)

Out[1]: datetime.datetime(2015, 7, 4, 0, 0)

Or, using the dateutil module, you can parse dates from a variety of string formats:

In[2]: from dateutil import parser

date = parser.parse("4th of July,
2015") date

Out[2]: datetime.datetime(2015, 7, 4, 0, 0)

Once you have a datetime object, you can do things like printing the day of the week:

In[3]: date.strftime('%A')

Out[3]: 'Saturday'

In the final line, we’ve used one of the standard string format codes for printing dates

("%A"), which you can read about in the strftime section of Python’s datetime

documentation. Documentation of other useful date utilities can be found in dateutil’s

online documentation. A related package to be aware of is pytz, which contains tools for

working with the most migraine-inducing piece of time series data: time zones.

The power of datetime and dateutil lies in their flexibility and easy syntax: you can use these
objects and their built-in methods to easily perform nearly any operation you might be
interested in. Where they break down is when you wish to work with large arrays of

dates and times: just as lists of Python numerical variables are subopti‐ mal compared to

NumPy-style typed numerical arrays, lists of Python datetime objects are suboptimal
compared to typed arrays of encoded dates.

Typed arrays of times: NumPy’s datetime64

The weaknesses of Python’s datetime format inspired the NumPy team to add a set of

native time series data type to NumPy. The datetime64 dtype encodes dates as 64-bit

integers, and thus allows arrays of dates to be represented very compactly. The date

time64 requires a very specific input format:

In[4]: import numpy as np

date = np.array('2015-07-04',
dtype=np.datetime64) date

Page 160 of 580

Out[4]: array(datetime.date(2015, 7, 4), dtype='datetime64[D]')

Once we have this date formatted, however, we can quickly do vectorized operations on

it:

In[5]: date +

np.arange(12) Out[5]:

array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',

'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',

'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'],

dtype='datetime64[D]')

Because of the uniform type in NumPy datetime64 arrays, this type of operation can be
accomplished much more quickly than if we were working directly with Python’s datetime
objects, especially as arrays get large.

One detail of the datetime64 and timedelta64 objects is that they are built on a fun‐

damental time unit. Because the datetime64 object is limited to 64-bit precision, the range

of encodable times is 264 times this fundamental unit. In other words, date time64 imposes
a trade-off between time resolution and maximum time span.

For example, if you want a time resolution of one nanosecond, you only have enough

information to encode a range of 264 nanoseconds, or just under 600 years. NumPy will

infer the desired unit from the input; for example, here is a day-based datetime:

In[6]: np.datetime64('2015-07-04')

Out[6]: numpy.datetime64('2015-

07-04')

Here is a minute-based datetime:

In[7]: np.datetime64('2015-07-04 12:00')

Out[7]: numpy.datetime64('2015-07-04T12:00')

Notice that the time zone is automatically set to the local time on the computer exe‐

cuting the code. You can force any desired fundamental unit using one of many for‐ mat

codes; for example, here we’ll force a nanosecond-based time:

Page 161 of 580

In[8]: np.datetime64('2015-07-04 12:59:59.50', 'ns')

Out[8]: numpy.datetime64('2015-07-

04T12:59:59.500000000')

Table 3-6. Description of date and time codes

 Code Meaning Time span (relative) Time span (absolute)

Y Year ± 9.2e18
years

[9.2e18 BC, 9.2e18 AD]

M Month ± 7.6e17
years

[7.6e17 BC, 7.6e17 AD]

W Week ± 1.7e17
years

[1.7e17 BC, 1.7e17 AD]

Code Meaning Time span (relative) Time span (absolute)

D Day ± 2.5e16 years [2.5e16 BC, 2.5e16 AD]

h Hour ± 1.0e15 years [1.0e15 BC, 1.0e15 AD]

m Minute ± 1.7e13 years [1.7e13 BC, 1.7e13 AD]

s Second ± 2.9e12 years [2.9e9 BC, 2.9e9 AD]

ms Millisecon
d

± 2.9e9 years [2.9e6 BC, 2.9e6 AD]

us Microsecon
d

± 2.9e6 years [290301 BC, 294241
AD]

ns Nanosecon
d

± 292 years [1678 AD, 2262 AD]

ps Picosecond ± 106 days [1969 AD, 1970 AD]

fs Femtosecon
d

± 2.6 hours [1969 AD, 1970 AD]

as Attosecon
d

± 9.2 seconds [1969 AD, 1970 AD]

For the types of data we see in the real world, a useful default is datetime64[ns], as it can
encode a useful range of modern dates with a suitably fine precision.

Finally, we will note that while the datetime64 data type addresses some of the defi‐ ciencies
of the built-in Python datetime type, it lacks many of the convenient meth‐ ods and
functions provided by datetime and especially dateutil. More information can be found in
NumPy’s datetime64 documentation.

Page 162 of 580

Dates and times in Pandas: Best of both worlds

Pandas builds upon all the tools just discussed to provide a Timestamp object,
which combines the ease of use of datetime and dateutil with the efficient
storage and vectorized interface of numpy.datetime64. From a group of these

Timestamp objects, Pandas can construct a DatetimeIndex that can be used to

index data in a Series or DataFrame; we’ll see many examples of this below.

For example, we can use Pandas tools to repeat the demonstration from above. We can

parse a flexibly formatted string date, and use format codes to output the day of the

week:

In[9]: import pandas as pd

date = pd.to_datetime("4th of July,
2015") date

Out[9]: Timestamp('2015-07-04 00:00:00')

In[10]:

date.strftime('%A')

Out[10]: 'Saturday'

Additionally, we can do NumPy-style vectorized operations directly on this same

object:

In[11]: date + pd.to_timedelta(np.arange(12), 'D')

Out[11]: DatetimeIndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07',

'2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11',

'2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'],

dtype='datetime64[ns]', freq=None)

In the next section, we will take a closer look at manipulating time series data

with the tools provided by Pandas.

Pandas Time Series: Indexing by Time

Where the Pandas time series tools really become useful is when you begin to index data

by timestamps. For example, we can construct a Series object that has time- indexed

data:

In[12]: index = pd.DatetimeIndex(['2014-07-04', '2014-08-04',

'2015-07-04', '2015-08-04'])

Page 163 of 580

data = pd.Series([0, 1, 2, 3], index=index)
data

Out[12]: 2014-07-04 0

2014-08-04 1

2015-07-04 2

2015-08-04 3

dtype: int64

Now that we have this data in a Series, we can make use of any of the Series index‐ ing
patterns we discussed in previous sections, passing values that can be coerced into dates:

In[13]: data['2014-07-04':'2015-07-

04'] Out[13]: 2014-07-04 0

2014-08-04 1

2015-07-04 2

dtype: int64

There are additional special date-only indexing operations, such as passing a year to

obtain a slice of all data from that year:

In[14]: data['2015']

Out[14]: 2015-07-04

2

2015-08-04 3

dtype: int64

Later, we will see additional examples of the convenience of dates-as-indices. But

first, let’s take a closer look at the available time series data structures.

Pandas Time Series Data Structures

This section will introduce the fundamental Pandas data structures for working
with time series data:

For time stamps, Pandas provides the Timestamp type. As mentioned before, it
is essentially a replacement for Python’s native datetime, but is based on the

more efficient numpy.datetime64 data type. The associated index structure

is DatetimeIndex.

Page 164 of 580

• For time periods, Pandas provides the Period type. This encodes a fixed-

frequency interval based on numpy.datetime64. The associated index
structure is PeriodIndex.

• For time deltas or durations, Pandas provides the Timedelta type. Timedelta is
a more efficient replacement for Python’s native datetime.timedelta type, and
is based on numpy.timedelta64. The associated index structure is

TimedeltaIndex.

The most fundamental of these date/time objects are the Timestamp and
DatetimeIn dex objects. While these class objects can be invoked directly, it is

more common to use the pd.to_datetime() function, which can parse a wide

variety of formats. Pass‐ ing a single date to pd.to_datetime() yields a Timestamp;

passing a series of dates by default yields a DatetimeIndex:

In[15]: dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015',

'2015-Jul-6', '07-07-2015', '20150708'])

dates

Out[15]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',

'2015-07-08'],

dtype='datetime64[ns]', freq=None)

Any DatetimeIndex can be converted to a PeriodIndex with the to_period() func‐
tion with the addition of a frequency code; here we’ll use 'D' to indicate daily
frequency:

In[16]: dates.to_period('D')

Out[16]: PeriodIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07',

'2015-07-08'],

dtype='int64', freq='D')

A TimedeltaIndex is created, for example, when one date is subtracted from another:

In[17]: dates - dates[0]

Out[17]:

TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'],
dtype='timedelta64[ns]', freq=None)

Page 165 of 580

Regular sequences: pd.date_range()

To make the creation of regular date sequences more convenient, Pandas offers

a few functions for this purpose: pd.date_range() for timestamps,

pd.period_range() for periods, and pd.timedelta_range() for time deltas. We’ve

seen that Python’s

range() and NumPy’s np.arange() turn a startpoint, endpoint, and optional stepsize into a
sequence. Similarly, pd.date_range() accepts a start date, an end date, and an optional
frequency code to create a regular sequence of dates. By default, the fre‐ quency is one
day:

In[18]: pd.date_range('2015-07-03', '2015-07-10')

Out[18]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',

'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],

dtype='datetime64[ns]', freq='D')

Alternatively, the date range can be specified not with a start- and endpoint, but with a

startpoint and a number of periods:

In[19]: pd.date_range('2015-07-03', periods=8)

Out[19]: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',

'2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],

dtype='datetime64[ns]', freq='D')

You can modify the spacing by altering the freq argument, which defaults to D.
For example, here we will construct a range of hourly timestamps:

In[20]: pd.date_range('2015-07-03', periods=8, freq='H')

Out[20]: DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00',

'2015-07-03 02:00:00', '2015-07-03 03:00:00',

'2015-07-03 04:00:00', '2015-07-03 05:00:00',

'2015-07-03 06:00:00', '2015-07-03 07:00:00'],

dtype='datetime64[ns]', freq='H')

To create regular sequences of period or time delta values, the very similar

pd.period_range() and pd.timedelta_range() functions are useful. Here are some

monthly periods:

Page 166 of 580

In[21]: pd.period_range('2015-07', periods=8,

freq='M') Out[21]:

PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12',

'2016-01', '2016-02'],

dtype='int64', freq='M')

And a sequence of durations increasing by an hour:

In[22]: pd.timedelta_range(0, periods=10,

freq='H') Out[22]:

TimedeltaIndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00',

'05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00'],

dtype='timedelta64[ns]', freq='H')

All of these require an understanding of Pandas frequency codes, which we’ll summa‐ rize

in the next section.

Frequencies and Offsets

Fundamental to these Pandas time series tools is the concept of a frequency or date

offset. Just as we saw the D (day) and H (hour) codes previously, we can use such codes to

specify any desired frequency spacing. Table 3-7 summarizes the main codes available.

Table 3-7. Listing of Pandas frequency codes

 Code Description Code Description

D Calendar day B Business day

W Weekly

M Month end B
M

Business month
end

Q Quarter end BQ Business quarter
end

A Year end BA Business year end

H Hours BH Business hours

T Minutes

S Seconds

L Milliseonds

U Microsecond
s

Page 167 of 580

N Nanosecon
ds

The monthly, quarterly, and annual frequencies are all marked at the end of the speci‐

fied period. Adding an S suffix to any of these marks it instead at the beginning (Table 3-

8).

Table. Listing of start-indexed frequency codes

 Code Description

MS Month start

BMS Business month start

QS Quarter start

BQS Business quarter start

AS Year start

BAS Business year start

Additionally, you can change the month used to mark any quarterly or annual code by

adding a three-letter month code as a suffix:

• Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc.

• A-JAN, BA-FEB, AS-MAR, BAS-APR, etc.

In the same way, you can modify the split-point of the weekly frequency by

adding a three-letter weekday code:

• W-SUN, W-MON, W-TUE, W-WED, etc.

On top of this, codes can be combined with numbers to specify other

frequencies. For example, for a frequency of 2 hours 30 minutes, we can

combine the hour (H) and minute (T) codes as follows:

In[23]: pd.timedelta_range(0, periods=9,

freq="2H30T") Out[23]:

TimedeltaIndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00',

Page 168 of 580

'12:30:00', '15:00:00', '17:30:00', '20:00:00'],

dtype='timedelta64[ns]', freq='150T')

All of these short codes refer to specific instances of Pandas time series offsets, which can

be found in the pd.tseries.offsets module. For example, we can create a busi‐ ness day

offset directly as follows:

In[24]: from pandas.tseries.offsets import BDay
pd.date_range('2015-07-01', periods=5,
freq=BDay())

Out[24]: DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06',

'2015-07-07'],

dtype='datetime64[ns]', freq='B')

For more discussion of the use of frequencies and offsets, see the “DateOffset

objects” section of the Pandas online documentation.

Resampling, Shifting, and Windowing

The ability to use dates and times as indices to intuitively organize and access data is an

important piece of the Pandas time series tools. The benefits of indexed data in general

(automatic alignment during operations, intuitive data slicing and access, etc.) still

apply, and Pandas provides several additional time series–specific operations.

We will take a look at a few of those here, using some stock price data as an example.

Because Pandas was developed largely in a finance context, it includes some very spe‐ cific

tools for financial data. For example, the accompanying pandas-datareader package

(installable via conda install pandas-datareader) knows how to import financial data

from a number of available sources, including Yahoo finance, Google Finance, and

others. Here we will load Google’s closing price history:

In[25]: from pandas_datareader import data

goog = data.DataReader('GOOG', start='2004', end='2016',

data_source='google')

goog.head()

Out[25]
:

Date

Ope
n

Hig
h

Low Clos
e

Volum
e

 2004-08-
19

49.9
6

51.9
8

47.93 50.1
2

NaN

Page 169 of 580

 2004-08-
20

50.6
9

54.4
9

50.20 54.1
0

NaN

 2004-08-
23

55.3
2

56.6
8

54.47 54.6
5

NaN

 2004-08-
24

55.5
6

55.7
4

51.73 52.3
8

NaN

 2004-08-
25

52.4
3

53.9
5

51.89 52.9
5

NaN

For simplicity, we’ll use just the closing price:

In[26]: goog = goog['Close']

We can visualize this using the plot() method, after the normal Matplotlib
setup boilerplate :

In[27]: %matplotlib inline

import matplotlib.pyplot as
plt import seaborn;
seaborn.set()

In[28]: goog.plot();

Figure 3-5. Google’s closing stock price over time

Resampling and converting frequencies

One common need for time series data is resampling at a higher or lower
frequency. You can do this using the resample() method, or the much simpler

asfreq()method. The primary difference between the two is that resample() is
fundamentally a data aggregation, while asfreq() is fundamentally a data selection.

Page 170 of 580

Taking a look at the Google closing price, let’s compare what the two return when we

down-sample the data. Here we will resample the data at the end of business year :

In[29]: goog.plot(alpha=0.5, style='-')
goog.resample('BA').mean().plot(style='
:')

goog.asfreq('BA').plot(style='--');

plt.legend(['input', 'resample', 'asfreq'],
loc='upper left');

Figure . Resamplings of Google’s stock price

Notice the difference: at each point, resample reports the average of the previous
year, while asfreq reports the value at the end of the year.

For up-sampling, resample() and asfreq() are largely equivalent, though resample has
many more options available. In this case, the default for both methods is to leave the up-

sampled points empty—that is, filled with NA values. Just as with the pd.fillna() function

discussed previously, asfreq() accepts a method argument to specify how values are

imputed. Here, we will resample the business day data at a daily frequency (i.e., including

weekends); see Figure 3-7:

In[30]: fig, ax = plt.subplots(2, sharex=True)
data = goog.iloc[:10]

data.asfreq('D').plot(ax=ax[0], marker='o')

data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o')

data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o')

Page 171 of 580

ax[1].legend(["back-fill", "forward-fill"]);

The top panel is the default: non-business days are left as NA values and do not appear

on the plot. The bottom panel shows the differences between two strategies for filling

the gaps: forward-filling and backward-filling.

Time-shifts

Another common time series–specific operation is shifting of data in time. Pandas has
two closely related methods for computing this: shift() and tshift(). In short, the difference

between them is that shift() shifts the data, while tshift() shifts the index. In both cases, the
shift is specified in multiples of the frequency.

Here we will both shift() and tshift() by 900 days (Figure 3-8):

In[31]: fig, ax = plt.subplots(3, sharey=True)

apply a frequency to the data

goog = goog.asfreq('D', method='pad')

goog.plot(ax=ax[0])
goog.shift(900).plot(ax=ax[1]
)
goog.tshift(900).plot(ax=ax[2
])

legends and annotations

local_max = pd.to_datetime('2007-
11-05') offset = pd.Timedelta(900, 'D')

ax[0].legend(['input'], loc=2)
ax[0].get_xticklabels()[4].set(weight='heavy',
color='red') ax[0].axvline(local_max, alpha=0.3,
color='red')

ax[1].legend(['shift(900)'], loc=2)
ax[1].get_xticklabels()[4].set(weight='heavy',
color='red') ax[1].axvline(local_max + offset, alpha=0.3,
color='red')

Page 172 of 580

ax[2].legend(['tshift(900)'], loc=2)
ax[2].get_xticklabels()[1].set(weight='heavy',

color='red') ax[2].axvline(local_max + offset, alpha=0.3,
color='red');

Figure . Comparison between shift and tshift

We see here that shift(900) shifts the data by 900 days, pushing some of it off the
end of the graph (and leaving NA values at the other end), while tshift(900) shifts
the index values by 900 days.

A common context for this type of shift is computing differences over time. For

example, we use shifted values to compute the one-year return on investment

for Google stock over the course of the dataset (Figure 3-9):

In[32]: ROI = 100 * (goog.tshift(-365) / goog - 1)
ROI.plot()

plt.ylabel('% Return on Investment');

Page 173 of 580

Figure . Return on investment to present day for Google stock

This helps us to see the overall trend in Google stock: thus far, the most profitable times

to invest in Google have been (unsurprisingly, in retrospect) shortly after its IPO, and in

the middle of the 2009 recession.

Rolling windows

Rolling statistics are a third type of time series–specific operation implemented by

Pandas. These can be accomplished via the rolling() attribute of Series and Data Frame

objects, which returns a view similar to what we saw with the groupby operation. This

rolling view makes available a number of aggregation operations by default.

For example, here is the one-year centered rolling mean and standard deviation
of the Google stock prices (Figure 3-10):

In[33]: rolling = goog.rolling(365, center=True)

data = pd.DataFrame({'input': goog,

'one-year rolling_mean':
rolling.mean(), 'one-year rolling_std':
rolling.std()})

ax = data.plot(style=['-', '--', ':'])
ax.lines[0].set_alpha(0.3)

Page 174 of 580

Figure 3-10. Rolling statistics on Google stock prices

As with groupby operations, the aggregate() and apply() methods can be used for

custom rolling computations.

Where to Learn More

This section has provided only a brief summary of some of the most essential features of

time series tools provided by Pandas; for a more complete discussion, you can refer to the

“Time Series/Date” section of the Pandas online documentation.

Another excellent resource is the textbook Python for Data Analysis by Wes McKin‐ ney

(O’Reilly, 2012). Although it is now a few years old, it is an invaluable resource on the use of

Pandas. In particular, this book emphasizes time series tools in the context of business

and finance, and focuses much more on particular details of business cal‐ endars, time

zones, and related topics.

As always, you can also use the IPython help functionality to explore and try

further options available to the functions and methods discussed here. I find

this often is the best way to learn a new Python tool.

Example: Visualizing Seattle Bicycle Counts

As a more involved example of working with some time series data, let’s take a look at

bicycle counts on Seattle’s Fremont Bridge. This data comes from an automated bicy‐ cle

counter, installed in late 2012, which has inductive sensors on the east and west

sidewalks of the bridge. The hourly bicycle counts can be downloaded from http://

data.seattle.gov/; here is the direct link to the dataset.

Page 175 of 580

As of summer 2016, the CSV can be downloaded as follows:

In[34]:

!curl -o FremontBridge.csv

https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD

Once this dataset is downloaded, we can use Pandas to read the CSV output into

a DataFrame. We will specify that we want the Date as an index, and we want

these dates to be automatically parsed:

In[35]:

data = pd.read_csv('FremontBridge.csv', index_col='Date',
parse_dates=True) data.head()

Out[35]: Fremont Bridge West Sidewalk \\
Date
2012-10-
03

00:00:0

0

4.0

2012-10-
03

01:00:0
0

4.0

2012-10-
03

02:00:0
0

1.0

2012-10-
03

03:00:0
0

2.0

2012-10-
03

04:00:0
0

6.0

Date

 Fremont Bridge East
Sidewalk

2012-10-
03

00:00:0
0

9.0

2012-10-
03

01:00:0
0

6.0

2012-10-
03

02:00:0
0

1.0

2012-10-
03

03:00:0
0

3.0

2012-10-
03

04:00:0
0

1.0

For convenience, we’ll further process this dataset by shortening the column

names and adding a “Total” column:

Page 176 of 580

In[36]: data.columns = ['West', 'East']
data['Total'] = data.eval('West + East')

Now let’s take a look at the summary statistics for this data:

In[37]: data.dropna().describe()

Out[37]
: West East Total

 coun
t

33544.0000
00

33544.0000
00

33544.0000
00

 mean 61.726568 53.541706 115.268275
 std 83.210813 76.380678 144.773983
 min 0.000000 0.000000 0.000000
 25% 8.000000 7.000000 16.000000
 50% 33.000000 28.000000 64.000000
 75% 80.000000 66.000000 151.000000
 max 825.000000 717.000000 1186.00000

0

Visualizing the data

We can gain some insight into the dataset by visualizing it. Let’s start by

plotting the raw data:

In[38]: %matplotlib inline

import seaborn; seaborn.set()

In[39]: data.plot()

plt.ylabel('Hourly Bicycle Count');

Figure . Hourly bicycle counts on Seattle’s Fremont bridge

Page 177 of 580

The ~25,000 hourly samples are far too dense for us to make much sense of. We

can gain more insight by resampling the data to a coarser grid. Let’s resample by

week:

In[40]: weekly =
data.resample('W').sum()
weekly.plot(style=[':', '--', '-'])
plt.ylabel('Weekly bicycle count');

This shows us some interesting seasonal trends: as you might expect, people bicycle

more in the summer than in the winter, and even within a particular season the bicycle

use varies from week to week .

Figure . Weekly bicycle crossings of Seattle’s Fremont bridge

Another way that comes in handy for aggregating the data is to use a rolling mean,

utilizing the pd.rolling_mean() function. Here we’ll do a 30-day rolling mean of our data,

making sure to center the window :

In[41]: daily = data.resample('D').sum()

Page 178 of 580

daily.rolling(30, center=True).sum().plot(style=[':', '--', '-'])
plt.ylabel('mean hourly count');

Figure . Rolling mean of weekly bicycle counts

The jaggedness of the result is due to the hard cutoff of the window. We can get a

smoother version of a rolling mean using a window function—for example, a Gaus‐ sian

window. The following code specifies both the width of the window (we chose 50 days)

and the width of the Gaussian within the window (we chose 10 days):

In[42]:

daily.rolling(50, center=True,

win_type='gaussian').sum(std=10).plot(style=[':', '--', '-']);

Figure. Gaussian smoothed weekly bicycle counts

Page 179 of 580

Day-02: Digging into the data

While the smoothed data views in Figure are useful to get an idea of the general trend in

the data, they hide much of the interesting structure. For example, we might want to

look at the average traffic as a function of the time of day. We can do this using the

GroupBy functionality discussed in:

In[43]: by_time = data.groupby(data.index.time).mean()
hourly_ticks = 4 * 60 * 60 * np.arange(6)
by_time.plot(xticks=hourly_ticks, style=[':', '--', '-']);

The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the morning and

5:00 in the evening. This is likely evidence of a strong component of commuter traffic crossing the

bridge. This is further evidenced by the differences between the western sidewalk (generally used

going toward downtown Seattle), which peaks more strongly in the morning, and the eastern

sidewalk (generally used going away from downtown Seattle), which peaks more strongly in the

evening.

Figure . Average hourly bicycle counts

We also might be curious about how things change based on the day of the week.

Again, we can do this with a simple groupby:

In[44]: by_weekday = data.groupby(data.index.dayofweek).mean()

by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']

Page 180 of 580

by_weekday.plot(style=[':', '--', '-']);

Figure 3-16. Average daily bicycle counts

This shows a strong distinction between weekday and weekend totals, with around twice

as many average riders crossing the bridge on Monday through Friday than on Saturday

and Sunday.

With this in mind, let’s do a compound groupby and look at the hourly trend on
weekdays versus weekends. We’ll start by grouping by both a flag marking the week‐ end,
and the time of day:

In[45]: weekend = np.where(data.index.weekday < 5, 'Weekday',
'Weekend') by_time = data.groupby([weekend,
data.index.time]).mean()

Now we’ll use some of the Matplotlib tools described in “Multiple Subplots” on

page 262 to plot two panels side by side (Figure 3-17):

In[46]: import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 2, figsize=(14, 5))
by_time.ix['Weekday'].plot(ax=ax[0], title='Weekdays',

xticks=hourly_ticks, style=[':', '--', '-'])
by_time.ix['Weekend'].plot(ax=ax[1], title='Weekends',

Page 181 of 580

xticks=hourly_ticks, style=[':', '--', '-']);

Figure 3-17. Average hourly bicycle counts by weekday and weekend

The result is very interesting: we see a bimodal commute pattern during the work week,

and a unimodal recreational pattern during the weekends. It would be interesting to dig

through this data in more detail, and examine the effect of weather, temper ature, time

of year, and other factors on people’s commuting patterns.

High-Performance Pandas: eval() and query()

As we’ve already seen in previous chapters, the power of the PyData stack is built upon

the ability of NumPy and Pandas to push basic operations into C via an intu‐ itive syntax:

examples are vectorized/broadcasted operations in NumPy, and grouping-type

operations in Pandas. While these abstractions are efficient and effec tive for many

common use cases, they often rely on the creation of temporary inter‐ mediate objects,

which can cause undue overhead in computational time and memory use.

As of version 0.13 (released January 2014), Pandas includes some experimental tools that

allow you to directly access C-speed operations without costly allocation of inter‐ mediate

arrays. These are the eval() and query() functions, which rely on the Numexpr package. In

this notebook we will walk through their use and give some rules of thumb about when

you might think about using them.

Motivating query() and eval(): Compound Expressions

We’ve seen previously that NumPy and Pandas support fast vectorized
operations; for example, when you are adding the elements of two arrays:

In[1]: import numpy as np

rng =
np.random.RandomState(42)
x = rng.rand(1E6)

Page 182 of 580

y = rng.rand(1E6)

%timeit x + y

100 loops, best of 3: 3.39 ms per loop

As discussed in “Computation on NumPy Arrays: Universal Functions” on page

50, this is much faster than doing the addition via a Python loop or

comprehension:

In[2]:

%timeit np.fromiter((xi + yi for xi, yi in zip(x, y)),

dtype=x.dtype, count=len(x))

1 loop, best of 3: 266 ms per loop

But this abstraction can become less efficient when you are computing compound

expressions. For example, consider the following expression:

In[3]: mask = (x > 0.5) & (y < 0.5)

Because NumPy evaluates each subexpression, this is roughly equivalent to the

following:

In[4]: tmp1 = (x > 0.5)

tmp2 = (y < 0.5)
mask = tmp1 &
tmp2

In other words, every intermediate step is explicitly allocated in memory. If the x and y arrays

are very large, this can lead to significant memory and computational over‐ head. The

Numexpr library gives you the ability to compute this type of compound expression

element by element, without the need to allocate full intermediate arrays. The Numexpr

documentation (https://github.com/pydata/numexpr) has more details, but for the time

being it is sufficient to say that the library accepts a string giving the NumPy-style

expression you’d like to compute:

In[5]: import numexpr

mask_numexpr = numexpr.evaluate('(x > 0.5) & (y <
0.5)') np.allclose(mask, mask_numexpr)

Out[5]: True

The benefit here is that Numexpr evaluates the expression in a way that does not use

Page 183 of 580

full-sized temporary arrays, and thus can be much more efficient than NumPy, espe‐ cially

for large arrays. The Pandas eval() and query() tools that we will discuss here are conceptually

similar, and depend on the Numexpr package.

pandas.eval() for Efficient Operations

The eval() function in Pandas uses string expressions to efficiently compute
opera‐ tions using DataFrames. For example, consider the following DataFrames:

In[6]: import pandas as pd

nrows, ncols = 100000, 100

rng = np.random.RandomState(42)

df1, df2, df3, df4 = (pd.DataFrame(rng.rand(nrows, ncols))

for i in range(4))

To compute the sum of all four DataFrames using the typical Pandas approach, we can just
write the sum:

In[7]: %timeit df1 + df2 + df3 + df4

10 loops, best of 3: 87.1 ms per loop

We can compute the same result via pd.eval by constructing the expression
as a string:

In[8]: %timeit pd.eval('df1 + df2 + df3 + df4')

10 loops, best of 3: 42.2 ms per loop

The eval() version of this expression is about 50% faster (and uses much less
mem‐ ory), while giving the same result:

In[9]: np.allclose(df1 + df2 + df3 + df4,

pd.eval('df1 + df2 + df3 + df4'))

Out[9]: True

Operations supported by pd.eval()

As of Pandas v0.16, pd.eval() supports a wide range of operations. To demonstrate these,
we’ll use the following integer DataFrames:

In[10]: df1, df2, df3, df4, df5 = (pd.DataFrame(rng.randint(0, 1000, (100, 3)))

for i in range(5))

Page 184 of 580

Arithmetic operators. pd.eval() supports all arithmetic operators. For example:

In[11]: result1 = -df1 * df2 / (df3 + df4) - df5

result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5')
np.allclose(result1, result2)

Out[11]: True

Comparison operators. pd.eval() supports all comparison operators, including

chained expressions:

In[12]: result1 = (df1 < df2) & (df2 <= df3) & (df3 != df4)
result2 = pd.eval('df1 < df2 <= df3 != df4')
np.allclose(result1, result2)

Out[12]: True

Bitwise operators. pd.eval() supports the & and | bitwise operators:

In[13]: result1 = (df1 < 0.5) & (df2 < 0.5) | (df3 < df4)

result2 = pd.eval('(df1 < 0.5) & (df2 < 0.5) | (df3 < df4)')
np.allclose(result1, result2)

Out[13]: True

In addition, it supports the use of the literal and and or in Boolean expressions:

In[14]: result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)')
np.allclose(result1, result3)

Out[14]: True

Object attributes and indices. pd.eval() supports access to object attributes via the

obj.attr syntax, and indexes via the obj[index] syntax:

In[15]: result1 = df2.T[0] + df3.iloc[1]

result2 = pd.eval('df2.T[0] + df3.iloc[1]')
np.allclose(result1, result2)

Page 185 of 580

Out[15]: True

Other operations. Other operations, such as function calls, conditional statements, loops, and
other more involved constructs, are currently not implemented in pd.eval(). If you’d like
to execute these more complicated types of expressions, you can use the Numexpr library

itself.

DataFrame.eval() for Column-Wise Operations

Just as Pandas has a top-level pd.eval() function, DataFrames have an eval() method that
works in similar ways. The benefit of the eval() method is that columns can be referred to
by name. We’ll use this labeled array as an example:

In[16]: df = pd.DataFrame(rng.rand(1000, 3), columns=['A', 'B',
'C']) df.head()

Out[16]
:

A B C

 0
0.375506

0.40693
9

0.06993
8

 1
0.069087

0.23561
5

0.15437
4

 2
0.677945

0.43383
9

0.65232
4

 3
0.264038

0.80805
5

0.34719
7

 4
0.589161

0.25241
8

0.55778
9

Using pd.eval() as above, we can compute expressions with the three columns
like this:

In[17]: result1 = (df['A'] + df['B']) / (df['C'] - 1) result2
= pd.eval("(df.A + df.B) / (df.C - 1)")
np.allclose(result1, result2)

Out[17]: True

The DataFrame.eval() method allows much more succinct evaluation of
expressions with the columns:

In[18]: result3 = df.eval('(A + B) / (C - 1)')
np.allclose(result1, result3)

Out[18]: True

Page 186 of 580

Notice here that we treat column names as variables within the evaluated

expression, and the result is what we would wish.

Assignment in DataFrame.eval()

In addition to the options just discussed, DataFrame.eval() also allows assignment
to any column. Let’s use the DataFrame from before, which has columns 'A', 'B',
and 'C':

In[19]: df.head()

We can use df.eval() to create a new column 'D' and assign to it a value computed from
the other columns:

In[20]: df.eval('D = (A + B) / C', inplace=True)
df.head()

In the same way, any existing column can be modified:

In[21]: df.eval('D = (A - B) / C', inplace=True)
df.head()

Out[21]: A B
 C D 0 0.375506
0.406939 0.069938 -0.449425
1
0.069087

0.2356
15

0.154374 -
1.078728

2
0.677945

0.4338
39

0.652324
0.374209

Out[19]: A B C
 0 0.375506 0.406939 0.069938
 1 0.069087 0.235615 0.154374
 2 0.677945 0.433839 0.652324
 3 0.264038 0.808055 0.347197
 4 0.589161 0.252418 0.557789

Out[20]: A B C D
 0 0.375506 0.406939 0.069938 11.187620
 1 0.069087 0.235615 0.154374 1.973796
 2 0.677945 0.433839 0.652324 1.704344
 3 0.264038 0.808055 0.347197 3.087857
 4 0.589161 0.252418 0.557789 1.508776

Page 187 of 580

3
0.264038

0.8080
55

0.347197 -
1.566886

4
0.589161

0.2524
18

0.557789
0.603708

Local variables in DataFrame.eval()

The DataFrame.eval() method supports an additional syntax that lets it work with local
Python variables. Consider the following:

In[22]: column_mean = df.mean(1)
result1 = df['A'] +
column_mean

result2 = df.eval('A +
@column_mean')
np.allclose(result1, result2)

Out[22]: True

The @ character here marks a variable name rather than a column name, and lets

you efficiently evaluate expressions involving the two “namespaces”: the
namespace of columns, and the namespace of Python objects. Notice that this @

character is only supported by the DataFrame.eval() method, not by the
pandas.eval() function, because the pandas.eval() function only has access to the

one (Python) namespace.

DataFrame.query() Method

The DataFrame has another method based on evaluated strings, called the query()

method. Consider the following:

In[23]: result1 = df[(df.A < 0.5) & (df.B < 0.5)]

result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]')
np.allclose(result1, result2)

Out[23]: True

As with the example used in our discussion of DataFrame.eval(), this is an expres‐ sion
involving columns of the DataFrame. It cannot be expressed using the Data Frame.eval()

syntax, however! Instead, for this type of filtering operation, you can use the query()
method:

In[24]: result2 = df.query('A < 0.5 and B < 0.5')
np.allclose(result1, result2)

Page 188 of 580

Out[24]: True

In addition to being a more efficient computation, compared to the masking expres‐ sion

this is much easier to read and understand. Note that the query() method also accepts the

@ flag to mark local variables:

In[25]: Cmean = df['C'].mean()

result1 = df[(df.A < Cmean) & (df.B <
Cmean)] result2 = df.query('A < @Cmean
and B < @Cmean') np.allclose(result1,
result2)

Out[25]: True

Performance: When to Use These Functions

When considering whether to use these functions, there are two considerations: com‐

putation time and memory use. Memory use is the most predictable aspect. As already

mentioned, every compound expression involving NumPy arrays or Pandas Data Frames

will result in implicit creation of temporary arrays: For example, this:

In[26]: x = df[(df.A < 0.5) & (df.B < 0.5)]

is roughly equivalent to this:

In[27]: tmp1 = df.A < 0.5

tmp2 = df.B < 0.5
tmp3 = tmp1 &
tmp2 x =
df[tmp3]

If the size of the temporary DataFrames is significant compared to your available sys‐ tem
memory (typically several gigabytes), then it’s a good idea to use an eval() or query()
expression. You can check the approximate size of your array in bytes using this:

In[28]:

df.values.nbytes

Out[28]: 32000

On the performance side, eval() can be faster even when you are not maxing out your
system memory. The issue is how your temporary DataFrames compare to the size of the

Page 189 of 580

L1 or L2 CPU cache on your system (typically a few megabytes in 2016); if they are much

bigger, then eval() can avoid some potentially slow movement of val‐ ues between the
different memory caches. In practice, I find that the difference in computation time

between the traditional methods and the eval/query method is usually not significant—if
anything, the traditional method is faster for smaller arrays! The benefit of eval/query is
mainly in the saved memory, and the sometimes cleaner syntax they offer.

We’ve covered most of the details of eval() and query() here; for more information on

these, you can refer to the Pandas documentation. In particular, different parsers and
engines can be specified for running these queries; for details on this, see the dis‐ cussion
within the “Enhancing Performance” section.

Lab Activity -DataFrame Data Structure

This lab activity must be performed using Jupyter Notebook, PyCharm, or any other IDLE .

The lines starting with the # sign are comments in Python and are used to elaborate the

code.

==

The DataFrame data structure is the heart of the Panda's library. It is #a primary object you will
work with in data analysis and #cleaning #tasks.
The DataFrame is conceptually a two-dimensional series object, where # there is an index and
multiple columns of content, with each column #having a label. The distinction between a column
and a row is #only a conceptual distinction. Moreover, you can think of the #DataFrame as simply a
two-axes labeled array.
Lets start by importing our pandas library
import pandas as pd
I'm going to jump in with an example. Lets create three school records for students and their
class grades. I'll create each as a series which has a student name, #the class name, and the
score.
record1 = pd.Series({'Name': 'Ali','Class': 'Physics', 'Score': 85})
record2 = pd.Series({'Name': 'Javed','Class': 'Chemistry','Score': 82})
record3 = pd.Series({'Name': 'Hafeez', 'Class': 'Biology','Score': 90})
Like a Series, the DataFrame object is index. Here I'll use a group of series, where each series
represents a row of data. Just like the Series function, we can pass in our individual items
in an array, and we can pass in our index values as a second arguments
df = pd.DataFrame([record1, record2, record3],index=['school1', 'school2', 'school1'])
And just like the Series we can use the head() function to see the first several rows of the
dataframe, including indices from both axes, and we can use this to verify the columns and the
rows

Page 190 of 580

df.head()
#The results of the
dataframe. So we have the index, which is the leftmost column and is #the school name, and
then we have the rows of data, where each row has a column header which #was given in our
initial
record dictionaries
An alternative method is that you could use a list of dictionaries, where each dictionary
represents a row of data.
students = [{'Name': 'ali',
 'Class': 'Physics',
 'Score': 85},
 {'Name': 'Javed',
 'Class': 'Chemistry',
 'Score': 82},
 {'Name': 'Hafeez',
 'Class': 'Biology',
 'Score': 90}]
Then we pass this list of dictionaries into the DataFrame function
df = pd.DataFrame(students, index=['school1', 'school2', 'school1'])
And lets print the head again
df.head()
Similar to the series, we can extract data using the .iloc and .loc #attributes. Because the
DataFrame is two-dimensional, passing a single value to the loc #indexing operator will return
the series if there's only one row to return.
For instance, if we wanted to select data associated with school2, we #would just query the
.loc attribute with one parameter.
df.loc['school2']
You'll note that the name of the series is returned as the index value, #while the column name is
included in the output.
#We can check the data type of the return using the python type function.
type(df.loc['school2'])
It's important to remember that the indices and column names along #either axes horizontal or
vertical, could be non-unique. In this example, we see two records for #school1 as different rows.
If we use a single value with the DataFrame lock attribute, multiple #rows of the DataFrame will
return, not as a new series, but as a new DataFrame.
Lets query for school1 records
df.loc['school1']
And we can see the the type of this is different too
type(df.loc['school1'])
One of the powers of the Panda's DataFrame is that you can quickly #select data based on
multiple axes.

Page 191 of 580

For instance, if you wanted to just list the student names for school1, #you would supply two
parameters to .loc, one being the row index and the #other being the column name.
For instance, if we are only interested in school1's student names
df.loc['school1', 'Name']
Remember, just like the Series, the pandas developers have implemented #this using the indexing
operator and not as parameters to a function.
What would we do if we just wanted to select a single column though? #Well, there are a few
mechanisms. Firstly, we could transpose the matrix. This pivots all of #the rows into columns
#and all of the columns into rows, and is done with the T attribute
df.T
Then we can call .loc on the transpose to get the student names only
df.T.loc['Name']
However, since iloc and loc are used for row selection, Panda reserves #the indexing operator
directly on the DataFrame for column selection. In a Panda's DataFrame, #columns always have a
name.
So this selection is always label based, and is not as confusing as it #was when using the square
bracket operator on the series objects. For those familiar with #relational databases, this
operator
is analogous to column projection.
df['Name']
In practice, this works really well since you're often trying to add or #drop new columns. However,
this also means that you get a key error if you try and use .loc with a #column name
df.loc['Name']
#Note too that the result of a single column projection is a Series object
type(df['Name'])

Since the result of using the indexing operator is either a DataFrame #or Series, you can chain
operations together. For instance, we can select all of the rows which #related to school1 using
.loc, then project the name column from just those rows
df.loc['school1']['Name']
If you get confused, use type to check the responses from resulting #operations
print(type(df.loc['school1'])) #should be a DataFrame
print(type(df.loc['school1']['Name'])) #should be a Series
Chaining, by indexing on the return type of another index, can come #with some costs and is
best avoided if you can use another approach. In particular, chaining #tends to cause Pandas
to return a copy of the DataFrame instead of a view on the DataFrame.
For selecting data, this is not a big deal, though it might be slower #than necessary.
If you are changing data though this is an important distinction and #can be a source of error.
Here's another approach. As we saw, .loc does row selection, and it can #take two parameters,
the row index and the list of column names. The .loc attribute also #supports slicing.
If we wanted to select all rows, we can use a colon to indicate a full #slice from beginning to end.

Page 192 of 580

This is just like slicing characters in a list in python. Then we can #add the column name as the
second parameter as a string. If we wanted to include multiple columns, #we could do so in a list.
and Pandas will bring back only the columns we have asked for.

Here's an example, where we ask for all the names and scores for all #schools using the .loc
operator.
df.loc[:,['Name', 'Score']]
Take a look at that again. The colon means that we want to get all of #the rows, and the list in
the second argument position is the list of #columns we want to get back
That's selecting and projecting data from a DataFrame based on row and #column labels. The key
concepts to remember are that the rows and columns are really just for #our benefit. Underneath
this is just a two axes labeled array, and transposing the columns is #easy. Also, consider the
issue of chaining carefully, and try to avoid it, as it can cause #unpredictable results, where
your intent was to obtain a view of the data, but instead Pandas #returns to you a copy.
Before we leave the discussion of accessing data in DataFrames, lets #talk about dropping data.
It's easy to delete data in Series and DataFrames, and we can use the #drop function to do so.
This function takes a single parameter, which is the index or row #label, to drop. This is another
tricky place for new users -- the drop function doesn't change the #DataFrame by default! Instead,
#the drop function returns to you a copy of the DataFrame with the given #rows removed.
df.drop('school1')
But if we look at our original DataFrame we see the data is still intact.
df
Drop has two interesting optional parameters. The first is called #inplace, and if it's
set to true, the DataFrame will be updated in place, instead of a copy #being returned.
The second parameter is the axes, which should be dropped. By default, #this value is 0,
indicating the row axis. But you could change it to 1 if you want to #drop a column.
For example, lets make a copy of a DataFrame using .copy()
copy_df = df.copy()
Now lets drop the name column in this copy
copy_df.drop("Name", inplace=True, axis=1)
copy_df
There is a second way to drop a column, and that's directly through the #use of the indexing
operator, using the del keyword. This way of dropping data, however, #takes immediate effect
on the DataFrame and does not return a view.
del copy_df['Class']
copy_df
Finally, adding a new column to the DataFrame is as easy as assigning #it to some value using
the indexing operator. For instance, if we wanted to add a class #ranking column with default
value of None, we could do so by using the assignment operator after #the square brackets.
This broadcasts the default value to the new column immediately.
df['ClassRanking'] = None

Page 193 of 580

df
In this LAB ACTIVTIY you've learned about the data structure you'll use #the most in pandas, the
DataFrame. The dataframe is indexed both by row #and column, and you can easily select
individual rows and project the #columns you're interested in using the familiar indexing methods
from #the Series class.

Lab Activity -Merging DataFrames

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The

lines starting with # sign are comments in Python and are used to elaborate the code.

===

In this lab we're going to address how you can bring multiple dataframe #objects together, either
by merging them horizontally, or by #concatenating them vertically. import pandas as pd

First we create two DataFrames, staff and students.
staff_df = pd.DataFrame([{'Name': 'Kiran', 'Role': 'Director of HR'},
 {'Name': 'Salma', 'Role': 'Course liasion'},
 {'Name': 'Jameel', 'Role': 'Grader'}])
And lets index these staff by name
staff_df = staff_df.set_index('Name')
Now we'll create a student dataframe
student_df = pd.DataFrame([{'Name': 'Jameel', 'School': 'Business'},
 {'Name': 'Mushahid', 'School': 'Law'},
 {'Name': 'Salma', 'School': 'Engineering'}])
And we'll index this by name too
student_df = student_df.set_index('Name')

And lets just print out the dataframes
print(staff_df.head())
print(student_df.head())
There's some overlap in these DataFrames in that Jameel and Salma are #both students and staff,
but Mushahid and
Kiran are not. Importantly, both DataFrames are indexed along the value
pd.merge(staff_df, student_df, how='outer', left_index=True, right_index=True)
pd.merge(staff_df, student_df, how='inner', left_index=True, right_index=True)
pd.merge(staff_df, student_df, how='left', left_index=True, right_index=True)
pd.merge(staff_df, student_df, how='right', left_index=True, right_index=True)
staff_df = staff_df.reset_index()

Page 194 of 580

student_df = student_df.reset_index()
Now lets merge using the on parameter
pd.merge(staff_df, student_df, how='right', on='Name')
So what happens when we have conflicts between the DataFrames? Let's #take a look by creating
new staff and
student DataFrames that have a location information added to them.
staff_df = pd.DataFrame([{'Name': 'Kiran', 'Role': 'Director of HR',
 'Location': 'Sukkur'},
 {'Name': 'Salma', 'Role': 'Course liasion',
 'Location': 'Karachi'},
 {'Name': 'Jameel', 'Role': 'Grader',
 'Location': 'Hyderabad'}])
student_df = pd.DataFrame([{'Name': 'Jameel', 'School': 'Business',
 'Location': 'Lateefabad 7'},
 {'Name': 'Mushahid', 'School': 'Law',
 'Location': 'Nawab Shah'},
 {'Name': 'Salma', 'School': 'Engineering',
 'Location': 'Korangi 2'}])

pd.merge(staff_df, student_df, how='left', on='Name')

Here's an example with some new student and staff data
staff_df = pd.DataFrame([{'First Name': 'Kiran', 'Last Name': 'Khan',
 'Role': 'Director of HR'},
 {'First Name': 'Salma', 'Last Name': 'Mughal',
 'Role': 'Course liasion'},
 {'First Name': 'Jameel', 'Last Name': 'Malik',
 'Role': 'Grader'}])
student_df = pd.DataFrame([{'First Name': 'Jameel', 'Last Name': 'Mughal',
 'School': 'Business'},
 {'First Name': 'Mushahid', 'Last Name': 'Uqaili',
 'School': 'Law'},
 {'First Name': 'Salma', 'Last Name': 'Mughal',
 'School': 'Engineering'}])
As you see here, Jameel malik and Jameel Mughal don't match on both keys since they have
different last names. So we would expect that an #inner join doesn't include these individuals in the
output, and only #Salma Mughal will be retained.
pd.merge(staff_df, student_df, how='inner', on=['First Name','Last Name'])

get_ipython().run_cell_magic('capture', '', 'df_2011 =
pd.read_csv("datasets/college_scorecard/MERGED2011_12_PP.csv",

Page 195 of 580

error_bad_lines=False)\ndf_2012 =
pd.read_csv("datasets/college_scorecard/MERGED2012_13_PP.csv",
error_bad_lines=False)\ndf_2013 =
pd.read_csv("datasets/college_scorecard/MERGED2013_14_PP.csv", error_bad_lines=False)\n')
df_2011.head(3)
print(len(df_2011))
print(len(df_2012))
print(len(df_2013))
#Let's see what it looks like
frames = [df_2011, df_2012, df_2013]
pd.concat(frames)
As you can see, we have more observations in one dataframe and columns remain the same. If we
scroll down to
the bottom of the output, we see that there are a total of 30,832 rows after concatenating three
dataframes.
Let's add the number of rows of the three dataframes and see if the two numbers match
len(df_2011)+len(df_2012)+len(df_2013)
Now let's try it out
pd.concat(frames, keys=['2011','2012','2013'])

Now you know how to merge and concatenate datasets together. You will #find such functions
very useful for combining data to get more complex #or complicated results and to do analysis
with. A solid understanding of #how to merge data is absolutely essentially when you are procuring,
#cleaning, and manipulating data. It's worth knowing how to join #different datasets quickly, and
the different options you can use when #joining datasets, and I would encourage you to check out
the pandas docs #for joining and concatenating data.

Lab activity - DataFrame` Indexing and Loading

This lab activity needs to be performed using Jupyter Notebook, PyCharm, or any other IDLE . The

lines starting with # sign are comments in Python and are used to elaborate the code.

===

#lets look at the content of a CSV file
get_ipython().system('more Admission_Predict.csv')
import pandas as pd
df = pd.read_csv('Admission_Predict.csv')
df.head()
df = pd.read_csv('datasets/Admission_Predict.csv', index_col=0)
df.head()
new_df=df.rename(columns={'GRE Score':'GRE Score', 'TOEFL Score':'TOEFL Score',

Page 196 of 580

 'University Rating':'University Rating',
 'SOP': 'Statement of Purpose','LOR': 'Letter of Recommendation',
 'CGPA':'CGPA', 'Research':'Research',
 'Chance of Admit':'Chance of Admit'})
new_df.head()
new_df.columns
way would be to change a column by including the space in the name
new_df=new_df.rename(columns={'LOR ': 'Letter of Recommendation'})
new_df.head()
What if that was a tab instead of a space? Or two spaces?
Another way is to create some function that does the cleaning and then #tell renamed to apply
that function
across all of the data. Python comes with a handy string function to strip white space called
"strip()".
When we pass this in to rename we pass the function as the mapper #parameter, and then
indicate whether the
axis should be columns or index (row labels)
new_df=new_df.rename(mapper=str.strip, axis='columns')
new_df.head()
df.columns
cols = list(df.columns)
Then a little list comprehenshion
cols = [x.lower().strip() for x in cols]
Then we just overwrite what is already in the .columns attribute
df.columns=cols
And take a look at our results
df.head()

Page 197 of 580

Day-03: Pivot Tables

We have seen how the GroupBy abstraction lets us explore relationships within a data‐ set.

A pivot table is a similar operation that is commonly seen in spreadsheets and other
programs that operate on tabular data. The pivot table takes simple column- wise data as
input, and groups the entries into a two-dimensional table that provides a
multidimensional summarization of the data. The difference between pivot tables and

GroupBy can sometimes cause confusion; it helps me to think of pivot tables as
essentially a multidimensional version of GroupBy aggregation. That is, you split- apply-

combine, but both the split and the combine happen across not a one- dimensional

index, but across a two-dimensional grid.
Motivating Pivot Tables

For the examples in this section, we’ll use the database of passengers on the

Titanic, available through the Seaborn library (see “Visualization with Seaborn”):

In[1]: import numpy as np
import pandas as pd
import seaborn as
sns

titanic = sns.load_dataset('titanic')

In[2]: titanic.head()

Out[2]:

survived pclass sex age sibsp parch fare embarked class
\\ 0 0 3 male 22.0 1 0 7.2500 S Third

1 1 1 female 38.0 1 0 71.2833 C First

2 1 3 female 26.0 0 0 7.9250 S Third

3 1 1 female 35.0 1 0 53.1000 S First

4 0 3 male 35.0 0 0 8.0500 S Third

who adult_male deck embark_town alive alone

0 man True NaN Southampton no False
1 woman False C Cherbourg yes False
2 woman False NaN Southampton yes True
3 woman False C Southampton yes False
4 man True NaN Southampton no True

This contains a wealth of information on each passenger of that ill-fated voyage,

including gender, age, class, fare paid, and much more.

Page 198 of 580

Pivot Tables by Hand

To start learning more about this data, we might begin by grouping it according to

gender, survival status, or some combination thereof. If you have read the previous

section, you might be tempted to apply a GroupBy operation—for example, let’s look at

survival rate by gender:

In[3]: titanic.groupby('sex')[['survived']].mean()

Out[3]:
 survive
d sex

female 0.742038

male 0.188908

This immediately gives us some insight: overall, three of every four females on

board survived, while only one in five males survived!

This is useful, but we might like to go one step deeper and look at survival by both sex and,

say, class. Using the vocabulary of GroupBy, we might proceed using something like this:

we group by class and gender, select survival, apply a mean aggregate, com‐ bine the

resulting groups, and then unstack the hierarchical index to reveal the hidden

multidimensionality. In code:

In[4]: titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack()

Out[4]: class

sex
First Second Third

femal
e

0.96808
5

0.92105
3

0.50000
0

male 0.36885
2

0.15740
7

0.13544
7

This gives us a better idea of how both gender and class affected survival, but the code is

starting to look a bit garbled. While each step of this pipeline makes sense in light of the

tools we’ve previously discussed, the long string of code is not particularly easy to read or

use. This two-dimensional GroupBy is common enough that Pandas includes a

convenience routine, pivot_table, which succinctly handles this type of multidimensional

aggregation.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_table method of
DataFrames:

In[5]: titanic.pivot_table('survived', index='sex', columns='class')

Page 199 of 580

Out[5]: class
sex

First Second Third

femal
e

0.96808
5

0.92105
3

0.50000
0

male 0.36885
2

0.15740
7

0.13544
7

This is eminently more readable than the GroupBy approach, and produces the
same result. As you might expect of an early 20th-century transatlantic cruise,
the survival gradient favors both women and higher classes. First-class women
survived with near certainty (hi, Rose!), while only one in ten third-class men
survived (sorry, Jack!).

Multilevel pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple lev‐ els,

and via a number of options. For example, we might be interested in looking at age as a

third dimension. We’ll bin the age using the pd.cut function:
In[6]: age = pd.cut(titanic['age'], [0, 18, 80])

titanic.pivot_table('survived', ['sex', age], 'class')

Out[6]: class

sex

age

First Second Third

 femal
e

(0, 18] 0.90909
1

1.00000
0

0.51162
8

 (18, 80] 0.97297
3

0.90000
0

0.42372
9

 male (0, 18] 0.80000
0

0.60000
0

0.21568
6

 (18, 80] 0.37500
0

0.07142
9

0.13366
3

We can apply this same strategy when working with the columns as well; let’s add info on

the fare paid using pd.qcut to automatically compute quantiles:

In[7]: fare = pd.qcut(titanic['fare'], 2)
titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

Out[7]
:
fare
class
sex

age

[0, 14.454]
First

Second

Third

\\

femal
e

(0, 18] NaN 1.00000
0

0.71428
6

 (18, 80] NaN 0.88000
0

0.44444
4

male (0, 18] NaN 0.00000 0.26087

Page 200 of 580

0 0
 (18, 80] 0.0 0.09803

9
0.12500
0

fare (14.454, 512.329]
class
sex

age

First Second Third

femal
e

(0, 18] 0.909091 1.00000
0

0.31818
2

 (18, 80] 0.972973 0.91428
6

0.39130
4

male (0, 18] 0.800000 0.81818
2

0.17857
1

 (18, 80] 0.391304 0.03030
3

0.19230
8

The result is a four-dimensional aggregation with hierarchical indices, shown in

a grid demonstrating the relationship between the values.

Additional pivot table options

The full call signature of the pivot_table method of DataFrames is as follows:

call signature as of Pandas 0.18

DataFrame.pivot_table(data, values=None, index=None, columns=None,

aggfunc='mean', fill_value=None,
margins=False, dropna=True,
margins_name='All')

We’ve already seen examples of the first three arguments; here we’ll take a quick look at

the remaining ones. Two of the options, fill_value and dropna, have to do with missing

data and are fairly straightforward; we will not show examples of them here.

The aggfunc keyword controls what type of aggregation is applied, which is a mean by
default. As in the GroupBy, the aggregation specification can be a string represent‐ ing

one of several common choices ('sum', 'mean', 'count', 'min', 'max', etc.) or a function that

implements an aggregation (np.sum(), min(), sum(), etc.). Additionally, it can be specified

as a dictionary mapping a column to any of the above desired options:
In[8]: titanic.pivot_table(index='sex', columns='class',

aggfunc={'survived':sum, 'fare':'mean'})

Out[8]: fare survived

class First Second Third First Second
Third sex

Page 201 of 580

female 106.125798 21.970121 16.118810 91.0 70.0 72.0

male 67.226127 19.741782 12.661633 45.0 17.0 47.0

Notice also here that we’ve omitted the values keyword; when you’re specifying a
mapping for aggfunc, this is determined automatically.

At times it’s useful to compute totals along each grouping. This can be done via the
margins keyword:

In[9]: titanic.pivot_table('survived', index='sex', columns='class', margins=True)

Out[9]: class

sex
First Second Third All

femal
e

0.96808
5

0.92105
3

0.50000
0

0.74203
8

male 0.36885
2

0.15740
7

0.13544
7

0.18890
8

All 0.62963
0

0.47282
6

0.24236
3

0.38383
8

Here this automatically gives us information about the class-agnostic survival rate by

gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%. The

margin label can be specified with the margins_name keyword, which defaults to "All".

Example: Birthrate Data

As a more interesting example, let’s take a look at the freely available data on births in the

United States, provided by the Centers for Disease Control (CDC). This data can be found

at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/ births.csv (this

dataset has been analyzed rather extensively by Andrew Gelman and his group; see, for

example, this blog post):
In[10]:

shell command to download the data:

!curl -O

https://raw.githubusercontent.com/jakevdp/data-

CDCbirths/ # master/births.csv

In[11]: births = pd.read_csv('births.csv')

Taking a look at the data, we see that it’s relatively simple—it contains the

number of births grouped by date and gender:

In[12]: births.head()

Out[12]: year month day gender births

Page 202 of 580

0 1969 1 1 F 4046
1 1969 1 1 M 4440
2 1969 1 2 F 4454
3 1969 1 2 M 4548
4 1969 1 3 F 4548

We can start to understand this data a bit more by using a pivot table. Let’s add

a dec‐ ade column, and take a look at male and female births as a function of

decade:
In[13]:

births['decade'] = 10 * (births['year'] // 10)

births.pivot_table('births', index='decade', columns='gender', aggfunc='sum')

Out[13]: gender
decade

F M

1960 1753634 1846572

1970 16263075 17121550

1980 18310351 19243452

1990 19479454 20420553
2000 18229309 19106428

We immediately see that male births outnumber female births in every decade. To see

this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visual‐ ize

the total number of births by year (Figure 3-2; see Chapter 4 for a discussion of plotting

with Matplotlib):
In[14]:

%matplotlib inline

import matplotlib.pyplot as plt

sns.set() # use Seaborn styles

births.pivot_table('births', index='year', columns='gender',
aggfunc='sum').plot() plt.ylabel('total births per year');

Page 203 of 580

Figure . Total number of US births by year and gender

With a simple pivot table and plot() method, we can immediately see the annual trend in
births by gender. By eye, it appears that over the past 50 years male births have
outnumbered female births by around 5%.
Further data exploration

Though this doesn’t necessarily relate to the pivot table, there are a few more interest‐ ing

features we can pull out of this dataset using the Pandas tools covered up to this point.

We must start by cleaning the data a bit, removing outliers caused by mistyped dates

(e.g., June 31st) or missing values (e.g., June 99th). One easy way to remove these all at

once is to cut outliers; we’ll do this via a robust sigma-clipping operation:1
In[15]: quartiles = np.percentile(births['births'], [25, 50, 75])

mu = quartiles[1]

sig = 0.74 * (quartiles[2] - quartiles[0])

This final line is a robust estimate of the sample mean, where the 0.74 comes from the

interquartile range of a Gaussian distribution. With this we can use the query() method

to filter out rows with births outside these values:
In[16]:

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')

Next we set the day column to integers; previously it had been a string because some
columns in the dataset contained the value 'null':

In[17]: # set 'day' column to integer; it originally was a string due to nulls

Page 204 of 580

births['day'] = births['day'].astype(int)

Finally, we can combine the day, month, and year to create a Date index (see “Work‐ ing

with Time Series” on page 188). This allows us to quickly compute the weekday

corresponding to each row:
In[18]: # create a datetime index from the year, month, day

births.index = pd.to_datetime(10000 * births.year +

100 * births.month +
births.day,
format='%Y%m%d')

births['dayofweek'] = births.index.dayofweek

Using this we can plot births by weekday for several decades (Figure 3-3):
In[19]:

import matplotlib.pyplot as

plt import matplotlib as mpl

births.pivot_table('births', index='dayofweek',

columns='decade', aggfunc='mean').plot()
plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'])

plt.ylabel('mean births by day');

Figure . Average daily births by day of week and decade

Page 205 of 580

Apparently births are slightly less common on weekends than on weekdays! Note that the

1990s and 2000s are missing because the CDC data contains only the month of birth

starting in 1989.

Another interesting view is to plot the mean number of births by the day of the year.

Let’s first group the data by month and day separately:
In[20]:

births_by_date = births.pivot_table('births',

[births.index.month, births.index.day])

births_by_date.head()

Out[20]: 1
1

4009.225

2 4247.400
3 4500.900
4 4571.350
5 4603.625

Name: births, dtype: float64

The result is a multi-index over months and days. To make this easily plottable, let’s turn

these months and days into a date by associating them with a dummy year vari‐ able

(making sure to choose a leap year so February 29th is correctly handled!)
In[21]: births_by_date.index = [pd.datetime(2012, month, day)

for (month, day) in births_by_date.index]

births_by_date.head()

Out[21]: 2012-01-
01

4009.225

2012-01-02 4247.400
2012-01-03 4500.900
2012-01-04 4571.350
2012-01-05 4603.625

Name: births, dtype: float64

Focusing on the month and day only, we now have a time series reflecting the average

number of births by date of the year. From this, we can use the plot method to plot the

data. It reveals some interesting trends:
In[22]: # Plot the results

Page 206 of 580

fig, ax = plt.subplots(figsize=(12, 4))

births_by_date.plot(ax=ax);

Figure. Average daily births by date

Lab Activity

 This lab activity need to performed using Jupyter Notebook, PyCharm, or any other IDLE

Pivot Tables
A pivot table is a way of summarizing data in a DataFrame for a #particular purpose. It makes
heavy use of the aggregation function. A #pivot table is itself a DataFrame, where the rows
represent one variable #that you're interested in, the columns another, and the cell's some
#aggregate value. A pivot table also tends to includes marginal values as #well, which are the sums
for each column and row. This allows you to be #able to see the relationship between two variables
at just a glance.
import pandas as pd
import numpy as np
#Here we have the Times Higher Education World University Ranking dataset, #which is one of the
most
#influential university measures. Let's import the dataset and see what it #looks like
df = pd.read_csv('cwurData.csv')
df.head()
Here we can see each institution's rank, country, quality of education, #other metrics, and overall
score.
Let's say we want to create a new column called Rank_Level, where #institutions with world
ranking 1-100 are
categorized as first tier and those with world ranking 101 - 200 are #second tier, ranking 201 -
300 are # third tier, after 301 is other top #universities.
Now, you actually already have enough knowledge to do this, so why don't #you pause the video
and give it try?

Page 207 of 580

Create a function called create_category which will operate on the first
column in the dataframe, world_rank
def create_category(ranking):
 if (ranking >= 1) & (ranking <= 100):
 return "First Tier Top Unversity"
 elif (ranking >= 101) & (ranking <= 200):
 return "Second Tier Top Unversity"
 elif (ranking >= 201) & (ranking <= 300):
 return "Third Tier Top Unversity"
 return "Other Top Unversity"
Now we can apply this to a single column of data to create a new series
df['Rank_Level'] = df['world_rank'].apply(lambda x: create_category(x))
And lets look at the result
df.head()
A pivot table allows us to pivot out one of these columns a new column #headers and compare it
against
another column as row indices. Let's say we want to compare rank level #versus country of the
universities
and we want to compare in terms of overall score
To do this, we tell Pandas we want the values to be Score, and index to #be the country and the
columns to be
the rank levels. Then we specify that the aggregation function, and here #we'll use the NumPy
mean to get the
average rating for universities in that country
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean]).head()
We can see a hierarchical dataframe where the index, or rows, are by #country and the columns
have two levels, the top level indicating that the #mean value is being used and the second level
being our ranks. In this #example we only have one variable, the mean, that we are looking at, so
we #don't really need a heirarchical index.
We notice that there are some NaN values, for example, the first row, Argentia. The NaN values
indicate that
Argentia has only observations in the "Other Top Unversities" category
Now, pivot tables aren't limited to one function that you might want to #apply. You can pass a
named
parameter, aggfunc, which is a list of the different functions to apply, #and pandas will provide
you with
the result using hierarchical column names. Let's try that same query, #but pass in the max()
function too
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean,
np.max]).head()
So now we see we have both the mean and the max. As mentioned earlier, we #can also

Page 208 of 580

summarize the values
within a given top level column. For instance, if we want to see an #overall average for the
country for the
mean and we want to see the max of the max, we can indicate that we want #pandas to provide
marginal values
df.pivot_table(values='score', index='country', columns='Rank_Level', aggfunc=[np.mean, np.max],
 margins=True).head()
A pivot table is just a multi-level dataframe, and we can access series #or cells in the dataframe in
a similar way
as we do so for a regular dataframe.
Let's create a new dataframe from our previous example
new_df=df.pivot_table(values='score', index='country',columns='Rank_Level', aggfunc=[np.mean,
np.max], margins=True)
Now let's look at the index
print(new_df.index)
And let's look at the columns
print(new_df.columns)
We can see the columns are hierarchical. The top level column indices #have two categories:
mean and max, and
the lower level column indices have four categories, which are the four #rank levels. How would
we query this
if we want to get the average scores of First Tier Top Unversity levels #in each country? We would
just need
to make two dataframe projections, the first for the mean, then the #second for the top tier
new_df['mean']['First Tier Top Unversity'].head()
We can see that the output is a series object which we can confirm by #printing the type.
Remember that when
you project a single column of values out of a DataFrame you get series.
type(new_df['mean']['First Tier Top Unversity'])
What if we want to find the country that has the maximum average score on #First Tier Top
University level?
We can use the idxmax() function.
new_df['mean']['First Tier Top Unversity'].idxmax()
Now, the idxmax() function isn't special for pivot tables, it's a built in function to the Series object.
We don't have time to go over all pandas functions and attributes, and I #want to encourage you
to explore
the API to learn more deeply what is available to you.
If you want to achieve a different shape of your pivot table, you can do #so with the stack and
unstack
functions. Stacking is pivoting the lowermost column index to become the #innermost row index.
Unstacking is

Page 209 of 580

the inverse of stacking, pivoting the innermost row index to become the #lowermost column
index. An example
will help make this clear
Let's look at our pivot table first to refresh what it looks like
new_df.head()
Now let's try stacking, this should move the lowermost column, so the #tiers of the university
rankings, to
the inner most row
new_df=new_df.stack()
new_df.head()
In the original pivot table, rank levels are the lowermost column, after stacking, rank levels
become the
innermost index, appearing to the right after country
Now let's try unstacking
new_df.unstack().head()
That seems to restore our dataframe to its original shape. What do you #think would happen if
we unstacked twice in a row?
new_df.unstack().unstack().head()
We actually end up unstacking all the way to just a single column, so a #series object is returned.
This column is just a "value", the meaning of #which is denoted by the #heirarachical index of
operation, rank, and #country.
So that's pivot tables. This has been a pretty short description, but #they're incredibly useful when
dealing with numeric data, especially if #you're trying to summarize the data in some form. You'll
regularly be #creating new pivot tables on slices of data, whether you're exploring the #data
yourself or preparing data for others to report on. And of course, #you can pass any function you
want to the aggregate function, including those that you define yourself.

Day-04: What Is Machine Learning?

Before we take a look at the details of various machine learning methods, let’s start by looking
at what machine learning is, and what it isn’t. Machine learning is often cate‐ gorized as a
subfield of artificial intelligence, but I find that categorization can often be misleading at first
brush. The study of machine learning certainly arose from research in this context, but in the
data science application of machine learning meth‐ ods, it’s more helpful to think of machine
learning as a means of building models of data.

Fundamentally, machine learning involves building mathematical models to help understand
data. “Learning” enters the fray when we give these models tunable parameters that can be
adapted to observed data; in this way the program can be con‐ sidered to be “learning” from
the data. Once these models have been fit to previously seen data, they can be used to predict
and understand aspects of newly observed data. I’ll leave to the reader the more philosophical
digression regarding the extent to which this type of mathematical, model-based “learning” is

Page 210 of 580

similar to the “learning” exhibited by the human brain.

Understanding the problem setting in machine learning is essential to using these tools
effectively, and so we will start with some broad categorizations of the types of approaches
we’ll discuss here.

Categories of Machine Learning

At the most fundamental level, machine learning can be categorized into two main
types: supervised learning and unsupervised learning.

Supervised learning involves somehow modeling the relationship between measured features
of data and some label associated with the data; once this model is deter‐ mined, it can be
used to apply labels to new, unknown data. This is further subdivi‐ ded into classification tasks

and regression tasks: in classification, the labels are discrete categories, while in regression,
the labels are continuous quantities. We will see examples of both types of supervised learning
in the following section.

Unsupervised learning involves modeling the features of a dataset without reference to

any label, and is often described as “letting the dataset speak for itself.” These models
include tasks such as clustering and dimensionality reduction. Clustering algorithms

identify distinct groups of data, while dimensionality reduction algorithms search for more
succinct representations of the data. We will see examples of both types of unsupervised
learning in the following section.

In addition, there are so-called semi-supervised learning methods, which fall some‐ where
between supervised learning and unsupervised learning. Semi-supervised learning methods
are often useful when only incomplete labels are available.

Qualitative Examples of Machine Learning Applications

To make these ideas more concrete, let’s take a look at a few very simple examples of a machine
learning task. These examples are meant to give an intuitive, non- quantitative overview of
the types of machine learning tasks we will be looking at in this chapter. In later sections, we
will go into more depth regarding the particular models and how they are used. For a preview
of these more technical aspects, you can find the Python source that generates the figures in
the online appendix.

Classification: Predicting discrete labels

We will first take a look at a simple classification task, in which you are given a set of labeled
points and want to use these to classify some unlabeled points.

Imagine that we have the data shown in Figure 5-1 (the code used to generate this figure, and
all figures in this section, is available in the online appendix).

Page 211 of 580

Figure 5-1. A simple data set for classification

Here we have two-dimensional data; that is, we have two features for each point, rep‐ resented
by the (x,y) positions of the points on the plane. In addition, we have one of two class labels for
each point, here represented by the colors of the points. From these features and labels, we
would like to create a model that will let us decide whether a new point should be labeled
“blue” or “red.”

There are a number of possible models for such a classification task, but here we will use an
extremely simple one. We will make the assumption that the two groups can be separated by
drawing a straight line through the plane between them, such that points on each side of the
line fall in the same group. Here the model is a quantitative version of the statement “a straight
line separates the classes,” while the model param‐ eters are the particular numbers
describing the location and orientation of that line for our data. The optimal values for
these model parameters are learned from the data (this is the “learning” in machine
learning), which is often called training the model.

Figure 5-2 is a visual representation of what the trained model looks like for this data.

Page 212 of 580

Figure 5-2. A simple classification model

Now that this model has been trained, it can be generalized to new, unlabeled data. In other
words, we can take a new set of data, draw this model line through it, and assign labels to
the new points based on this model. This stage is usually called predic‐ tion. See Figure 5-3.

Figure 5-3. Applying a classification model to new data

This is the basic idea of a classification task in machine learning, where “classifica‐ tion”
indicates that the data has discrete class labels. At first glance this may look fairly trivial: it
would be relatively easy to simply look at this data and draw such a discriminatory line to
accomplish this classification. A benefit of the machine learn‐ ing approach, however, is that it
can generalize to much larger datasets in many more dimensions.

For example, this is similar to the task of automated spam detection for email; in this
case, we might use the following features and labels:

Page 213 of 580

• feature 1, feature 2, etc. normalized counts of important words or
phrases (“Viagra,” “Nigerian prince,” etc.)

• label “spam” or “not spam”

For the training set, these labels might be determined by individual inspection of a small
representative sample of emails; for the remaining emails, the label would be determined
using the model. For a suitably trained classification algorithm with enough well-
constructed features (typically thousands or millions of words or phrases), this type of
approach can be very effective. We will see an example of such text-based classification in “In
Depth: Naive Bayes Classification” on page 382.

Some important classification algorithms that we will discuss in more detail are Gaus‐ sian
naive Bayes (see “In Depth: Naive Bayes Classification” on page 382), support vector
machines (see “In-Depth: Support Vector Machines” on page 405), and ran‐ dom forest
classification (see “In-Depth: Decision Trees and Random Forests” on page 421).

Regression: Predicting continuous labels

In contrast with the discrete labels of a classification algorithm, we will next look at a simple
regression task in which the labels are continuous quantities.

Consider the data shown in Figure 5-4, which consists of a set of points, each with a
continuous label.

Figure 5-4. A simple dataset for regression

As with the classification example, we have two-dimensional data; that is, there are
two features describing each data point. The color of each point represents the con‐
tinuous label for that point.

Page 214 of 580

There are a number of possible regression models we might use for this type of data, but here
we will use a simple linear regression to predict the points. This simple linear regression
model assumes that if we treat the label as a third spatial dimension, we can fit a plane to the
data. This is a higher-level generalization of the well-known problem of fitting a line to data
with two coordinates.

We can visualize this setup as shown in Figure 5-5.

Figure 5-5. A three-dimensional view of the regression data

Notice that the feature 1–feature 2 plane here is the same as in the two-dimensional plot from
before; in this case, however, we have represented the labels by both color and three-
dimensional axis position. From this view, it seems reasonable that fitting a plane through
this three-dimensional data would allow us to predict the expected label for any set of
input parameters. Returning to the two-dimensional projection, when we fit such a plane we
get the result shown in Figure 5-6.

Page 215 of 580

Figure 5-6. A representation of the regression model

This plane of fit gives us what we need to predict labels for new points. Visually, we find the
results shown in Figure 5-7.

Figure 5-7. Applying the regression model to new data

As with the classification example, this may seem rather trivial in a low number of
dimensions. But the power of these methods is that they can be straightforwardly
applied and evaluated in the case of data with many, many features.

For example, this is similar to the task of computing the distance to galaxies observed through
a telescope—in this case, we might use the following features and labels:

• feature 1, feature 2, etc. brightness of each galaxy at one of several
wavelengths or colors

• label distance or redshift of the galaxy

Page 216 of 580

The distances for a small number of these galaxies might be determined through an
independent set of (typically more expensive) observations. We could then estimate distances
to remaining galaxies using a suitable regression model, without the need to employ the more
expensive observation across the entire set. In astronomy circles, this is known as the
“photometric redshift” problem.

Some important regression algorithms that we will discuss are linear regression (see “In
Depth: Linear Regression” on page 390), support vector machines (see “In-Depth: Support
Vector Machines” on page 405), and random forest regression (see “In- Depth: Decision Trees
and Random Forests” on page 421).

Clustering: Inferring labels on unlabeled data

The classification and regression illustrations we just looked at are examples of super‐ vised
learning algorithms, in which we are trying to build a model that will predict labels for new
data. Unsupervised learning involves models that describe data without reference to any
known labels.

One common case of unsupervised learning is “clustering,” in which data is automati‐ cally
assigned to some number of discrete groups. For example, we might have some two-
dimensional data like that shown in Figure 5-8.

Figure 5-8. Example data for clustering

By eye, it is clear that each of these points is part of a distinct group. Given this input, a
clustering model will use the intrinsic structure of the data to determine which points are
related. Using the very fast and intuitive k-means algorithm (see “In Depth: k-Means
Clustering” on page 462), we find the clusters shown in Figure 5-9.

Page 217 of 580

k-means fits a model consisting of k cluster centers; the optimal centers are assumed to be
those that minimize the distance of each point from its assigned center. Again, this might
seem like a trivial exercise in two dimensions, but as our data becomes larger and more
complex, such clustering algorithms can be employed to extract use‐ ful information from the
dataset.

We will discuss the k-means algorithm in more depth in “In Depth: k-Means Cluster‐ ing” on
page 462. Other important clustering algorithms include Gaussian mixture models (see “In
Depth: Gaussian Mixture Models” on page 476) and spectral cluster‐ ing (see Scikit-Learn’s
clustering documentation).

Figure 5-9. Data labeled with a k-means clustering model

Dimensionality reduction: Inferring structure of unlabeled data

Dimensionality reduction is another example of an unsupervised algorithm, in which labels or
other information are inferred from the structure of the dataset itself. Dimensionality
reduction is a bit more abstract than the examples we looked at before, but generally it seeks
to pull out some low-dimensional representation of data that in some way preserves relevant
qualities of the full dataset. Different dimension‐ ality reduction routines measure these
relevant qualities in different ways, as we will see in “In-Depth: Manifold Learning” on page
445.

As an example of this, consider the data shown in Figure 5-10.

Visually, it is clear that there is some structure in this data: it is drawn from a one-
dimensional line that is arranged in a spiral within this two-dimensional space. In a sense, you
could say that this data is “intrinsically” only one dimensional, though this one-dimensional
data is embedded in higher-dimensional space. A suitable dimen‐ sionality reduction model in
this case would be sensitive to this nonlinear embedded structure, and be able to pull out this

Page 218 of 580

lower-dimensionality representation.

Figure 5-10. Example data for dimensionality reduction

Figure 5-11 presents a visualization of the results of the Isomap algorithm, a manifold learning
algorithm that does exactly this.

Figure 5-11. Data with a label learned via dimensionality reduction

Notice that the colors (which represent the extracted one-dimensional latent
variable) change uniformly along the spiral, which indicates that the algorithm
did in fact detect the structure we saw by eye. As with the previous examples,
the power of

Page 219 of 580

dimensionality reduction algorithms becomes clearer in higher-dimensional cases. For
example, we might wish to visualize important relationships within a dataset that has 100 or
1,000 features. Visualizing 1,000-dimensional data is a challenge, and one way we can make
this more manageable is to use a dimensionality reduction techni‐ que to reduce the data to
two or three dimensions.

Some important dimensionality reduction algorithms that we will discuss are princi‐ pal
component analysis (see “In Depth: Principal Component Analysis” on page 433) and various
manifold learning algorithms, including Isomap and locally linear embedding (see “In-Depth:
Manifold Learning” on page 445).

Summary

Here we have seen a few simple examples of some of the basic types of machine learn‐ ing
approaches. Needless to say, there are a number of important practical details that we have
glossed over, but I hope this section was enough to give you a basic idea of what types of
problems machine learning approaches can solve.

In short, we saw the following:

Supervised learning

Models that can predict labels based on labeled training data

Classification

Models that predict labels as two or more discrete categories

Regression

Models that predict continuous labels

Unsupervised learning

Models that identify structure in unlabeled data

Clustering

Models that detect and identify distinct groups in the data

Dimensionality reduction

Models that detect and identify lower-dimensional structure in higher-
dimensional data

In the following sections we will go into much greater depth within these categories, and see
some more interesting examples of where these concepts can be useful.

All of the figures in the preceding discussion are generated based on actual machine learning
computations; the code behind them can be found in the online appendix.

Page 220 of 580

Day-05: Introducing Scikit-Learn

There are several Python libraries that provide solid implementations of a range of machine
learning algorithms. One of the best known is Scikit-Learn, a package that provides efficient
versions of a large number of common algorithms. Scikit-Learn is characterized by a clean,
uniform, and streamlined API, as well as by very useful and complete online documentation. A
benefit of this uniformity is that once you under‐ stand the basic use and syntax of Scikit-
Learn for one type of model, switching to a new model or algorithm is very straightforward.

This section provides an overview of the Scikit-Learn API; a solid understanding of these API
elements will form the foundation for understanding the deeper practical discussion of
machine learning algorithms and approaches in the following chapters.

We will start by covering data representation in Scikit-Learn, followed by covering the Estimator
API, and finally go through a more interesting example of using these tools for exploring a set
of images of handwritten digits.

Data Representation in Scikit-Learn

Machine learning is about creating models from data: for that reason, we’ll start by discussing
how data can be represented in order to be understood by the computer. The best way to
think about data within Scikit-Learn is in terms of tables of data.

Data as table

A basic table is a two-dimensional grid of data, in which the rows represent individ‐ ual
elements of the dataset, and the columns represent quantities related to each of these
elements. For example, consider the Iris dataset, famously analyzed by Ronald Fisher in 1936.

We can download this dataset in the form of a Pandas DataFrame using the Seaborn library:

In[1]: import seaborn as sns

iris = sns.load_dataset('iris')
iris.head()

Out[1]
:

sepal_length sepal_wid
th

petal_leng
th

petal_wid
th

specie
s

 0

 5.

1

3.5 1.4 0.2 setos

a

 1

 4.

9

3.0 1.4 0.2 setos

a

 2

 4.

7

3.2 1.3 0.2 setos

a

 3

 4.

6

3.1 1.5 0.2 setos

a

 4
 5.
0

3.6 1.4 0.2 setos
a

Here each row of the data refers to a single observed flower, and the number of rows is the

Page 221 of 580

total number of flowers in the dataset. In general, we will refer to the rows of the matrix as

samples, and the number of rows as n_samples.

Likewise, each column of the data refers to a particular quantitative piece of informa‐ tion that

describes each sample. In general, we will refer to the columns of the matrix as features, and

the number of columns as n_features.

Features matrix

This table layout makes clear that the information can be thought of as a two- dimensional
numerical array or matrix, which we will call the features matrix. By con‐ vention, this features

matrix is often stored in a variable named X. The features matrix is assumed to be two-

dimensional, with shape [n_samples, n_features], and is most often contained in a NumPy

array or a Pandas DataFrame, though some Scikit- Learn models also accept SciPy sparse

matrices.

The samples (i.e., rows) always refer to the individual objects described by the dataset. For
example, the sample might be a flower, a person, a document, an image, a sound file, a video,
an astronomical object, or anything else you can describe with a set of quantitative
measurements.

The features (i.e., columns) always refer to the distinct observations that describe each
sample in a quantitative manner. Features are generally real-valued, but may be Boolean or
discrete-valued in some cases.

Target array

In addition to the feature matrix X, we also generally work with a label or target array, which

by convention we will usually call y. The target array is usually one dimen‐ sional, with length

n_samples, and is generally contained in a NumPy array or Pan‐ das Series. The target array

may have continuous numerical values, or discrete classes/labels. While some Scikit-Learn

estimators do handle multiple target values in the form of a two-dimensional [n_samples,

n_targets] target array, we will pri‐ marily be working with the common case of a one-

dimensional target array.

Often one point of confusion is how the target array differs from the other features columns.
The distinguishing feature of the target array is that it is usually the quantity we want to
predict from the data: in statistical terms, it is the dependent variable. For example, in the
preceding data we may wish to construct a model that can predict the species of flower based

on the other measurements; in this case, the species column would be considered the feature.

With this target array in mind, we can use Seaborn (discussed earlier in “Visualiza‐ tion with
Seaborn” on page 311) to conveniently visualize the data (see Figure 5-12):

In[2]: %matplotlib inline

Page 222 of 580

import seaborn as sns; sns.set()
sns.pairplot(iris, hue='species', size=1.5);

Figure 5-12. A visualization of the Iris dataset

For use in Scikit-Learn, we will extract the features matrix and target array from the

DataFrame, which we can do using some of the Pandas DataFrame operations dis‐ cussed in

Chapter 3:

In[3]: X_iris = iris.drop('species', axis=1)
X_iris.shape

Out[3]: (150, 4)

In[4]: y_iris = iris['species']
y_iris.shape

Out[4]: (150,)

To summarize, the expected layout of features and target values is visualized in
Figure 5-13.

Page 223 of 580

Figure 5-13. Scikit-Learn’s data layout

With this data properly formatted, we can move on to consider the estimator API of Scikit-
Learn.

Scikit-Learn’s Estimator API

The Scikit-Learn API is designed with the following guiding principles in mind, as
outlined in the Scikit-Learn API paper:

Consistency

All objects share a common interface drawn from a limited set of methods,
with consistent documentation.

Inspection

All specified parameter values are exposed as public attributes.

Limited object hierarchy

Only algorithms are represented by Python classes; datasets are represented in

standard formats (NumPy arrays, Pandas DataFrames, SciPy sparse matrices)

and parameter names use standard Python strings.

Composition

Many machine learning tasks can be expressed as sequences of more
fundamen‐ tal algorithms, and Scikit-Learn makes use of this wherever possible.

Sensible defaults

When models require user-specified parameters, the library defines an
appropri‐ ate default value.

In practice, these principles make Scikit-Learn very easy to use, once the basic princi‐ ples are
understood. Every machine learning algorithm in Scikit-Learn is imple‐ mented via the

Page 224 of 580

Estimator API, which provides a consistent interface for a wide range of machine learning
applications.

Basics of the API

Most commonly, the steps in using the Scikit-Learn estimator API are as follows (we
will step through a handful of detailed examples in the sections that follow):

1. Choose a class of model by importing the appropriate estimator class from Scikit-
Learn.

2. Choose model hyperparameters by instantiating this class with desired values.

3. Arrange data into a features matrix and target vector following the

discussion from before.

4. Fit the model to your data by calling the fit() method of the model instance.

5. Apply the model to new data:

• For supervised learning, often we predict labels for unknown data using the

predict() method.

• For unsupervised learning, we often transform or infer properties of the

data using the transform() or predict() method.

We will now step through several simple examples of applying supervised and unsu‐ pervised
learning methods.

Supervised learning example: Simple linear regression

As an example of this process, let’s consider a simple linear regression—that is, the common
case of fitting a line to x, y data. We will use the following simple data for our regression
example (Figure 5-14):

In[5]: import matplotlib.pyplot as plt

import numpy as np

rng = np.random.RandomState(42)
x = 10 * rng.rand(50)

y = 2 * x - 1 + rng.randn(50)
plt.scatter(x, y);

Page 225 of 580

Figure 5-14. Data for linear regression

With this data in place, we can use the recipe outlined earlier. Let’s walk through the process:

1. Choose a class of model.

In Scikit-Learn, every class of model is represented by a Python class. So, for example, if we
would like to compute a simple linear regression model, we can import the linear
regression class:

In[6]: from sklearn.linear_model import LinearRegression

Note that other, more general linear regression models exist as well; you can read more

about them in the sklearn.linear_model module documentation.

2. Choose model hyperparameters.

An important point is that a class of model is not the same as an instance of a model.

Once we have decided on our model class, there are still some options open to us.
Depending on the model class we are working with, we might need to answer one or
more questions like the following:

• Would we like to fit for the offset (i.e., intercept)?

• Would we like the model to be normalized?

• Would we like to preprocess our features to add model flexibility?

• What degree of regularization would we like to use in our model?

• How many model components would we like to use?

These are examples of the important choices that must be made once the model class is
selected. These choices are often represented as hyperparameters, or parameters that
must be set before the model is fit to data. In Scikit-Learn, we choose hyperparameters
by passing values at model instantiation. We will explore how you can quantitatively

Page 226 of 580

motivate the choice of hyperparameters in “Hyperparameters and Model Validation” on
page 359.

For our linear regression example, we can instantiate the LinearRegression class and

specify that we would like to fit the intercept using the fit_inter cept

hyperparameter:

In[7]: model = LinearRegression(fit_intercept=True) model

Out[7]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

Keep in mind that when the model is instantiated, the only action is the storing of these
hyperparameter values. In particular, we have not yet applied the model to any data:
the Scikit-Learn API makes very clear the distinction between choice of model and
application of model to data.

3. Arrange data into a features matrix and target vector.

Previously we detailed the Scikit-Learn data representation, which requires a two-

dimensional features matrix and a one-dimensional target array. Here our target variable y

is already in the correct form (a length-n_samples array), but we need to massage the data x

to make it a matrix of size [n_samples, n_features]. In this case, this amounts to a simple

reshaping of the one-dimensional array:

In[8]: X = x[:, np.newaxis] X.shape

Out[8]: (50, 1)

4. Fit the model to your data.

Now it is time to apply our model to data. This can be done with the fit()
method of the model:

In[9]: model.fit(X, y) Out[9]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,

normalize=False)

This fit() command causes a number of model-dependent internal computa‐ tions to

take place, and the results of these computations are stored in model- specific attributes
that the user can explore. In Scikit-Learn, by convention all model parameters that were

learned during the fit() process have trailing underscores; for example, in this linear

model, we have the following:

In[10]: model.coef_

Out[10]: array([1.9776566])

In[11]: model.intercept_

Out[11]: -0.90331072553111635

Page 227 of 580

These two parameters represent the slope and intercept of the simple linear fit
to the data. Comparing to the data definition, we see that they are very close to
the input slope of 2 and intercept of –1.

One question that frequently comes up regards the uncertainty in such internal
model parameters. In general, Scikit-Learn does not provide tools to draw con‐
clusions from internal model parameters themselves: interpreting model
parame‐ ters is much more a statistical modeling question than a machine
learning question. Machine learning rather focuses on what the model predicts.
If you would like to dive into the meaning of fit parameters within the model,
other tools are available, including the StatsModels Python package.

Predict labels for unknown data.

Once the model is trained, the main task of supervised machine learning is to
evaluate it based on what it says about new data that was not part of the

training set. In Scikit-Learn, we can do this using the predict() method. For

the sake of this example, our “new data” will be a grid of x values, and we will
ask what y values the model predicts:

In[12]: xfit = np.linspace(-1, 11)

As before, we need to coerce these x values into a [n_samples, n_features]

features matrix, after which we can feed it to the model:

In[13]: Xfit = xfit[:, np.newaxis]
yfit = model.predict(Xfit)

Finally, let’s visualize the results by plotting first the raw data, and then this
model fit (Figure 5-15):

In[14]: plt.scatter(x, y)

plt.plot(xfit, yfit);

Typically one evaluates the efficacy of the model by comparing its results to some
known baseline, as we will see in the next example.

Page 228 of 580

Figure 5-15. A simple linear regression fit to the data

Supervised learning example: Iris classification

Let’s take a look at another example of this process, using the Iris dataset we discussed earlier.
Our question will be this: given a model trained on a portion of the Iris data, how well can we
predict the remaining labels?

For this task, we will use an extremely simple generative model known as Gaussian naive
Bayes, which proceeds by assuming each class is drawn from an axis-aligned Gaussian
distribution (see “In Depth: Naive Bayes Classification” on page 382 for more details). Because
it is so fast and has no hyperparameters to choose, Gaussian naive Bayes is often a good
model to use as a baseline classification, before you explore whether improvements can be
found through more sophisticated models.

We would like to evaluate the model on data it has not seen before, and so we will split the

data into a training set and a testing set. This could be done by hand, but it is more convenient

to use the train_test_split utility function:

In[15]: from sklearn.cross_validation import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris,

random_state=1)

With the data arranged, we can follow our recipe to predict the labels:

In[16]: from sklearn.naive_bayes import GaussianNB # 1. choose model class

model = GaussianNB() # 2. instantiate model

model.fit(Xtrain, ytrain) # 3. fit model to data

y_model = model.predict(Xtest) # 4. predict on new data

Finally, we can use the accuracy_score utility to see the fraction of predicted labels that

Page 229 of 580

match their true value:

In[17]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

Out[17]: 0.97368421052631582

With an accuracy topping 97%, we see that even this very naive classification algo‐
rithm is effective for this particular dataset!

Unsupervised learning example: Iris dimensionality

As an example of an unsupervised learning problem, let’s take a look at reducing the
dimensionality of the Iris data so as to more easily visualize it. Recall that the Iris data is four
dimensional: there are four features recorded for each sample.

The task of dimensionality reduction is to ask whether there is a suitable lower- dimensional
representation that retains the essential features of the data. Often dimensionality reduction
is used as an aid to visualizing data; after all, it is much eas‐ ier to plot data in two dimensions
than in four dimensions or higher!

Here we will use principal component analysis (PCA; see “In Depth: Principal Com‐ ponent
Analysis” on page 433), which is a fast linear dimensionality reduction techni‐ que. We will ask
the model to return two components—that is, a two-dimensional representation of the data.

Following the sequence of steps outlined earlier, we have:

In[18]:

from sklearn.decomposition import PCA # 1. Choose the model class

model = PCA(n_components=2) # 2. Instantiate the model with hyperparameters

model.fit(X_iris) # 3. Fit to data. Notice y is not specified!

X_2D = model.transform(X_iris) # 4. Transform the data to two dimensions

Now let’s plot the results. A quick way to do this is to insert the results into the origi‐

nal Iris DataFrame, and use Seaborn’s lmplot to show the results (Figure 5-16):

In[19]: iris['PCA1'] = X_2D[:, 0]

iris['PCA2'] = X_2D[:, 1]

sns.lmplot("PCA1", "PCA2", hue='species', data=iris, fit_reg=False);

We see that in the two-dimensional representation, the species are fairly well separa‐ ted,
even though the PCA algorithm had no knowledge of the species labels! This indicates to us
that a relatively straightforward classification will probably be effective on the dataset, as we
saw before.

Page 230 of 580

Figure 5-16. The Iris data projected to two dimensions

Unsupervised learning: Iris clustering

Let’s next look at applying clustering to the Iris data. A clustering algorithm attempts to find
distinct groups of data without reference to any labels. Here we will use a powerful clustering
method called a Gaussian mixture model (GMM), discussed in more detail in “In Depth:
Gaussian Mixture Models” on page 476. A GMM attempts to model the data as a collection of
Gaussian blobs.

We can fit the Gaussian mixture model as follows:

In[20]:

from sklearn.mixture import GMM # 1. Choose the model class

model = GMM(n_components=3,

covariance_type='full') # 2. Instantiate the model w/ hyperparameters

model.fit(X_iris) # 3. Fit to data. Notice y is not specified!

y_gmm = model.predict(X_iris) # 4. Determine cluster labels

As before, we will add the cluster label to the Iris DataFrame and use Seaborn to
plot the results (Figure 5-17):

In[21]:

iris['cluster'] = y_gmm

sns.lmplot("PCA1", "PCA2", data=iris, hue='species',
col='cluster', fit_reg=False);

By splitting the data by cluster number, we see exactly how well the GMM algorithm has
recovered the underlying label: the setosa species is separated perfectly within cluster 0,
while there remains a small amount of mixing between versicolor and vir‐ ginica. This means
that even without an expert to tell us the species labels of the indi‐ vidual flowers, the

Page 231 of 580

measurements of these flowers are distinct enough that we could automatically identify the
presence of these different groups of species with a simple clustering algorithm! This sort of
algorithm might further give experts in the field clues as to the relationship between the
samples they are observing.

Figure 5-17. k-means clusters within the Iris data

Application: Exploring Handwritten Digits

To demonstrate these principles on a more interesting problem, let’s consider one piece of the
optical character recognition problem: the identification of handwritten digits. In the wild,
this problem involves both locating and identifying characters in an image. Here we’ll take a
shortcut and use Scikit-Learn’s set of preformatted digits, which is built into the library.

Loading and visualizing the digits data

We’ll use Scikit-Learn’s data access interface and take a look at this data:

In[22]: from sklearn.datasets import load_digits
digits = load_digits()
digits.images.shape

Out[22]: (1797, 8, 8)

The images data is a three-dimensional array: 1,797 samples, each consisting of an 8×8 grid of
pixels. Let’s visualize the first hundred of these (Figure 5-18):

In[23]: import matplotlib.pyplot as plt

fig, axes = plt.subplots(10, 10, figsize=(8, 8),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):

ax.imshow(digits.images[i], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(digits.target[i]),

transform=ax.transAxes, color='green')

Page 232 of 580

Figure 5-18. The handwritten digits data; each sample is represented by one 8×8 grid of

pixels

In order to work with this data within Scikit-Learn, we need a two-dimensional, [n_samples,

n_features] representation. We can accomplish this by treating each pixel in the image as a

feature—that is, by flattening out the pixel arrays so that we have a length-64 array of pixel
values representing each digit. Additionally, we need the target array, which gives the
previously determined label for each digit. These two quantities are built into the digits

dataset under the data and target attributes, respectively:

In[24]: X = digits.data
X.shape

Out[24]: (1797, 64)

In[25]: y = digits.target
y.shape

Out[25]: (1797,)

We see here that there are 1,797 samples and 64 features.

Unsupervised learning: Dimensionality reduction

We’d like to visualize our points within the 64-dimensional parameter space, but it’s difficult
to effectively visualize points in such a high-dimensional space. Instead we’ll reduce the
dimensions to 2, using an unsupervised method. Here, we’ll make use of a manifold learning
algorithm called Isomap (see “In-Depth: Manifold Learning” on page 445), and transform the

Page 233 of 580

data to two dimensions:

In[26]: from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
iso.fit(digits.data)

data_projected = iso.transform(digits.data)
data_projected.shape

Out[26]: (1797, 2)

We see that the projected data is now two-dimensional. Let’s plot this data to see if
we can learn anything from its structure (Figure 5-19):

In[27]: plt.scatter(data_projected[:, 0], data_projected[:, 1], c=digits.target,
edgecolor='none', alpha=0.5,
cmap=plt.cm.get_cmap('spectral', 10))

plt.colorbar(label='digit label', ticks=range(10))
plt.clim(-0.5, 9.5);

Figure 5-19. An Isomap embedding of the digits data

This plot gives us some good intuition into how well various numbers are separated in the
larger 64-dimensional space. For example, zeros (in black) and ones (in purple) have very
little overlap in parameter space. Intuitively, this makes sense: a zero is empty in the middle
of the image, while a one will generally have ink in the middle. On the other hand, there seems
to be a more or less continuous spectrum between ones and fours: we can understand this by
realizing that some people draw ones with “hats” on them, which cause them to look similar to
fours.

Overall, however, the different groups appear to be fairly well separated in the param‐ eter
space: this tells us that even a very straightforward supervised classification algo‐ rithm
should perform suitably on this data. Let’s give it a try.

Page 234 of 580

Classification on digits

Let’s apply a classification algorithm to the digits. As with the Iris data previously, we
will split the data into a training and test set, and fit a Gaussian naive Bayes model:

In[28]: Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0)

In[29]: from sklearn.naive_bayes import GaussianNB
model = GaussianNB()

model.fit(Xtrain, ytrain)
y_model = model.predict(Xtest)

Now that we have predicted our model, we can gauge its accuracy by comparing the true
values of the test set to the predictions:

In[30]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

Out[30]: 0.83333333333333337

With even this extremely simple model, we find about 80% accuracy for classification of the
digits! However, this single number doesn’t tell us where we’ve gone wrong— one nice way to
do this is to use the confusion matrix, which we can compute with Scikit-Learn and plot with
Seaborn (Figure 5-20):

In[31]: from sklearn.metrics import confusion_matrix

mat = confusion_matrix(ytest, y_model)

sns.heatmap(mat, square=True, annot=True, cbar=False)
plt.xlabel('predicted value')

plt.ylabel('true value');

Figure 5-20. A confusion matrix showing the frequency of misclassifications by our
classifier

Page 235 of 580

This shows us where the mislabeled points tend to be: for example, a large number of twos
here are misclassified as either ones or eights. Another way to gain intuition into the
characteristics of the model is to plot the inputs again, with their predicted labels. We’ll use
green for correct labels, and red for incorrect labels (Figure 5-21):

In[32]: fig, axes = plt.subplots(10, 10, figsize=(8, 8),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):

ax.imshow(digits.images[i], cmap='binary', interpolation='nearest')
ax.text(0.05, 0.05, str(y_model[i]),

transform=ax.transAxes,

color='green' if (ytest[i] == y_model[i]) else 'red')

Figure 5-21. Data showing correct (green) and incorrect (red) labels; for a color version of

this plot, see the online appendix

Examining this subset of the data, we can gain insight regarding where the algorithm might not
be performing optimally. To go beyond our 80% classification rate, we might move to a more
sophisticated algorithm, such as support vector machines (see “In-Depth: Support Vector
Machines” on page 405) or random forests (see “In- Depth: Decision Trees and Random
Forests” on page 421), or another classification approach.

Page 236 of 580

Week 4- Data visualization using Matplotlib

Day-01: Data visualization using Matplotlib

Introduction and brief histroy

Matplotlib is a multiplatform data visualization library built on NumPy arrays, and designed

to work with the broader SciPy stack. It was conceived by John Hunter in 2002, originally

as a patch to IPython for enabling interactive MATLAB-style plotting via gnuplot from the

IPython command line. IPython’s creator, Fernando Perez, was at the time scrambling to

finish his PhD, and let John know he wouldn’t have time to review the patch for several

months. John took this as a cue to set out on his own, and the Matplotlib package was born,

with version 0.1 released in 2003. It received an early boost when it was adopted as the

plotting package of choice of the Space Tele‐ scope Science Institute (the folks behind the

Hubble Telescope), which financially supported Matplotlib’s development and greatly

expanded its capabilities.

One of Matplotlib’s most important features is its ability to play well with many operating

systems and graphics backends. Matplotlib supports dozens of backends and output types,

which means you can count on it to work regardless of which operating system you are

using or which output format you wish. This cross-platform, everything-to-everyone

approach has been one of the great strengths of Matplotlib. It has led to a large userbase,

which in turn has led to an active developer base and Mat‐ plotlib’s powerful tools and

ubiquity within the scientific Python world.

Importing matplotlib

Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will use
some standard shorthands for Matplotlib imports:

In[1]: import matplotlib as mpl

import matplotlib.pyplot as plt

The plt interface is what we will use most often, as we’ll see throughout this chapter.

Setting Styles

We will use the plt.style directive to choose appropriate aesthetic styles for our fig‐ ures.
Here we will set the classic style, which ensures that the plots we create use the classic
Matplotlib style:

In[2]: plt.style.use('classic')

show() or No show()? How to Display Your Plots

A visualization you can’t see won’t be of much use, but just how you view your Mat‐

Page 237 of 580

plotlib plots depends on the context. The best use of Matplotlib differs depending on

how you are using it; roughly, the three applicable contexts are using Matplotlib in a

script, in an IPython terminal, or in an IPython notebook.

Plotting from a script

If you are using Matplotlib from within a script, the function plt.show() is your friend.
plt.show() starts an event loop, looks for all currently active figure objects, and opens
one or more interactive windows that display your figure or figures.

So, for example, you may have a file called myplot.py containing the following:

------- file: myplot.py ------

import matplotlib.pyplot as plt import

nump as np

x = np.linspace(0, 10, 100)

plt.plot(x, np.sin(x))

plt.plot(x, np.cos(x))

plt.show()

You can then run this script from the command-line prompt, which will result in a window

opening with your figure displayed:

$ python myplot.py

The plt.show() command does a lot under the hood, as it must interact with your system’s

interactive graphical backend. The details of this operation can vary greatly from system
to system and even installation to installation, but Matplotlib does its best to hide all these

details from you.

One thing to be aware of: the plt.show() command should be used only once per Python
session, and is most often seen at the very end of the script. Multiple show() commands
can lead to unpredictable backend-dependent behavior, and should mostly be avoided.

Plotting from an IPython shell

It can be very convenient to use Matplotlib interactively within an IPython shell (see

Chapter 1). IPython is built to work well with Matplotlib if you specify Matplotlib mode. To

enable this mode, you can use the %matplotlib magic command after start‐ ing ipython:

In [1]: %matplotlib

Using matplotlib backend: TkAgg

Page 238 of 580

In [2]: import matplotlib.pyplot as plt

At this point, any plt plot command will cause a figure window to open, and further

commands can be run to update the plot. Some changes (such as modifying proper‐ ties

of lines that are already drawn) will not draw automatically; to force an update, use

plt.draw(). Using plt.show() in Matplotlib mode is not required.

Plotting from an IPython notebook

Plotting interactively within an IPython notebook can be done with the %matplotlib
command, and works in a similar way to the IPython shell. In the IPython notebook, you

also have the option of embedding graphics directly in the notebook, with two possible

options:

• %matplotlib notebook will lead to interactive plots embedded within the notebook

• %matplotlib inline will lead to static images of your plot embedded in the

notebook

For this book, we will generally opt for %matplotlib inline:

In[3]: %matplotlib inline

After you run this command (it needs to be done only once per kernel/session), any cell

within the notebook that creates a plot will embed a PNG image of the resulting graphic

(Figure 4-1):

In[4]: import numpy as np

x = np.linspace(0, 10, 100)

Saving Figures to File

One nice feature of Matplotlib is the ability to save figures in a wide variety of for‐ mats.

You can save a figure using the savefig() command. For example, to save the previous

figure as a PNG file, you can run this:

In[5]: fig.savefig('my_figure.png')

We now have a file called my_figure.png in the current working directory:

In[6]: !ls -lh my_figure.png

-rw-r--r-- 1 jakevdp staff 16K Aug 11 10:59 my_figure.png

To confirm that it contains what we think it contains, let’s use the IPython Image
object to display the contents of this file .

Page 239 of 580

In[7]: from IPython.display import Image
Image('my_figure.png')

Figure. PNG rendering of the basic plot

In savefig(), the file format is inferred from the extension of the given filename.

Depending on what backends you have installed, many different file formats are

available. You can find the list of supported file types for your system by using the

following method of the figure canvas object:

In[8]: fig.canvas.get_supported_filetypes() Out[8]:

{'eps': 'Encapsulated Postscript',

'jpeg': 'Joint Photographic Experts Group', 'jpg':
'Joint Photographic Experts Group', 'pdf':
'Portable Document Format',

'pgf': 'PGF code for LaTeX',

'png': 'Portable Network Graphics', 'ps':
'Postscript',

'raw': 'Raw RGBA bitmap', 'rgba':
'Raw RGBA bitmap',

'svg': 'Scalable Vector Graphics', 'svgz':
'Scalable Vector Graphics', 'tif': 'Tagged
Image File Format', 'tiff': 'Tagged Image
File Format'}

Note that when saving your figure, it’s not necessary to use plt.show() or related
commands discussed earlier.

Page 240 of 580

Two Interfaces for the Price of One

A potentially confusing feature of Matplotlib is its dual interfaces: a convenient MATLAB-

style state-based interface, and a more powerful object-oriented interface. We’ll quickly

highlight the differences between the two here.

MATLAB-style interface

Matplotlib was originally written as a Python alternative for MATLAB users, and much of

its syntax reflects that fact. The MATLAB-style tools are contained in the pyplot (plt)

interface. For example, the following code will probably look quite familiar to MATLAB

users (Figure):

In[9]: plt.figure() # create a plot figure

create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

create the second panel and set current axis

plt.subplot(2, 1, 2) plt.plot(x,np.cos(x));

Figure. Subplots using the MATLAB-style interface

It’s important to note that this interface is stateful: it keeps track of the “current” figure

and axes, which are where all plt commands are applied. You can get a reference to

these using the plt.gcf() (get current figure) and plt.gca() (get current axes) routines.

While this stateful interface is fast and convenient for simple plots, it is easy to run into

problems. For example, once the second panel is created, how can we go back and add

something to the first? This is possible within the MATLAB-style interface, but a bit

clunky. Fortunately, there is a better way.

Page 241 of 580

Object-oriented interface

The object-oriented interface is available for these more complicated situations, and for

when you want more control over your figure. Rather than depending on some notion of

an “active” figure or axes, in the object-oriented interface the plotting func‐ tions are

methods of explicit Figure and Axes objects. To re-create the previous plot using this style

of plotting, you might do the following

In[10]: # First create a grid of plots

ax will be an array of two Axes objects

fig, ax = plt.subplots(2)

Call plot() method on the appropriate object

ax[0].plot(x, np.sin(x))

ax[1].plot(x, np.cos(x));

Figure. Subplots using the object-oriented interface

For more simple plots, the choice of which style to use is largely a matter of prefer‐ ence,

but the object-oriented approach can become a necessity as plots become more

complicated. Throughout this chapter, we will switch between the MATLAB-style and

object-oriented interfaces, depending on what is most convenient. In most cases, the

difference is as small as switching plt.plot() to ax.plot(), but there are a few gotchas that we

will highlight as they come up in the following sections.

Simple Line Plots

Perhaps the simplest of all plots is the visualization of a single function y = f x . Here we

will take a first look at creating a simple plot of this type. As with all the following sections,

we’ll start by setting up the notebook for plotting and importing the func‐ tions we will

use:

Page 242 of 580

In[1]: %matplotlib inline

import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid') import
numpy as np

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest form, a

figure and axes can be created as follows (Figure 4-5):

In[2]: fig = plt.figure() ax =
plt.axes()

Figure. An empty gridded axes

In Matplotlib, the figure (an instance of the class plt.Figure) can be thought of as a single

container that contains all the objects representing axes, graphics, text, and labels. The

axes (an instance of the class plt.Axes) is what we see above: a bounding box with ticks

and labels, which will eventually contain the plot elements that make up our
visualization. Throughout this book, we’ll commonly use the variable name fig to refer to

a figure instance, and ax to refer to an axes instance or group of axes instances.

Once we have created an axes, we can use the ax.plot function to plot some data. Let’s
start with a simple sinusoid .

In[3]: fig = plt.figure() ax
= plt.axes()

x = np.linspace(0, 10,
1000) ax.plot(x, np.sin(x));

In[4]: plt.plot(x, np.sin(x));

Page 243 of 580

Figure . Over-plotting multiple lines

That’s all there is to plotting simple functions in Matplotlib! We’ll now dive into some more
details about how to control the appearance of the axes and lines.

Adjusting the Plot: Line Colors and Styles

The first adjustment you might wish to make to a plot is to control the line colors and
styles. The plt.plot() function takes additional arguments that can be used to spec‐ ify

these. To adjust the color, you can use the color keyword, which accepts a string

argument representing virtually any imaginable color. The color can be specified in a

variety of ways (Figure :

In[6]:

Page 244 of 580

plt.plot(x, np.sin(x - 0), color='blue') # specify color by name
plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk)
plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1
plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to
FF) plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 and 1

plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names
supported

Figure . Controlling the color of plot elements

If no color is specified, Matplotlib will automatically cycle through a set of default

colors for multiple lines.

Similarly, you can adjust the line style using the linestyle keyword (Figure 4-10):

In[7]: plt.plot(x, x + 0, linestyle='solid')
plt.plot(x, x + 1, linestyle='dashed')
plt.plot(x, x + 2, linestyle='dashdot')
plt.plot(x, x + 3, linestyle='dotted');

For short, you can use the following
codes: plt.plot(x, x + 4, linestyle='-') # solid

Page 245 of 580

plt.plot(x, x + 5, linestyle='--') # dashed
plt.plot(x, x + 6, linestyle='-.') # dashdot
plt.plot(x, x + 7, linestyle=':'); # dotted

Figure . Example of various line styles

If you would like to be extremely terse, these linestyle and color codes can be com‐ bined
into a single nonkeyword argument to the plt.plot() function (Figure) :

In[8]: plt.plot(x, x + 0, '-g') # solid green
plt.plot(x, x + 1, '--c') # dashed cyan
plt.plot(x, x + 2, '-.k') # dashdot black
plt.plot(x, x + 3, ':r'); # dotted red

Figure . Controlling colors and styles with the shorthand syntax

These single-character color codes reflect the standard abbreviations in the RGB

(Red/Green/Blue) and CMYK (Cyan/Magenta/Yellow/blacK) color systems, com‐ monly

used for digital color graphics.

There are many other keyword arguments that can be used to fine-tune the appear‐ ance

of the plot; for more details, I’d suggest viewing the docstring of the plt.plot() function

using IPython’s help tools (see “Help and Documentation in IPython”).

Adjusting the Plot: Axes Limits

Matplotlib does a decent job of choosing default axes limits for your plot, but some‐

times it’s nice to have finer control. The most basic way to adjust axis limits is to use the

plt.xlim() and plt.ylim() methods (Figure 4-12):

In[9]: plt.plot(x, np.sin(x))

Page 246 of 580

plt.xlim(-1, 11)

plt.ylim(-1.5, 1.5);

Figure 4-12. Example of setting axis limits

If for some reason you’d like either axis to be displayed in reverse, you can simply

reverse the order of the arguments (Figure):

In[10]: plt.plot(x, np.sin(x))

plt.xlim(10, 0)

plt.ylim(1.2, -1.2);

Figure . Example of reversing the y-axis

A useful related method is plt.axis() (note here the potential confusion between
axes with an e, and axis with an i). The plt.axis() method allows you to set the x
and y limits with a single call, by passing a list that specifies [xmin, xmax, ymin,
ymax]

In[11]: plt.plot(x, np.sin(x))

Page 247 of 580

plt.axis([-1, 11, -1.5, 1.5]);

Figure .Setting the axis limits with plt.axis

The plt.axis() method goes even beyond this, allowing you to do things like auto‐
matically tighten the bounds around the current plot (Figure 4-15):

In[12]: plt.plot(x, np.sin(x))
plt.axis('tight');

Figure . Example of a “tight” layout

It allows even higher-level specifications, such as ensuring an equal aspect ratio so that

on your screen, one unit in x is equal to one unit in y (Figure) :

Page 248 of 580

In[13]: plt.plot(x, np.sin(x))
plt.axis('equal');

Figure . Example of an “equal” layout, with units matched to the output resolution

For more information on axis limits and the other capabilities of the plt.axis()
method, refer to the plt.axis() docstring.

Labeling Plots

As the last piece of this section, we’ll briefly look at the labeling of plots: titles,

axis labels, and simple legends.

Titles and axis labels are the simplest such labels—there are methods that can be used to

quickly set them .

In[14]: plt.plot(x, np.sin(x))
plt.title("A Sine Curve")

plt.xlabel("x")
plt.ylabel("sin(x)");

Figure . Examples of axis labels and title

Page 249 of 580

You can adjust the position, size, and style of these labels using optional arguments to the

function. For more information, see the Matplotlib documentation and the doc‐ strings of

each of these functions.

When multiple lines are being shown within a single axes, it can be useful to create a plot

legend that labels each line type. Again, Matplotlib has a built-in way of quickly creating

such a legend. It is done via the (you guessed it) plt.legend() method. Though there are

several valid ways of using this, I find it easiest to specify the label of each line using the

label keyword of the plot function (Figure):

In[15]: plt.plot(x, np.sin(x), '-g', label='sin(x)')

plt.plot(x, np.cos(x), ':b', label='cos(x)')
plt.axis('equal')

plt.legend();

Figure . Plot legend example

As you can see, the plt.legend() function keeps track of the line style and color, and
matches these with the correct label. More information on specifying and formatting plot
legends can be found in the plt.legend() docstring;

Page 250 of 580

Simple Scatter Plots

Another commonly used plot type is the simple scatter plot, a close cousin of the line

plot. Instead of points being joined by line segments, here the points are represented

While most plt functions translate directly to ax methods (such as plt.plot() →

ax.plot(), plt.legend() → ax.legend(), etc.), this is not the case for all com‐

mands. In particular, functions to set limits, labels, and titles are slightly modified.

For transitioning between MATLAB-style functions and object-oriented methods,

make the following changes:

In the object-oriented interface to plotting, rather than calling these functions indi‐

vidually, it is often more convenient to use the ax.set() method to set all these prop‐

erties at once (Figure 4-19):

In[16]: ax = plt.axes()

ax.plot(x, np.sin(x))
ax.set(xlim=(0, 10), ylim=(-2, 2),

xlabel='x', ylabel='sin(x)',
title='A Simple Plot');

Page 251 of 580

individually with a dot, circle, or other shape. We’ll start by setting up the notebook for

plotting and importing the functions we will use:

In[1]: %matplotlib inline

import matplotlib.pyplot as plt
plt.style.use('seaborn-
whitegrid') import numpy as np

Scatter Plots with plt.plot

In the previous section, we looked at plt.plot/ax.plot to produce line plots. It turns out
that this same function can produce scatter plots as well (Figure):

In[2]: x = np.linspace(0, 10, 30)
y = np.sin(x)

plt.plot(x, y, 'o', color='black');

Figure . Scatter plot example

The third argument in the function call is a character that represents the type of sym‐ bol

used for the plotting. Just as you can specify options such as '-' and '--' to con‐ trol the line

style, the marker style has its own set of short string codes. The full list of available

symbols can be seen in the documentation of plt.plot, or in Matplotlib’s online

documentation. Most of the possibilities are fairly intuitive, and we’ll show a number of

the more common ones here (Figure):

In[3]: rng = np.random.RandomState(0)

for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']:

Page 252 of 580

plt.plot(rng.rand(5), rng.rand(5), marker,
label="marker='{0}'".format(mark
er))

plt.legend(numpoints
=1) plt.xlim(0, 1.8);

Figure. Demonstration of point numbers

For even more possibilities, these character codes can be used together with

line and color codes to plot points along with a line connecting them (Figure):

In[4]: plt.plot(x, y, '-ok'); # line (-), circle marker (o), black (k)

Figure . Combining line and point markers

Additional keyword arguments to plt.plot specify a wide range of properties of
the lines and markers (Figure):

In[5]: plt.plot(x, y, '-p', color='gray',

Page 253 of 580

markersize=15,
linewidth=4,
markerfacecolor='white',
markeredgecolor='gray',
markeredgewidth=2)

plt.ylim(-1.2, 1.2);

Figure . Customizing line and point numbers

This type of flexibility in the plt.plot function allows for a wide variety of possible visualization

options. For a full description of the options available, refer to the plt.plot

documentation.

Scatter Plots with plt.scatter

A second, more powerful method of creating scatter plots is the plt.scatter func‐ tion,

which can be used very similarly to the plt.plot function (Figure):

In[6]: plt.scatter(x, y, marker='o');

Figure . A simple scatter plot

Page 254 of 580

The primary difference of plt.scatter from plt.plot is that it can be used to create scatter
plots where the properties of each individual point (size, face color, edge color, etc.) can
be individually controlled or mapped to data.

Let’s show this by creating a random scatter plot with points of many colors and sizes. In

order to better see the overlapping results, we’ll also use the alpha keyword to adjust the

transparency level

In[7]: rng =
np.random.RandomState(0)
x = rng.randn(100)

y = rng.randn(100)
colors =
rng.rand(100)

sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,

cmap='viridis')

plt.colorbar(); # show color scale

Figure . Changing size, color, and transparency in scatter points

Notice that the color argument is automatically mapped to a color scale (shown here by

the colorbar() command), and the size argument is given in pixels. In this way, the color

and size of points can be used to convey information in the visualization, in order to

illustrate multidimensional data.

For example, we might use the Iris data from Scikit-Learn, where each sample is one of

three types of flowers that has had the size of its petals and sepals carefully meas‐ ured.

In[8]: from sklearn.datasets import
load_iris iris = load_iris()

Page 255 of 580

features = iris.data.T

plt.scatter(features[0], features[1], alpha=0.2,

s=100*features[3], c=iris.target,
cmap='viridis')

plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1])
;

Figure . Using point properties to encode features of the Iris data

We can see that this scatter plot has given us the ability to simultaneously explore four

different dimensions of the data: the (x, y) location of each point corresponds to the

sepal length and width, the size of the point is related to the petal width, and the color is

related to the particular species of flower. Multicolor and multifeature scatter plots like

this can be useful for both exploration and presentation of data.

plot Versus scatter: A Note on Efficiency

Aside from the different features available in plt.plot and plt.scatter, why might you

choose to use one over the other? While it doesn’t matter as much for small amounts of

data, as datasets get larger than a few thousand points, plt.plot can be noticeably more

efficient than plt.scatter. The reason is that plt.scatter has the capability to render a

different size and/or color for each point, so the renderer must do the extra work of
constructing each point individually. In plt.plot, on the other hand, the points are always
essentially clones of each other, so the work of determin‐ ing the appearance of the
points is done only once for the entire set of data. For large datasets, the difference
between these two can lead to vastly different performance, and for this reason, plt.plot
should be preferred over plt.scatter for large datasets.

Page 256 of 580

Visualizing Errors

For any scientific measurement, accurate accounting for errors is nearly as important, if

not more important, than accurate reporting of the number itself. For example, imagine

that I am using some astrophysical observations to estimate the Hubble Con‐ stant, the

local measurement of the expansion rate of the universe. I know that the current

literature suggests a value of around 71 (km/s)/Mpc, and I measure a value of 74

(km/s)/Mpc with my method. Are the values consistent? The only correct answer, given

this information, is this: there is no way to know.

Suppose I augment this information with reported uncertainties: the current litera‐ ture

suggests a value of around 71 ± 2.5 (km/s)/Mpc, and my method has measured a value of

74 ± 5 (km/s)/Mpc. Now are the values consistent? That is a question that can be

quantitatively answered.

In visualization of data and results, showing these errors effectively can make a plot

convey much more complete information.

Basic Errorbars

A basic errorbar can be created with a single Matplotlib function call (Figure 4-27):

In[1]: %matplotlib inline

import matplotlib.pyplot as plt
plt.style.use('seaborn-
whitegrid') import numpy as np

In[2]: x = np.linspace(0, 10, 50)

dy = 0.8

y = np.sin(x) + dy *

np.random.randn(50) plt.errorbar(x, y,

yerr=dy, fmt='.k');

Page 257 of 580

Figure . An errorbar example

In addition to these basic options, the errorbar function has many options to fine- tune
the outputs. Using these additional options you can easily customize the aesthet‐ ics of
your errorbar plot. I often find it helpful, especially in crowded plots, to make the

errorbars lighter than the points themselves

In[3]: plt.errorbar(x, y, yerr=dy, fmt='o', color='black',

ecolor='lightgray', elinewidth=3, capsize=0);

Figure. Customizing errorbars

In addition to these options, you can also specify horizontal errorbars (xerr), one- sided

errorbars, and many other variants. For more information on the options avail‐ able, refer

to the docstring of plt.errorbar.

Continuous Errors

In some situations it is desirable to show errorbars on continuous quantities. Though
Matplotlib does not have a built-in convenience routine for this type of application, it’s

relatively easy to combine primitives like plt.plot and plt.fill_between for a useful result.

Here we’ll perform a simple Gaussian process regression (GPR), using the Scikit-Learn API (see

“Introducing Scikit-Learn” on page 343 for details). This is a method of fit‐ ting a very

flexible nonparametric function to data with a continuous measure of the uncertainty.

We won’t delve into the details of Gaussian process regression at this point, but will focus

instead on how you might visualize such a continuous error measurement:

In[4]: from sklearn.gaussian_process import GaussianProcess

Page 258 of 580

define the model and draw some data

model = lambda x: x * np.sin(x)
xdata = np.array([1, 3, 5, 6, 8])
ydata = model(xdata)

Compute the Gaussian process fit

gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4,
thetaU=1E-1, random_start=100)

gp.fit(xdata[:, np.newaxis], ydata)

xfit = np.linspace(0, 10, 1000)

yfit, MSE = gp.predict(xfit[:, np.newaxis],
eval_MSE=True) dyfit = 2 * np.sqrt(MSE) # 2*sigma ~
95% confidence region

We now have xfit, yfit, and dyfit, which sample the continuous fit to our data. We could
pass these to the plt.errorbar function as above, but we don’t really want to plot 1,000
points with 1,000 errorbars. Instead, we can use the plt.fill_between function with a light
color to visualize this continuous error:

In[5]: # Visualize the result

plt.plot(xdata, ydata, 'or')
plt.plot(xfit, yfit, '-', color='gray')

plt.fill_between(xfit, yfit - dyfit, yfit + dyfit,

color='gray', alpha=0.2)

plt.xlim(0, 10);

Page 259 of 580

Figure. Representing continuous uncertainty with filled regions

Note what we’ve done here with the fill_between function: we pass an x value, then the
lower y-bound, then the upper y-bound, and the result is that the area between these
regions is filled.

The resulting figure gives a very intuitive view into what the Gaussian process regres‐ sion

algorithm is doing: in regions near a measured data point, the model is strongly

constrained and this is reflected in the small model errors. In regions far from a measured

data point, the model is not strongly constrained, and the model errors increase.

For more information on the options available in plt.fill_between() (and the
closely related plt.fill() function), see the function docstring or the Matplotlib
documentation.

Finally, if this seems a bit too low level for your taste, refer to “Visualization with

Sea‐ born” , where we discuss the Seaborn package, which has a more stream‐

lined API for visualizing this type of continuous errorbar.

Density and Contour Plots

Sometimes it is useful to display three-dimensional data in two dimensions using

contours or color-coded regions. There are three Matplotlib functions that can be helpful

for this task: plt.contour for contour plots, plt.contourf for filled contour plots, and

plt.imshow for showing images. This section looks at several examples of using these. We’ll

start by setting up the notebook for plotting and importing the functions we will use:

In[1]: %matplotlib inline

import matplotlib.pyplot as
plt plt.style.use('seaborn-
white') import numpy as np

Day-02: Visualizing a Three-Dimensional Function

We’ll start by demonstrating a contour plot using a function z = f x, y , using the

fol‐ lowing particular choice for f (we’ve seen this before in “Computation on

Arrays: Broadcasting” on page 63, when we used it as a motivating example for

array broadcasting):

In[2]: def f(x, y):

return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

A contour plot can be created with the plt.contour function. It takes three argu‐ ments: a
grid of x values, a grid of y values, and a grid of z values. The x and y values represent

Page 260 of 580

positions on the plot, and the z values will be represented by the contour levels. Perhaps

the most straightforward way to prepare such data is to use the np.meshgrid function,
which builds two-dimensional grids from one-dimensional arrays:

In[3]: x = np.linspace(0, 5, 50)

y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x,
y) Z = f(X, Y)

Now let’s look at this with a standard line-only contour plot (Figure 4-30):

In[4]: plt.contour(X, Y, Z, colors='black');

A contour plot can be created with the plt.contour function. It takes three argu‐ ments: a

grid of x values, a grid of y values, and a grid of z values. The x and y values represent
positions on the plot, and the z values will be represented by the contour levels. Perhaps
the most straightforward way to prepare such data is to use the np.meshgrid function,

which builds two-dimensional grids from one-dimensional arrays:

In[3]: x = np.linspace(0, 5, 50)

y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x,
y) Z = f(X, Y)

Now let’s look at this with a standard line-only contour plot (Figure 4-30):

In[4]: plt.contour(X, Y, Z, colors='black');

Figure . Visualizing three-dimensional data with contours

Notice that by default when a single color is used, negative values are represented by

Page 261 of 580

dashed lines, and positive values by solid lines. Alternatively, you can color-code the lines

by specifying a colormap with the cmap argument. Here, we’ll also specify that we want

more lines to be drawn—20 equally spaced intervals within the data range (Figure):

In[5]: plt.contour(X, Y, Z, 20, cmap='RdGy');

Figure . Visualizing three-dimensional data with colored contours

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for

centered data. Matplotlib has a wide range of colormaps available, which you can easily

browse in IPython by doing a tab completion on the plt.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We

can change this by switching to a filled contour plot using the plt.contourf() function

(notice the f at the end), which uses largely the same syntax as plt.con tour().

Additionally, we’ll add a plt.colorbar() command, which automatically creates an
additional axis with labeled color information for the plot (Figure):

In[6]: plt.contourf(X, Y, Z, 20,
cmap='RdGy') plt.colorbar();

Page 262 of 580

Figure. Visualizing three-dimensional data with filled contours

The colorbar makes it clear that the black regions are “peaks,” while the red regions are

“valleys.”

One potential issue with this plot is that it is a bit “splotchy.” That is, the color steps are

discrete rather than continuous, which is not always what is desired. You could remedy

this by setting the number of contours to a very high number, but this results in a rather

inefficient plot: Matplotlib must render a new polygon for each step in the level. A better

way to handle this is to use the plt.imshow() function, which inter‐ prets a two-

dimensional grid of data as an image.

Figure . shows the result of the following code:

In[7]: plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',

cmap='RdGy'
) plt.colorbar()
plt.axis(aspect='image')
;

There are a few potential gotchas with imshow(), however:

• plt.imshow() doesn’t accept an x and y grid, so you must manually specify the

extent [xmin, xmax, ymin, ymax] of the image on the plot.

• plt.imshow() by default follows the standard image array definition where
the origin is in the upper left, not in the lower left as in most contour
plots. This must be changed when showing gridded data.

• plt.imshow() will automatically adjust the axis aspect ratio to match the input
data; you can change this by setting, for example, plt.axis(aspect='image') to
make x and y units match.

Page 263 of 580

Figure 4-33. Representing three-dimensional data as an image

Finally, it can sometimes be useful to combine contour plots and image plots. For

example, to create the effect shown in Figure , we’ll use a partially transparent

background image (with transparency set via the alpha parameter) and over-plot

contours with labels on the contours themselves (using the plt.clabel() function):

In[8]: contours = plt.contour(X, Y, Z, 3, colors='black')
plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',

cmap='RdGy', alpha=0.5)

plt.colorbar();

Figure 4-34. Labeled contours on top of an image

The combination of these three functions—plt.contour, plt.contourf, and plt.imshow—
gives nearly limitless possibilities for displaying this sort of three- dimensional data

Page 264 of 580

within a two-dimensional plot. For more information on theoptions available in these
functions, refer to their docstrings. If you are interested in three-dimensional
visualizations of this type of data, see “Three-Dimensional Plotting in Matplotlib” .

Histograms, Binnings, and Density

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a
preview of Matplotlib’s histogram function (see “Comparisons, Masks, and Boolean

Logic”), which creates a basic histogram in one line, once the normal boilerplate imports

are done (Figure):

In[1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

plt.style.use('seaborn-white')

data =

np.random.randn(1000) In[2]:

plt.hist(data);

Figure . A simple histogram

The hist() function has many options to tune both the calculation and the
display; here’s an example of a more customized histogram .

In[3]: plt.hist(data, bins=30, normed=True, alpha=0.5,
histtype='stepfilled', color='steelblue',
edgecolor='none');

Page 265 of 580

Figure . A customized histogram

The plt.hist docstring has more information on other customization options avail‐ able. I
find this combination of histtype='stepfilled' along with some transpar‐ ency alpha to be
very useful when comparing histograms of several distributions:

In[4]: x1 = np.random.normal(0, 0.8, 1000)

x2 = np.random.normal(-2, 1, 1000)

x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True,

bins=40) plt.hist(x1, **kwargs)

plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs);

Figure Over-plotting multiple histograms

If you would like to simply compute the histogram (that is, count the

number of points in a given bin) and not display it, the np.histogram() function is

available:

Page 266 of 580

In[5]: counts, bin_edges = np.histogram(data, bins=5)

print(counts)

[12 190 468 301

29]

Day-03: Two-Dimensional Histograms and Binnings

Just as we create histograms in one dimension by dividing the number line into bins, we

can also create histograms in two dimensions by dividing points among two- dimensional

bins. We’ll take a brief look at several ways to do this here. We’ll start by defining some

data—an x and y array drawn from a multivariate Gaussian distribution:

In[6]: mean = [0, 0]

cov = [[1, 1], [1, 2]]

x, y = np.random.multivariate_normal(mean, cov, 10000).T

plt.hist2d: Two-dimensional histogram

One straightforward way to plot a two-dimensional histogram is to use Matplotlib’s

plt.hist2d function (Figure):

In[12]: plt.hist2d(x, y, bins=30,
cmap='Blues') cb = plt.colorbar()
cb.set_label('counts in bin')

Figure . A two-dimensional histogram with plt.hist2d

Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot

and the binning, which are nicely outlined in the function docstring. Further, just

Page 267 of 580

as plt.hist has a counterpart in np.histogram, plt.hist2d has a counterpart in

np.histogram2d, which can be used as follows:

In[8]: counts, xedges, yedges = np.histogram2d(x, y, bins=30)

For the generalization of this histogram binning in dimensions higher than two, see the

np.histogramdd function.

plt.hexbin: Hexagonal binnings

The two-dimensional histogram creates a tessellation of squares across the axes. Another

natural shape for such a tessellation is the regular hexagon. For this purpose, Matplotlib

provides the plt.hexbin routine, which represents a two-dimensional dataset binned

within a grid of hexagons.

In[9]: plt.hexbin(x, y, gridsize=30, cmap='Blues')
cb = plt.colorbar(label='count in bin')

Figure 4-39. A two-dimensional histogram with plt.hexbin

plt.hexbin has a number of interesting options, including the ability to specify weights for
each point, and to change the output in each bin to any NumPy aggregate (mean of
weights, standard deviation of weights, etc.).

Kernel density estimation

Another common method of evaluating densities in multiple dimensions is kernel density

estimation (KDE). We’ll simply mention that KDE can be thought of as a way to “smear

out” the points in space and add up the result to obtain a smooth function. One

extremely quick and simple KDE implementation exists in the scipy.stats package. Here is

a quick example of using the KDE on this data:

In[10]: from scipy.stats import gaussian_kde

fit an array of size [Ndim, Nsamples]

Page 268 of 580

data = np.vstack([x, y])
kde =
gaussian_kde(data)

evaluate on a regular grid

xgrid = np.linspace(-3.5, 3.5, 40)

ygrid = np.linspace(-6, 6, 40)

Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)

Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))

Plot the result as an image

plt.imshow(Z.reshape(Xgrid.shape),

origin='lower',
aspect='auto', extent=[-3.5,
3.5, -6, 6],

cmap='Blue
s') cb =

plt.colorbar()
cb.set_label("density")

Figure . A kernel density representation of a distribution

KDE has a smoothing length that effectively slides the knob between detail and

smoothness (one example of the ubiquitous bias–variance trade-off). The literature on

choosing an appropriate smoothing length is vast: gaussian_kde uses a rule of thumb to

attempt to find a nearly optimal smoothing length for the input data.

Other KDE implementations are available within the SciPy ecosystem, each with its own

various strengths and weaknesses; see, for example, sklearn.neighbors.Kernel Density and

Page 269 of 580

statsmodels.nonparametric.kernel_density.KDEMultivariate. For visualizations based on

KDE, using Matplotlib tends to be overly verbose. The Sea‐ born library, discussed in

“Visualization with Seaborn” on page 311, provides a much more terse API for creating

KDE-based visualizations.

Customizing Plot Legends

Plot legends give meaning to a visualization, assigning labels to the various plot ele‐
ments. We previously saw how to create a simple legend; here we’ll take a look at cus‐

tomizing the placement and aesthetics of the legend in Matplotlib.

The simplest legend can be created with the plt.legend() command, which auto‐
matically creates a legend for any labeled plot elements (Figure 4-41):

In[1]: import matplotlib.pyplot as plt

plt.style.use('classic')

In[2]: %matplotlib inline

import numpy as np

In[3]: x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()

ax.plot(x, np.sin(x), '-b', label='Sine')

ax.plot(x, np.cos(x), '--r', label='Cosine')
ax.axis('equal')

leg = ax.legend();

Figure. A default plot legend

But there are many ways we might want to customize such a legend. For example, we can

specify the location and turn off the frame .

Page 270 of 580

In[4]: ax.legend(loc='upper left',
frameon=False) fig

Figure . A customized plot legend

We can use the ncol command to specify the number of columns in the
legend

In[5]: ax.legend(frameon=False, loc='lower center',
ncol=2) fig

Figure . A two-column plot legend

We can use a rounded box (fancybox) or add a shadow, change the transparency
(alpha value) of the frame, or change the padding around the text.

Page 271 of 580

In[6]: ax.legend(fancybox=True, framealpha=1, shadow=True,
borderpad=1) fig

Figure . A fancybox plot legend

For more information on available legend options, see the plt.legend docstring.

Choosing Elements for the Legend

As we’ve already seen, the legend includes all labeled elements by default. If this is not
what is desired, we can fine-tune which elements and labels appear in the legend by

using the objects returned by plot commands. The plt.plot() command is able to create

multiple lines at once, and returns a list of created line instances. Passing any of these to

plt.legend() will tell it which to identify, along with the labels we’d like to specify.

In[7]: y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt.plot(x, y)

lines is a list of plt.Line2D instances

plt.legend(lines[:2], ['first', 'second']);

Figure . Customization of legend elements

I generally find in practice that it is clearer to use the first method, applying labels to the

Page 272 of 580

plot elements you’d like to show on the legend.

In[8]: plt.plot(x, y[:, 0], label='first')

plt.plot(x, y[:, 1], label='second')

plt.plot(x, y[:, 2:])
plt.legend(framealpha=1,

frameon=True);

Figure 4-46. Alternative method of customizing legend elements

Notice that by default, the legend ignores all elements without a label attribute set.

Legend for Size of Points

Sometimes the legend defaults are not sufficient for the given visualization. For exam‐ ple,

perhaps you’re using the size of points to mark certain features of the data, and want to

create a legend reflecting this. Here is an example where we’ll use the size of points to

indicate populations of California cities. We’d like a legend that specifies the

scale of the sizes of the points, and we’ll accomplish this by plotting some labeled data with

no entries.

In[9]: import pandas as pd

cities = pd.read_csv('data/california_cities.csv')

Extract the data we're interested in

lat, lon = cities['latd'], cities['longd']

population, area = cities['population_total'], cities['area_total_km2']

Scatter the points, using size and color but no label

plt.scatter(lon, lat, label=None,

Page 273 of 580

c=np.log10(population),
cmap='viridis', s=area, linewidth=0,
alpha=0.5)

plt.axis(aspect='equal')
plt.xlabel('longitude') plt.ylabel('latitude')
plt.colorbar(label='log$_{10}$(population
)') plt.clim(3, 7)

Here we create a legend:

we'll plot empty lists with the desired size and label

for area in [100, 300, 500]:

plt.scatter([], [], c='k', alpha=0.3, s=area,
label=str(area) + ' km2')

plt.legend(scatterpoints=1,
frameon=False, labelspacing=1,
title='City Area')

plt.title('California Cities: Area and Population');

Figure . Location, geographic size, and population of California cities

The legend will always reference some object that is on the plot, so if we’d like to dis‐ play

a particular shape we need to plot it. In this case, the objects we want (gray cir‐ cles) are

not on the plot, so we fake them by plotting empty lists. Notice too that the legend only

lists plot elements that have a label specified.

By plotting empty lists, we create labeled plot objects that are picked up by the legend, and

now our legend tells us some useful information. This strategy can be useful for creating

Page 274 of 580

more sophisticated visualizations.

Finally, note that for geographic data like this, it would be clearer if we could show state

boundaries or other map-specific elements. For this, an excellent choice of tool is

Matplotlib’s Basemap add-on toolkit.

Multiple Legends

Sometimes when designing a plot you’d like to add multiple legends to the same axes.

Unfortunately, Matplotlib does not make this easy: via the standard legend interface, it is

only possible to create a single legend for the entire plot. If you try to create a second

legend using plt.legend() or ax.legend(), it will simply override the first one. We can work

around this by creating a new legend artist from scratch, and then using the lower-level

ax.add_artist() method to manually add the second artist to the plot (Figure):

In[10]: fig, ax = plt.subplots()

lines = []

styles = ['-', '--', '-.', ':']

x = np.linspace(0, 10, 1000)

for i in range(4):

lines += ax.plot(x, np.sin(x - i * np.pi / 2),

styles[i], color='black')

ax.axis('equal')

specify the lines and labels of the first legend

ax.legend(lines[:2], ['line A', 'line B'],
loc='upper right',
frameon=False)

Create the second legend and add the artist manually.

from matplotlib.legend import Legend

leg = Legend(ax, lines[2:], ['line C', 'line D'],
loc='lower right', frameon=False)

ax.add_artist(leg);

Page 275 of 580

Figure . A split plot legend

This is a peek into the low-level artist objects that compose any Matplotlib plot. If you

examine the source code of ax.legend() (recall that you can do this within the IPy‐ thon

notebook using ax.legend??) you’ll see that the function simply consists of some logic to
create a suitable Legend artist, which is then saved in the legend_ attribute and added to

the figure when the plot is drawn.

Customizing Colorbars

Plot legends identify discrete labels of discrete points. For continuous labels based on the

color of points, lines, or regions, a labeled colorbar can be a great tool. In Mat‐ plotlib, a

colorbar is a separate axes that can provide a key for the meaning of colors in a plot.

Because the book is printed in black and white, this section has an accompa‐ nying online

appendix where you can view the figures in full color. We’ll start by setting up the note‐

book for plotting and importing the functions we will use:

In[1]: import matplotlib.pyplot as plt

plt.style.use('classic')

In[2]: %matplotlib inline

import numpy as np

As we have seen several times throughout this section, the simplest colorbar can be

created with the plt.colorbar function.

In[3]: x = np.linspace(0, 10, 1000)

I = np.sin(x) * np.cos(x[:, np.newaxis])

plt.imshow(I)
plt.colorbar();

Page 276 of 580

Figure . A simple colorbar legend

We’ll now discuss a few ideas for customizing these colorbars and using them effec‐

tively in various situations.

Customizing Colorbars

We can specify the colormap using the cmap argument to the plotting function
that is creating the visualization.

In[4]: plt.imshow(I, cmap='gray');

Figure . A grayscale colormap

All the available colormaps are in the plt.cm namespace; using IPython’s tab- completion
feature will give you a full list of built-in possibilities:

plt.cm.<TAB>

But being able to choose a colormap is just the first step: more important is how to

decide among the possibilities! The choice turns out to be much more subtle than you

might initially expect.

Page 277 of 580

Choosing the colormap

A full treatment of color choice within visualization is beyond the scope of this book, but

for entertaining reading on this subject and others, see the article “Ten Simple Rules for

Better Figures”. Matplotlib’s online documentation also has an interesting discussion of

colormap choice.

Broadly, you should be aware of three different categories of colormaps:

Sequential colormaps

These consist of one continuous sequence of colors (e.g., binary or viridis).

Divergent colormaps

These usually contain two distinct colors, which show positive and negative

devi‐ ations from a mean (e.g., RdBu or PuOr).

Qualitative colormaps

These mix colors with no particular sequence (e.g., rainbow or jet).

The jet colormap, which was the default in Matplotlib prior to version 2.0, is an example

of a qualitative colormap. Its status as the default was quite unfortunate, because
qualitative maps are often a poor choice for representing quantitative data. Among the

problems is the fact that qualitative maps usually do not display any uni‐ form

progression in brightness as the scale increases.

We can see this by converting the jet colorbar into black and white (Figure):

In[5]:

from matplotlib.colors import LinearSegmentedColormap

def grayscale_cmap(cmap):

"""Return a grayscale version of the given colormap"""

cmap =
plt.cm.get_cmap(cmap) colors
= cmap(np.arange(cmap.N))

convert RGBA to perceived grayscale
luminance # cf.
http://alienryderflex.com/hsp.html
RGB_weight = [0.299, 0.587, 0.114]

Page 278 of 580

luminance = np.sqrt(np.dot(colors[:, :3] ** 2,
RGB_weight)) colors[:, :3] = luminance[:, np.newaxis]

return LinearSegmentedColormap.from_list(cmap.name + "_gray", colors,

cmap.N)

def view_colormap(cmap):

"""Plot a colormap with its grayscale equivalent"""

cmap =
plt.cm.get_cmap(cmap) colors
= cmap(np.arange(cmap.N))

cmap = grayscale_cmap(cmap)
grayscale =
cmap(np.arange(cmap.N))

fig, ax = plt.subplots(2, figsize=(6, 2),

subplot_kw=dict(xticks=[],
yticks=[])) ax[0].imshow([colors], extent=[0, 10, 0, 1])

ax[1].imshow([grayscale], extent=[0, 10, 0, 1])

In[6]: view_colormap('jet')

Figure . The jet colormap and its uneven luminance scale

Notice the bright stripes in the grayscale image. Even in full color, this uneven bright‐ ness

means that the eye will be drawn to certain portions of the color range, which will

potentially emphasize unimportant parts of the dataset. It’s better to use a color‐ map

such as viridis (the default as of Matplotlib 2.0), which is specifically construc‐ ted to have

an even brightness variation across the range. Thus, it not only plays well with our color

perception, but also will translate well to grayscale printing.

Page 279 of 580

In[7]: view_colormap('viridis')

Figure . The viridis colormap and its even luminance scale

If you favor rainbow schemes, another good option for continuous data is the

cubehelix colormap.

In[8]: view_colormap('cubehelix')

Figure. The cubehelix colormap and its luminance

For other situations, such as showing positive and negative deviations from

some mean, dual-color colorbars such as RdBu (short for Red-Blue) can be useful.

However,

as you can see in Figure , it’s important to note that the positive-negative

information will be lost upon translation to grayscale!

In[9]: view_colormap('RdBu')

Figure . The RdBu (Red-Blue) colormap and its luminance

We’ll see examples of using some of these color maps as we continue.

There are a large number of colormaps available in Matplotlib; to see a list of them, you

can use IPython to explore the plt.cm submodule. For a more principled approach to

colors in Python, you can refer to the tools and documentation within the Seaborn

library (see “Visualization with Seaborn”).

Page 280 of 580

Color limits and extensions

Matplotlib allows for a large range of colorbar customization. The colorbar itself is simply

an instance of plt.Axes, so all of the axes and tick formatting tricks we’ve learned are

applicable. The colorbar has some interesting flexibility; for example, we can narrow the

color limits and indicate the out-of-bounds values with a triangular arrow at the top and

bottom by setting the extend property. This might come in handy, for example, if you’re

displaying an image that is subject to noise (Figure):

In[10]: # make noise in 1% of the image pixels

speckles = (np.random.random(I.shape) < 0.01)

I[speckles] = np.random.normal(0, 3,

np.count_nonzero(speckles)) plt.figure(figsize=(10, 3.5))

plt.subplot(1, 2, 1)
plt.imshow(I,
cmap='RdBu')
plt.colorbar()

plt.subplot(1, 2, 2)
plt.imshow(I,
cmap='RdBu')
plt.colorbar(extend='bot
h') plt.clim(-1, 1);

Page 281 of 580

Figure . Specifying colormap extensions

Notice that in the left panel, the default color limits respond to the noisy pixels, and the

range of the noise completely washes out the pattern we are interested in. In the right

panel, we manually set the color limits, and add extensions to indicate values that are

above or below those limits. The result is a much more useful visualization of our data.

Discrete colorbars

Colormaps are by default continuous, but sometimes you’d like to represent discrete

values. The easiest way to do this is to use the plt.cm.get_cmap() function, and pass the

name of a suitable colormap along with the number of desired bins (Figure 4-56):

In[11]: plt.imshow(I, cmap=plt.cm.get_cmap('Blues',
6)) plt.colorbar()

plt.clim(-1, 1);

Figure . A discretized colormap

The discrete version of a colormap can be used just like any other colormap.

Page 282 of 580

Handwritten Digits

For an example of where this might be useful, let’s look at an interesting visualization of

some handwritten digits data. This data is included in Scikit-Learn, and consists of nearly

2,000 8×8 thumbnails showing various handwritten digits.

For now, let’s start by downloading the digits data and visualizing several of the

exam‐ ple images with plt.imshow() (Figure 4-57):

In[12]: # load images of the digits 0 through 5 and visualize several of them

from sklearn.datasets import
load_digits digits =
load_digits(n_class=6)

fig, ax = plt.subplots(8, 8, figsize=(6, 6))

for i, axi in enumerate(ax.flat):
axi.imshow(digits.images[i],

cmap='binary') axi.set(xticks=[], yticks=[])

Figure . Sample of handwritten digit data

Because each digit is defined by the hue of its 64 pixels, we can consider each digit to be a

point lying in 64-dimensional space: each dimension represents the brightness of one pixel.

But visualizing relationships in such high-dimensional spaces can be extremely difficult. One

way to approach this is to use a dimensionality reduction technique such as manifold

learning to reduce the dimensionality of the data while maintaining the relationships of

interest. Dimensionality reduction is an example of unsupervised machine learning.

Page 283 of 580

Deferring the discussion of these details, let’s take a look at a two-dimensional

mani‐ fold learning projection of this digits data.

In[13]: # project the digits into 2 dimensions using IsoMap

from sklearn.manifold import
Isomap iso =
Isomap(n_components=2)

projection = iso.fit_transform(digits.data)

We’ll use our discrete colormap to view the results, setting the ticks and clim to
improve the aesthetics of the resulting colorbar.

In[14]: # plot the results

plt.scatter(projection[:, 0], projection[:, 1], lw=0.1,

c=digits.target, cmap=plt.cm.get_cmap('cubehelix',
6)) plt.colorbar(ticks=range(6), label='digit value')

plt.clim(-0.5, 5.5)

Figure. Manifold embedding of handwritten digit pixels

The projection also gives us some interesting insights on the relationships within the

dataset: for example, the ranges of 5 and 3 nearly overlap in this projection, indicating

that some handwritten fives and threes are difficult to distinguish, and therefore

more likely to be confused by an automated classification algorithm. Other values, like 0

and 1, are more distantly separated, and therefore much less likely to be con‐ fused. This

observation agrees with our intuition, because 5 and 3 look much more similar than do 0

and 1.

Multiple Subplots

Sometimes it is helpful to compare different views of data side by side. To this end,

Page 284 of 580

Matplotlib has the concept of subplots: groups of smaller axes that can exist together

within a single figure. These subplots might be insets, grids of plots, or other more

complicated layouts. In this section, we’ll explore four routines for creating subplots in

Matplotlib. We’ll start by setting up the notebook for plotting and importing the

functions we will use:

In[1]: %matplotlib inline

import matplotlib.pyplot as
plt plt.style.use('seaborn-
white') import numpy as np

plt.axes: Subplots by Hand

The most basic method of creating an axes is to use the plt.axes function. As we’ve seen
previously, by default this creates a standard axes object that fills the entire fig‐ ure.

plt.axes also takes an optional argument that is a list of four numbers in the figure

coordinate system. These numbers represent [bottom, left, width, height] in the

figure coordinate system, which ranges from 0 at the bottom left of the figure to 1 at the
top right of the figure.

For example, we might create an inset axes at the top-right corner of another axes by

setting the x and y position to 0.65 (that is, starting at 65% of the width and 65% of the

height of the figure) and the x and y extents to 0.2 (that is, the size of the axes is 20% of

the width and 20% of the height of the figure). Figure 4-59 shows the result of this code:

In[2]: ax1 = plt.axes() # standard axes

ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])

Figure . Example of an inset axes

The equivalent of this command within the object-oriented interface is

Page 285 of 580

fig.add_axes(). Let’s use this to create two vertically stacked axes (Figure 4-60):

In[3]: fig = plt.figure()

ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4],

xticklabels=[], ylim=(-1.2, 1.2))

ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4],

ylim=(-1.2, 1.2))

x = np.linspace(0, 10)
ax1.plot(np.sin(x))

ax2.plot(np.cos(x));

Figure . Vertically stacked axes example

We now have two axes (the top with no tick labels) that are just touching: the bottom of

the upper panel (at position 0.5) matches the top of the lower panel (at position 0.1

+ 0.4).

plt.subplot: Simple Grids of Subplots

Aligned columns or rows of subplots are a common enough need that Matplotlib has

several convenience routines that make them easy to create. The lowest level of these is

plt.subplot(), which creates a single subplot within a grid. As you can see, this command

takes three integer arguments—the number of rows, the number of col‐ umns, and the

index of the plot to be created in this scheme, which runs from the upper left to the

bottom right .

In[4]: for i in range(1, 7):

plt.subplot(2, 3, i)

Page 286 of 580

plt.text(0.5, 0.5, str((2, 3, i)),
fontsize=18,

ha='center')

Figure. A plt.subplot() example

The command plt.subplots_adjust can be used to adjust the spacing between these

plots. The following cod uses the equivalent object-oriented command, fig.add_subplot():

In[5]: fig = plt.figure()
fig.subplots_adjust(hspace=0.4,
wspace=0.4) for i in range(1, 7):

ax = fig.add_subplot(2, 3, i)
ax.text(0.5, 0.5, str((2, 3, i)),

fontsize=18, ha='center')

Figure plt.subplot() with adjusted margins

We’ve used the hspace and wspace arguments of plt.subplots_adjust, which spec‐ ify the
spacing along the height and width of the figure, in units of the subplot size (in this case,
the space is 40% of the subplot width and height).

Page 287 of 580

plt.subplots: The Whole Grid in One Go

The approach just described can become quite tedious when you’re creating a large grid

of subplots, especially if you’d like to hide the x- and y-axis labels on the inner plots. For

this purpose, plt.subplots() is the easier tool to use (note the s at the end of subplots).

Rather than creating a single subplot, this function creates a full grid of subplots in a

single line, returning them in a NumPy array. The arguments are the number of rows and

number of columns, along with optional keywords sharex and sharey, which allow you to

specify the relationships between different axes.

Here we’ll create a 2×3 grid of subplots, where all axes in the same row share their y-axis

scale, and all axes in the same column share their x-axis scale (Figure):

In[6]: fig, ax = plt.subplots(2, 3, sharex='col', sharey='row')

Figure .Shared x and y axis in plt.subplots()

Note that by specifying sharex and sharey, we’ve automatically removed inner labels on the
grid to make the plot cleaner. The resulting grid of axes instances is returned within a
NumPy array, allowing for convenient specification of the desired axes using standard
array indexing notation.

In[7]: # axes are in a two-dimensional array, indexed by [row, col]

for i in range(2):

for j in range(3):

ax[i, j].text(0.5, 0.5, str((i, j)),

fontsize=18, ha='center')

Page 288 of 580

fig

Figure . Identifying plots in a subplot grid

In comparison to plt.subplot(), plt.subplots() is more consistent with Python’s

conventional 0-based indexing.

plt.GridSpec: More Complicated Arrangements

To go beyond a regular grid to subplots that span multiple rows and columns,

plt.GridSpec() is the best tool. The plt.GridSpec() object does not create a plot by

itself; it is simply a convenient interface that is recognized by the plt.subplot() command.
For example, a gridspec for a grid of two rows and three columns with some specified
width and height space looks like this:

In[8]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)

From this we can specify subplot locations and extents using the familiar Python

slic‐ ing syntax (Figure 4-65):

In[9]: plt.subplot(grid[0, 0])

plt.subplot(grid[0, 1:])

plt.subplot(grid[1, :2])

Page 289 of 580

plt.subplot(grid[1, 2]);

Figure . Irregular subplots with plt.GridSpec

This type of flexible grid alignment has a wide range of uses. I most often use it

when creating multi-axes histogram plots like the one shown here (Figure 4-66):

In[10]: # Create some normally distributed data

mean = [0, 0]

cov = [[1, 1], [1, 2]]

x, y = np.random.multivariate_normal(mean, cov, 3000).T

Set up the axes with gridspec

fig = plt.figure(figsize=(6, 6))

grid = plt.GridSpec(4, 4, hspace=0.2,
wspace=0.2) main_ax = fig.add_subplot(grid[:-
1, 1:])

y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[],
sharey=main_ax) x_hist = fig.add_subplot(grid[-1, 1:],
yticklabels=[], sharex=main_ax)

scatter points on the main axes

main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2)

histogram on the attached axes

x_hist.hist(x, 40, histtype='stepfilled',
orientation='vertical', color='gray')

x_hist.invert_yaxis()

Page 290 of 580

y_hist.hist(y, 40, histtype='stepfilled',
orientation='horizontal', color='gray')

y_hist.invert_xaxis()

Figure 4-66. Visualizing multidimensional distributions with plt.GridSpec

This type of distribution plotted alongside its margins is common enough that it has its

own plotting API in the Seaborn package; see “Visualization with Seaborn” for more

details.

Day-04: Text and Annotation

Creating a good visualization involves guiding the reader so that the figure tells a story. In

some cases, this story can be told in an entirely visual manner, without the need for

added text, but in others, small textual cues and labels are necessary. Perhaps the most

basic types of annotations you will use are axes labels and titles, but the options go

beyond this. Let’s take a look at some data and how we might visualize and annotate it to

help convey interesting information. We’ll start by setting up the note‐ book for plotting

and importing the functions we will use:

In[1]: %matplotlib inline

import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('seaborn-
whitegrid') import numpy as np

import pandas as pd

Page 291 of 580

Example: Effect of Holidays on US Births

Let’s return to some data we worked with earlier in “Example: Birthrate Data” on

page 174, where we generated a plot of average births over the course of the

calendar year; as already mentioned, this data can be downloaded at

https://raw.githubusercon tent.com/jakevdp/data-CDCbirths/master/births.csv.

We’ll start with the same cleaning procedure we used there, and plot the results

(Figure 4-67):

In[2]:

births = pd.read_csv('births.csv')

quartiles = np.percentile(births['births'], [25, 50, 75]) mu,
sig = quartiles[1], 0.74 * (quartiles[2] - quartiles[0])

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')

births['day'] = births['day'].astype(int)

births.index = pd.to_datetime(10000 *

births.year +

100 * births.month +
births.day,
format='%Y%m%d')

births_by_date = births.pivot_table('births',

[births.index.month,
births.index.day]) births_by_date.index = [pd.datetime(2012, month,
day)

for (month, day) in births_by_date.index]

Page 292 of 580

In[3]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);

Figure . Average daily births by date

When we’re communicating data like this, it is often useful to annotate certain fea‐ tures

of the plot to draw the reader’s attention. This can be done manually with the

plt.text/ax.text command, which will place text at a particular x/y value:

In[4]: fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

Add labels to the plot

style = dict(size=10, color='gray')

ax.text('2012-1-1', 3950, "New Year's Day", **style)

ax.text('2012-7-4', 4250, "Independence Day", ha='center',
**style) ax.text('2012-9-4', 4850, "Labor Day", ha='center',
**style) ax.text('2012-10-31', 4600, "Halloween", ha='right',
**style) ax.text('2012-11-25', 4450, "Thanksgiving",
ha='center', **style) ax.text('2012-12-25', 3850, "Christmas ",
ha='right', **style)

Label the axes

ax.set(title='USA births by day of year (1969-1988)',
ylabel='average daily births')

Page 293 of 580

Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymont
hday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter())

ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')
);

Figure . Annotated average daily births by date

The ax.text method takes an x position, a y position, a string, and then optional
key‐ words specifying the color, size, style, alignment, and other properties of the

text. Here we used ha='right' and ha='center', where ha is short for horizonal
align‐ ment. See the docstring of plt.text() and of mpl.text.Text() for more

information on available options.

Transforms and Text Position

In the previous example, we anchored our text annotations to data locations. Some‐

times it’s preferable to anchor the text to a position on the axes or figure, independent of

the data. In Matplotlib, we do this by modifying the transform.

Any graphics display framework needs some scheme for translating between coordi‐ nate

systems. For example, a data point at x, y = 1, 1 needs to somehow be repre‐ sented at a

certain location on the figure, which in turn needs to be represented in pixels on the

screen. Mathematically, such coordinate transformations are relatively straightforward,

and Matplotlib has a well-developed set of tools that it uses inter‐ nally to perform them

(the tools can be explored in the matplotlib.transforms sub‐ module).

The average user rarely needs to worry about the details of these transforms,

but it is helpful knowledge to have when considering the placement of text on a

figure. There are three predefined transforms that can be useful in this situation:

Page 294 of 580

ax.transData

Transform associated with data coordinates

ax.transAxes

Transform associated with the axes (in units of axes dimensions)

fig.transFigure

Transform associated with the figure (in units of figure dimensions)

Here let’s look at an example of drawing text at various locations using these

trans‐ forms (Figure):

In[5]: fig, ax = plt.subplots(facecolor='lightgray')
ax.axis([0, 10, 0, 10])

transform=ax.transData is the default, but we'll specify it anyway

ax.text(1, 5, ". Data: (1, 5)", transform=ax.transData)

ax.text(0.5, 0.1, ". Axes: (0.5, 0.1)", transform=ax.transAxes)

ax.text(0.2, 0.2, ". Figure: (0.2, 0.2)", transform=fig.transFigure);

Figure . Comparing Matplotlib’s coordinate systems

Note that by default, the text is aligned above and to the left of the specified coordi‐

nates; here the “.” at the beginning of each string will approximately mark the given

coordinate location.

The transData coordinates give the usual data coordinates associated with the x- and y-
axis labels. The transAxes coordinates give the location from the bottom-left cor‐ ner of

the axes (here the white box) as a fraction of the axes size. The transFigure coordinates
are similar, but specify the position from the bottom left of the figure (here the gray box)
as a fraction of the figure size.

Page 295 of 580

Notice now that if we change the axes limits, it is only the transData coordinates that will
be affected, while the others remain stationary .

In[6]: ax.set_xlim(0, 2)

ax.set_ylim(-6, 6)
fig

Figure . Comparing Matplotlib’s coordinate systems

You can see this behavior more clearly by changing the axes limits interactively; if
you are executing this code in a notebook, you can make that happen by
changing %mat plotlib inline to %matplotlib notebook and using each plot’s

menu to interact with the plot.

Arrows and Annotation

Along with tick marks and text, another useful annotation mark is the simple arrow.

Drawing arrows in Matplotlib is often much harder than you might hope. While

there is a plt.arrow() function available, I wouldn’t suggest using it; the arrows it creates are

SVG objects that will be subject to the varying aspect ratio of your plots, and the result is

rarely what the user intended. Instead, I’d suggest using the plt.anno tate() function. This

function creates some text and an arrow, and the arrows can be very flexibly specified.

Here we’ll use annotate with several of its options:

In[7]: %matplotlib inline

fig, ax = plt.subplots()

x = np.linspace(0, 20,
1000) ax.plot(x, np.cos(x))

ax.axis('equal')

Page 296 of 580

ax.annotate('local maximum', xy=(6.28, 1), xytext=(10,

4), arrowprops=dict(facecolor='black',
shrink=0.05))

ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -

6), arrowprops=dict(arrowstyle="->",

connectionstyle="angle3,angleA=0,angleB=-90"));

Figure .Annotation examples

The arrow style is controlled through the arrowprops dictionary, which has numer‐ ous
options available. These options are fairly well documented in Matplotlib’s online

documentation, so rather than repeating them here I’ll quickly show some of the pos‐
sibilities. Let’s demonstrate several of the possible options using the birthrate plot from

before.

In[8]:

fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax)

Add labels to the plot

ax.annotate("New Year's Day", xy=('2012-1-1', 4100),
xycoords='data', xytext=(50, -30), textcoords='offset
points', arrowprops=dict(arrowstyle="->",

connectionstyle="arc3,rad=-0.2"))

Page 297 of 580

ax.annotate("Independence Day", xy=('2012-7-4', 4250),
xycoords='data', bbox=dict(boxstyle="round", fc="none",
ec="gray"),

xytext=(10, -40), textcoords='offset points',
ha='center', arrowprops=dict(arrowstyle="->"))

ax.annotate('Labor Day', xy=('2012-9-4', 4850), xycoords='data',

ha='center', xytext=(0, -20), textcoords='offset points')

ax.annotate('', xy=('2012-9-1', 4850), xytext=('2012-9-7', 4850),

xycoords='data', textcoords='data',
arrowprops={'arrowstyle': '|-
|,widthA=0.2,widthB=0.2', })

ax.annotate('Halloween', xy=('2012-10-31', 4600),

xycoords='data', xytext=(-80, -40), textcoords='offset
points', arrowprops=dict(arrowstyle="fancy",

fc="0.6", ec="none",
connectionstyle="angle3,angleA=0,angleB=
-90"))

ax.annotate('Thanksgiving', xy=('2012-11-25', 4500),

xycoords='data', xytext=(-120, -60), textcoords='offset
points', bbox=dict(boxstyle="round4,pad=.5",
fc="0.9"), arrowprops=dict(arrowstyle="->",

connectionstyle="angle,angleA=0,angleB=80,rad=20"))

ax.annotate('Christmas', xy=('2012-12-25', 3850),
xycoords='data', xytext=(-30, 0), textcoords='offset
points',

size=13, ha='right', va="center",
bbox=dict(boxstyle="round",
alpha=0.1),

arrowprops=dict(arrowstyle="wedge,tail_width=0.5", alpha=0.1));

Label the axes

ax.set(title='USA births by day of year (1969-1988)',
ylabel='average daily births')

Page 298 of 580

Format the x axis with centered month labels
ax.xaxis.set_major_locator(mpl.dates.MonthLocator())
ax.xaxis.set_minor_locator(mpl.dates.MonthLocator(bymont
hday=15)) ax.xaxis.set_major_formatter(plt.NullFormatter())
ax.xaxis.set_minor_formatter(mpl.dates.DateFormatter('%h')
);

ax.set_ylim(3600, 5400);

Figure. Annotated average birth rates by day

You’ll notice that the specifications of the arrows and text boxes are very detailed: this

gives you the power to create nearly any arrow style you wish. Unfortunately, it also

means that these sorts of features often must be manually tweaked, a process that can be

very time-consuming when one is producing publication-quality graphics! Finally, I’ll note

that the preceding mix of styles is by no means best practice for presenting data, but

rather included as a demonstration of some of the available options.

More discussion and examples of available arrow and annotation styles can be

found in the Matplotlib gallery, in particular

http://matplotlib.org/examples/pylab_examples/ annotation_demo2.html.

Customizing Ticks

Matplotlib’s default tick locators and formatters are designed to be generally sufficient in

many common situations, but are in no way optimal for every plot. This section will give

several examples of adjusting the tick locations and formatting for the par‐ ticular plot

type you’re interested in.

Before we go into examples, it will be best for us to understand further the object

hierarchy of Matplotlib plots. Matplotlib aims to have a Python object representing

everything that appears on the plot: for example, recall that the figure is the bound‐ ing

Page 299 of 580

box within which plot elements appear. Each Matplotlib object can also act as a container

of sub-objects; for example, each figure can contain one or more axes objects, each of

which in turn contain other objects representing plot contents.

The tick marks are no exception. Each axes has attributes xaxis and yaxis, which in turn
have attributes that contain all the properties of the lines, ticks, and labels that make up
the axes.

Major and Minor Ticks

Within each axis, there is the concept of a major tick mark and a minor tick mark. As the

names would imply, major ticks are usually bigger or more pronounced, while minor ticks

are usually smaller. By default, Matplotlib rarely makes use of minor ticks, but one place

you can see them is within logarithmic plots (Figure):

In[1]: %matplotlib inline

import matplotlib.pyplot as plt
plt.style.use('seaborn-
whitegrid') import numpy as np

In[2]: ax = plt.axes(xscale='log', yscale='log')

Figure . Example of logarithmic scales and labels

We see here that each major tick shows a large tick mark and a label, while each

minor tick shows a smaller tick mark with no label.

We can customize these tick properties—that is, locations and labels—by

setting the formatter and locator objects of each axis. Let’s examine these for the x

axis of the plot just shown:

In[3]:
print(ax.xaxis.get_major_locator(
))

Page 300 of 580

print(ax.xaxis.get_minor_locator
())

<matplotlib.ticker.LogLocator object at 0x107530cc0>

<matplotlib.ticker.LogLocator object at 0x107530198>

In[4]:
print(ax.xaxis.get_major_formatter
())
print(ax.xaxis.get_minor_formatte
r())

<matplotlib.ticker.LogFormatterMathtext object at 0x107512780>

<matplotlib.ticker.NullFormatter object at 0x10752dc18>

We see that both major and minor tick labels have their locations specified by a

LogLocator (which makes sense for a logarithmic plot). Minor ticks, though, have

their labels formatted by a NullFormatter; this says that no labels will be shown.

We’ll now show a few examples of setting these locators and formatters for various plots.

Hiding Ticks or Labels

Perhaps the most common tick/label formatting operation is the act of hiding ticks or

labels. We can do this using plt.NullLocator() and plt.NullFormatter(), as shown here.

In[5]: ax = plt.axes()

ax.plot(np.random.rand(50))

ax.yaxis.set_major_locator(plt.NullLocator())
ax.xaxis.set_major_formatter(plt.NullFormattr())

Figure . Plot with hidden tick labels (x-axis) and hidden ticks (y-axis)

Page 301 of 580

Notice that we’ve removed the labels (but kept the ticks/gridlines) from the x axis, and

removed the ticks (and thus the labels as well) from the y axis. Having no ticks at all can

be useful in many situations—for example, when you want to show a grid of images. For

instance, consider Figure below, which includes images of different faces, an example

often used in supervised machine learning problems.

In[6]: fig, ax = plt.subplots(5, 5, figsize=(5, 5))
fig.subplots_adjust(hspace=0, wspace=0)

Get some face data from scikit-learn

from sklearn.datasets import fetch_olivetti_faces faces =
fetch_olivetti_faces().images

for i in range(5):

for j in range(5):

ax[i, j].xaxis.set_major_locator(plt.NullLocator())
ax[i, j].yaxis.set_major_locator(plt.NullLocator())
ax[i, j].imshow(faces[10 * i + j], cmap="bone")

Figure. Hiding ticks within image plots

Notice that each image has its own axes, and we’ve set the locators to null because the

tick values (pixel number in this case) do not convey relevant information for this

particular visualization.

Reducing or Increasing the Number of Ticks

One common problem with the default settings is that smaller subplots can end up with
crowded labels. We can see this in the plot grid shown in Figure .

Page 302 of 580

In[7]: fig, ax = plt.subplots(4, 4, sharex=True, sharey=True)

Figure 4-76. A default plot with crowded ticks

Particularly for the x ticks, the numbers nearly overlap, making them quite difficult to

decipher. We can fix this with the plt.MaxNLocator(), which allows us to specify the

maximum number of ticks that will be displayed. Given this maximum number, Mat‐

plotlib will use internal logic to choose the particular tick locations (Figure)

In[8]: # For every axis, set the x and y major locator

for axi in ax.flat:
axi.xaxis.set_major_locator(plt.MaxNLocator
(3))
axi.yaxis.set_major_locator(plt.MaxNLocator
(3))

fig

Figure . Customizing the number of ticks

This makes things much cleaner. If you want even more control over the

locations of regularly spaced ticks, you might also use plt.MultipleLocator, which

we’ll discuss in the following section.

Page 303 of 580

Fancy Tick Formats

Matplotlib’s default tick formatting can leave a lot to be desired; it works well as a broad

default, but sometimes you’d like to do something more. Consider the plot shown in

Figure below, a sine and a cosine:

In[9]: # Plot a sine and cosine curve

fig, ax = plt.subplots()

x = np.linspace(0, 3 * np.pi, 1000)
ax.plot(x, np.sin(x), lw=3, label='Sine')
ax.plot(x, np.cos(x), lw=3, label='Cosine')

Set up grid, legend, and
limits ax.grid(True)
ax.legend(frameon=False)
ax.axis('equal')

ax.set_xlim(0, 3 * np.pi);

Figure. A default plot with integer ticks

There are a couple changes we might like to make. First, it’s more natural for this data to
space the ticks and grid lines in multiples of π. We can do this by setting a Multi

pleLocator, which locates ticks at a multiple of the number you provide. For good
measure, we’ll add both major and minor ticks in multiples of π/4:

Page 304 of 580

In[10]: ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi /
2))
ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi /

4)) fig

Figure. Ticks at multiples of pi/2

But now these tick labels look a little bit silly: we can see that they are multiples of π, but

the decimal representation does not immediately convey this. To fix this, we can change

the tick formatter. There’s no built-in formatter for what we want to do, so we’ll instead

use plt.FuncFormatter, which accepts a user-defined function giving fine-grained control

over the tick outputs:

In[11]: def format_func(value, tick_number):

find number of multiples of pi/2

N = int(np.round(2 * value / np.pi))

if N == 0:

return "0"

elif N == 1:

return r"$\pi/2$"

elif N == 2:

return r"π"

elif N % 2 > 0:

return r"${0}\pi/2$".format(N)

else:

return r"${0}\pi$".format(N // 2)

Page 305 of 580

ax.xaxis.set_major_formatter(plt.FuncFormatter(format
_func)) fig

Figure. Ticks with custom labels

This is much better! Notice that we’ve made use of Matplotlib’s LaTeX support, speci‐ fied

by enclosing the string within dollar signs. This is very convenient for display of

mathematical symbols and formulae; in this case, "π" is rendered as the Greek

character π.

The plt.FuncFormatter() offers extremely fine-grained control over the appearance of your
plot ticks, and comes in very handy when you’re preparing plots for presenta‐ tion or
publication.

Summary of Formatters and Locators

We’ve mentioned a couple of the available formatters and locators. We’ll conclude this

section by briefly listing all the built-in locator and formatter options. For more

information on any of these, refer to the docstrings or to the Matplotlib online docu‐

mentation. Each of the following is available in the plt namespace:

NullLocator No ticks

FixedLocator Tick locations are fixed

IndexLocator Locator for index plots (e.g., where x = range(len(y)))

LinearLocator Evenly spaced ticks from min to max

LogLocator Logarithmically ticks from min to max

Locator class Description

Locator class Description

Page 306 of 580

MultipleLocator Ticks and range are a multiple of base

MaxNLocator Finds up to a max number of ticks at nice

locations AutoLocator (Default) MaxNLocator with

simple defaults AutoMinorLocator Locator for minor ticks

NullFormatter No labels on the ticks

IndexFormatter Set the strings from a list of labels

FixedFormatter Set the strings manually for the

labels FuncFormatter User-defined function sets the

labels FormatStrFormatter Use a format string for

each value ScalarFormatter (Default)

Formatter for scalar values LogFormatter

 Default formatter for log axes

We’ll see additional examples of these throughout the remainder of the book.

Customizing Matplotlib: Configurations and Stylesheets

Matplotlib’s default plot settings are often the subject of complaint among its users.

While much is slated to change in the 2.0 Matplotlib release, the ability to customize

default settings helps bring the package in line with your own aesthetic preferences.

Here we’ll walk through some of Matplotlib’s runtime configuration (rc) options, and take
a look at the newer stylesheets feature, which contains some nice sets of default
configurations.

Plot Customization by Hand

Throughout this chapter, we’ve seen how it is possible to tweak individual plot set‐ tings

to end up with something that looks a little bit nicer than the default. It’s possi‐ ble to do

these customizations for each individual plot. For example, here is a fairly drab default

histogram:

In[1]: import matplotlib.pyplot as plt

plt.style.use('classic')

import numpy as np

Formatter class Description

Page 307 of 580

%matplotlib inline

In[2]: x =
np.random.randn(1000

) plt.hist(x);

Figure . A histogram in Matplotlib’s default style

We can adjust this by hand to make it a much more visually pleasing plot,

shown in Figure:

In[3]: # use a gray background

ax =
plt.axes(axisbg='#E6E6E6')
ax.set_axisbelow(True)

draw solid white grid lines

plt.grid(color='w', linestyle='solid')

hide axis spines

for spine in
ax.spines.values():
spine.set_visible(False)

hide top and right ticks
ax.xaxis.tick_bottom()
ax.yaxis.tick_left()

Page 308 of 580

lighten ticks and labels
ax.tick_params(colors='gray',
direction='out') for tick in
ax.get_xticklabels():

tick.set_color('gray')

for tick in ax.get_yticklabels():
tick.set_color('gray')

control face and edge color of histogram

ax.hist(x, edgecolor='#E6E6E6', color='#EE6666');

Figure . A histogram with manual customizations

This looks better, and you may recognize the look as inspired by the look of the R

language’s ggplot visualization package. But this took a whole lot of effort! We defi‐ nitely do

not want to have to do all that tweaking each time we create a plot. Fortu‐ nately, there

is a way to adjust these defaults once in a way that will work for all plots.

Changing the Defaults: rcParams

Each time Matplotlib loads, it defines a runtime configuration (rc) containing the default
styles for every plot element you create. You can adjust this configuration at any time

using the plt.rc convenience routine. Let’s see what it looks like to modify the rc
parameters so that our default plot will look similar to what we did before.

We’ll start by saving a copy of the current rcParams dictionary, so we can easily reset these
changes in the current session:

In[4]: IPython_default = plt.rcParams.copy()

Page 309 of 580

Now we can use the plt.rc function to change some of these settings:

In[5]: from matplotlib import
cycler colors = cycler('color',

['#EE6666', '#3388BB', '#9988DD',

'#EECC55', '#88BB44', '#FFBBBB'])

plt.rc('axes', facecolor='#E6E6E6',
edgecolor='none', axisbelow=True,
grid=True, prop_cycle=colors)

plt.rc('grid', color='w', linestyle='solid')
plt.rc('xtick', direction='out', color='gray')
plt.rc('ytick', direction='out', color='gray')
plt.rc('patch', edgecolor='#E6E6E6')
plt.rc('lines', linewidth=2)

With these settings defined, we can now create a plot and see our settings in action.

In[6]: plt.hist(x);

Figure 4-83. A customized histogram using rc settings

Let’s see what simple line plots look like with these rc parameters:

In[7]: for i in range(4):

Page 310 of 580

plt.plot(np.random.rand(10))

Figure. A line plot with customized styles

Stylesheets

The version 1.4 release of Matplotlib in August 2014 added a very convenient style
module, which includes a number of new default stylesheets, as well as the ability to

create and package your own styles. These stylesheets are formatted similarly to the
.matplotlibrc files mentioned earlier, but must be named with a .mplstyle extension.

Even if you don’t create your own style, the stylesheets included by default are extremely

useful. The available styles are listed in plt.style.available—here I’ll list only the first five for

brevity:

In[8]: plt.style.available[:5]

Out[8]: ['fivethirtyeight',

'seaborn-pastel',
'seaborn-
whitegrid', 'ggplot',
'grayscale']

The basic way to switch to a stylesheet is to call:

plt.style.use('stylename')

But keep in mind that this will change the style for the rest of the session! Alterna‐ tively,

you can use the style context manager, which sets a style temporarily:

with
plt.style.context('stylename'):
make_a_plot()

Let’s create a function that will make two basic types of plot:

In[9]: def hist_and_lines():

Page 311 of 580

np.random.seed(0)

fig, ax = plt.subplots(1, 2, figsize=(11, 4))
ax[0].hist(np.random.randn(1000))

for i in range(3):
ax[1].plot(np.random.rand(1
0))

ax[1].legend(['a', 'b', 'c'], loc='lower left')

We’ll use this to explore how these plots look using the various built-in styles.

Default style

The default style is what we’ve been seeing so far throughout the book; we’ll

start with that. First, let’s reset our runtime configuration to the notebook

default:

In[10]: # reset rcParams

plt.rcParams.update(IPython_default);

Now let’s see how it looks:

In[11]: hist_and_lines()

Figure. Matplotlib’s default style

FiveThirtyEight style

The FiveThirtyEight style mimics the graphics found on the popular FiveThirtyEight

website. As you can see in Figure , it is typified by bold colors, thick lines, and transparent

axes.

Page 312 of 580

In[12]: with plt.style.context('fivethirtyeight'):
hist_and_lines()

Figure. The FiveThirtyEight style

ggplot

The ggplot package in the R language is a very popular visualization tool.
Matplot‐ lib’s ggplot style mimics the default styles from that package:

In[13]: with plt.style.context('ggplot'):
hist_and_lines()

Figure. The ggplot style

Bayesian Methods for Hackers style

There is a very nice short online book called Probabilistic Programming and

Bayesian Methods for Hackers; it features figures created with Matplotlib, and

uses a nice set of rc parameters to create a consistent and visually appealing style

throughout the book. This style is reproduced in the bmh stylesheet:

Page 313 of 580

In[14]: with
plt.style.context('bmh'):

hist_and_lines()

Figure. The bmh style

Dark background

For figures used within presentations, it is often useful to have a dark rather than light background.

The dark_background style provides this:

In[15]: with
plt.style.context('dark_background'
): hist_and_lines()

Figure . The dark_background style

Grayscale

Sometimes you might find yourself preparing figures for a print publication that does not

accept color figures. For this, the grayscale style, shown in Figure, can be very useful:

Page 314 of 580

In[16]: with plt.style.context('grayscale'):
hist_and_lines()

Figure 4-90. The grayscale style

Seaborn style

Matplotlib also has stylesheets inspired by the Seaborn library (discussed more fully in

“Visualization with Seaborn”). As we will see, these styles are loaded automatically when

Seaborn is imported into a notebook. I’ve found these settings to be very nice, and tend

to use them as defaults in my own data exploration:

In[17]: import seaborn

hist_and_lines()

Figure. Seaborn’s plotting style

With all of these built-in options for various plot styles, Matplotlib becomes much more

useful for both interactive visualization and creation of figures for publication.

Throughout this book, I will generally use one or more of these style conventions when

Page 315 of 580

creating plots.

Day-05: Three-Dimensional Plotting in Matplotlib

Matplotlib was initially designed with only two-dimensional plotting in mind. Around the

time of the 1.0 release, some three-dimensional plotting utilities were built on top of

Matplotlib’s two-dimensional display, and the result is a convenient (if somewhat limited)

set of tools for three-dimensional data visualization. We enable three-dimensional plots

by importing the mplot3d toolkit, included with the main Matplotlib installation:

In[1]: from mpl_toolkits import mplot3d

Once this submodule is imported, we can create a three-dimensional axes by passing the

keyword projection='3d' to any of the normal axes creation routines:

In[2]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

In[3]: fig = plt.figure()

ax = plt.axes(projection='3d')

Figure. An empty three-dimensional axes

With this 3D axes enabled, we can now plot a variety of three-dimensional plot types.

Three-dimensional plotting is one of the functionalities that benefits immensely from

viewing figures interactively rather than statically in the notebook; recall that to use

interactive figures, you can use %matplotlib notebook rather than %matplotlib inline

when running this code.

Three-Dimensional Points and Lines

The most basic three-dimensional plot is a line or scatter plot created from sets of (x, y, z)

Page 316 of 580

triples. In analogy with the more common two-dimensional plots discussed ear‐ lier, we

can create these using the ax.plot3D and ax.scatter3D functions. The call signature for

these is nearly identical to that of their two-dimensional counterparts, so you can refer

to “Simple Line Plots” and for more information on controlling the output. Here we’ll plot

a trigono‐ metric spiral, along with some points drawn randomly near the line:

In[4]: ax = plt.axes(projection='3d')

Data for a three-dimensional
line zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)

yline = np.cos(zline)

ax.plot3D(xline, yline, zline, 'gray')

Data for three-dimensional scattered points

zdata = 15 * np.random.random(100)

xdata = np.sin(zdata) + 0.1 *
np.random.randn(100) ydata = np.cos(zdata) +
0.1 * np.random.randn(100)

ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');

Figure. Points and lines in three dimensions

Notice that by default, the scatter points have their transparency adjusted to give a sense

of depth on the page. While the three-dimensional effect is sometimes difficult to see

within a static image, an interactive view can lead to some nice intuition about the layout

of the points.

Three-Dimensional Contour Plots

Analogous to the contour plots we explored in “Density and Contour Plots” , mplot3d

Page 317 of 580

contains tools to create three-dimensional relief plots using the same inputs. Like two-

dimensional ax.contour plots, ax.contour3D requires all the input data to be in the form of

two-dimensional regular grids, with the Z data evaluated at each point. Here we’ll show a

three-dimensional contour diagram of a three- dimensional sinusoidal function:

In[5]: def f(x, y):

return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 30)

y = np.linspace(-6, 6, 30)

X, Y = np.meshgrid(x,
y) Z = f(X, Y)

In[6]: fig = plt.figure()

ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50,
cmap='binary') ax.set_xlabel('x')

ax.set_ylabel('y')
ax.set_zlabel('z');

Page 318 of 580

Figure. A three-dimensional contour plot

Sometimes the default viewing angle is not optimal, in which case we can use the

view_init method to set the elevation and azimuthal angles. In this example (the result of

which is shown in Figure), we’ll use an elevation of 60 degrees (that is, 60 degrees above

the x-y plane) and an azimuth of 35 degrees (that is, rotated 35 degrees counter-

clockwise about the z-axis):

In[7]: ax.view_init(60, 35)
fig

Figure. Adjusting the view angle for a three-dimensional plot

Again, note that we can accomplish this type of rotation interactively by clicking

and dragging when using one of Matplotlib’s interactive backends.

Wireframes and Surface Plots

Two other types of three-dimensional plots that work on gridded data are wireframes

and surface plots. These take a grid of values and project it onto the specified three-

dimensional surface, and can make the resulting three-dimensional forms quite easy to

visualize. Here’s an example using a wireframe (Figure):

In[8]: fig = plt.figure()

Page 319 of 580

ax = plt.axes(projection='3d')
ax.plot_wireframe(X, Y, Z,
color='black') ax.set_title('wireframe');

Figure. A wireframe plot

A surface plot is like a wireframe plot, but each face of the wireframe is a filled poly‐ gon.

Adding a colormap to the filled polygons can aid perception of the topology of the

surface being visualized .

In[9]: ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

cmap='viridis',
edgecolor='none') ax.set_title('surface');

Figure. A three-dimensional surface plot

Note that though the grid of values for a surface plot needs to be two-dimensional, it

need not be rectilinear. Here is an example of creating a partial polar grid, which when

used with the surface3D plot can give us a slice into the function we’re visualizing .

In[10]: r = np.linspace(0, 6, 20)

theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40)
r, theta = np.meshgrid(r, theta)

Page 320 of 580

X = r * np.sin(theta)
Y = r * np.cos(theta)
Z = f(X, Y)

ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

cmap='viridis', edgecolor='none');

Figure. A polar surface plot

Surface Triangulations

For some applications, the evenly sampled grids required by the preceding routines are

overly restrictive and inconvenient. In these situations, the triangulation-based plots can

be very useful. What if rather than an even draw from a Cartesian or a polar grid, we

instead have a set of random draws?

In[11]: theta = 2 * np.pi *
np.random.random(1000) r = 6 *
np.random.random(1000)

x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)

We could create a scatter plot of the points to get an idea of the surface we’re

sampling from:

In[12]: ax = plt.axes(projection='3d')

ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5);

Page 321 of 580

Figure. A three-dimensional sampled surface

This leaves a lot to be desired. The function that will help us in this case is ax.plot_trisurf,

which creates a surface by first finding a set of triangles formed between adjacent points

(the result is shown in Figure ; remember that x, y, and z here are one-dimensional arrays):

In[13]: ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z,

cmap='viridis', edgecolor='none');

Figure. A triangulated surface plot

The result is certainly not as clean as when it is plotted with a grid, but the flexibility of

such a triangulation allows for some really interesting three-dimensional plots. For

example, it is actually possible to plot a three-dimensional Möbius strip using this, as we’ll

see next.

Example: Visualizing a Möbius strip

A Möbius strip is similar to a strip of paper glued into a loop with a half-twist. Topo‐

logically, it’s quite interesting because despite appearances it has only a single side! Here

we will visualize such an object using Matplotlib’s three-dimensional tools. The key to

creating the Möbius strip is to think about its parameterization: it’s a two-

dimensional strip, so we need two intrinsic dimensions. Let’s call them θ, which ranges

Page 322 of 580

from 0 to 2π around the loop, and w which ranges from –1 to 1 across the width of the

strip:

In[14]: theta = np.linspace(0, 2 * np.pi, 30)
w = np.linspace(-0.25, 0.25, 8)

w, theta = np.meshgrid(w, theta)

Now from this parameterization, we must determine the (x, y, z) positions of the

embedded strip.

Thinking about it, we might realize that there are two rotations happening: one is the

position of the loop about its center (what we’ve called θ), while the other is the twist‐ ing

of the strip about its axis (we’ll call this ϕ). For a Möbius strip, we must have the strip

make half a twist during a full loop, or Δϕ = Δθ/2.

In[15]: phi = 0.5 * theta

Now we use our recollection of trigonometry to derive the three-dimensional embed‐

ding. We’ll define r, the distance of each point from the center, and use this to find the

embedded x, y, z coordinates:

In[16]: # radius in x-y plane

r = 1 + w * np.cos(phi)

x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))

Finally, to plot the object, we must make sure the triangulation is correct. The best way

to do this is to define the triangulation within the underlying parameterization, and then

let Matplotlib project this triangulation into the three-dimensional space of the Möbius

strip. This can be accomplished as follows:

In[17]: # triangulate in the underlying
parameterization

from matplotlib.tri import Triangulation

tri = Triangulation(np.ravel(w), np.ravel(theta))

ax = plt.axes(projection='3d')

ax.plot_trisurf(x, y, z, triangles=tri.triangles,

cmap='viridis', linewidths=0.2);

ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1);

Page 323 of 580

Figure. Visualizing a Möbius strip

Combining all of these techniques, it is possible to create and display a wide variety of
three-dimensional objects and patterns in Matplotlib.

Page 324 of 580

Week 5: Data visualization with Seaborn

Day-01: Visualization with Seaborn

Matplotlib has proven to be an incredibly useful and popular visualization tool, but even

avid users will admit it often leaves much to be desired. There are several valid

complaints about Matplotlib that often come up:

• Prior to version 2.0, Matplotlib’s defaults are not exactly the best choices. It
was based off of MATLAB circa 1999, and this often shows.

• Matplotlib’s API is relatively low level. Doing sophisticated statistical

visualiza‐ tion is possible, but often requires a lot of boilerplate code.

• Matplotlib predated Pandas by more than a decade, and thus is not

designed for use with Pandas DataFrames. In order to visualize data from a

Pandas DataFrame, you must extract each Series and often concatenate

them together into the right format. It would be nicer to have a plotting

library that can intelligently use the DataFrame labels in a plot.

An answer to these problems is Seaborn. Seaborn provides an API on top of Matplot‐ lib

that offers sane choices for plot style and color defaults, defines simple high-level

functions for common statistical plot types, and integrates with the functionality pro‐

vided by Pandas DataFrames.

Seaborn Versus Matplotlib

Here is an example of a simple random-walk plot in Matplotlib, using its classic plot

formatting and colors. We start with the typical imports:

In[1]: import matplotlib.pyplot as plt

plt.style.use('classic')

%matplotlib inline
import numpy as
np import pandas
as pd

Now we create some random walk data:

In[2]: # Create some data

rng =
np.random.RandomState(0)
x = np.linspace(0, 10, 500)

Page 325 of 580

y = np.cumsum(rng.randn(500, 6), 0)

And do a simple plot (Figure):

In[3]: # Plot the data with Matplotlib defaults

plt.plot(x, y)

plt.legend('ABCDEF', ncol=2, loc='upper left');

Figure. Data in Matplotlib’s default style

Although the result contains all the information we’d like it to convey, it does so in a way

that is not all that aesthetically pleasing, and even looks a bit old-fashioned in the context

of 21st-century data visualization.

Now let’s take a look at how it works with Seaborn. As we will see, Seaborn has many of its

own high-level plotting routines, but it can also overwrite Matplotlib’s default

parameters and in turn get even simple Matplotlib scripts to produce vastly superior

output. We can set the style by calling Seaborn’s set() method. By convention, Sea‐ born is

imported as sns:

In[4]: import seaborn as sns

sns.set()

Now let’s rerun the same two lines as before (Figure):

In[5]: # same plotting code as above!

plt.plot(x, y)

Page 326 of 580

plt.legend('ABCDEF', ncol=2, loc='upper left');

Figure. Data in Seaborn’s default style

Exploring Seaborn Plots

The main idea of Seaborn is that it provides high-level commands to create a

variety of plot types useful for statistical data exploration, and even some

statistical model fitting.

Let’s take a look at a few of the datasets and plot types available in Seaborn. Note that all

of the following could be done using raw Matplotlib commands (this is, in fact, what

Seaborn does under the hood), but the Seaborn API is much more convenient.

Histograms, KDE, and densities

Often in statistical data visualization, all you want is to plot histograms and joint dis‐

tributions of variables. We have seen that this is relatively straightforward in Matplot‐ lib

(Figure):

In[6]: data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]],
size=2000) data = pd.DataFrame(data, columns=['x', 'y'])

for col in 'xy':

plt.hist(data[col], normed=True, alpha=0.5)

Page 327 of 580

Figure. Histograms for visualizing distributions

Rather than a histogram, we can get a smooth estimate of the distribution

using a kernel density estimation, which Seaborn does with sns.kdeplot (Figure):

In[7]: for col in 'xy':

sns.kdeplot(data[col], shade=True)

Figure. Kernel density estimates for visualizing distributions

Histograms and KDE can be combined using distplot (Figure):

In[8]: sns.distplot(data['x'])

sns.distplot(data['y'])

Page 328 of 580

Figure. Kernel density and histograms plotted together

If we pass the full two-dimensional dataset to kdeplot, we will get a two-
dimensional visualization of the data (Figure):

In[9]: sns.kdeplot(data);

Figure. A two-dimensional kernel density plot

We can see the joint distribution and the marginal distributions together using

sns.jointplot. For this plot, we’ll set the style to a white background (Figure):

In[10]: with sns.axes_style('white'):

Page 329 of 580

sns.jointplot("x", "y", data, kind='kde');

Figure. A joint distribution plot with a two-dimensional kernel density estimate

There are other parameters that can be passed to jointplot—for example, we can use a
hexagonally based histogram instead (Figure):

In[11]: with sns.axes_style('white'):

sns.jointplot("x", "y", data, kind='hex')

Figure. A joint distribution plot with a hexagonal bin representation

Page 330 of 580

Pair plots

When you generalize joint plots to datasets of larger dimensions, you end up

with pair plots. This is very useful for exploring correlations between

multidimensional data, when you’d like to plot all pairs of values against each

other.

We’ll demo this with the well-known Iris dataset, which lists measurements of petals and

sepals of three iris species:

In[12]: iris = sns.load_dataset("iris")
iris.head()

Out[12]
:

sepal_length sepal_widt
h

petal_lengt
h

petal_widt
h

specie
s

 0 5.1 3.5 1.4 0.2 setos
a

 1 4.9 3.0 1.4 0.2 setos
a

 2 4.7 3.2 1.3 0.2 setos
a

 3 4.6 3.1 1.5 0.2 setos
a

 4 5.0 3.6 1.4 0.2 setos
a

Visualizing the multidimensional relationships among the samples is as easy as call‐ ing

sns.pairplot :

Page 331 of 580

In[13]: sns.pairplot(iris, hue='species', size=2.5);

Figure. A pair plot showing the relationships between four variables

Faceted histograms

Sometimes the best way to view data is via histograms of subsets. Seaborn’s FacetGrid
makes this extremely simple. We’ll take a look at some data that shows the amount that
restaurant staff receive in tips based on various indicator data (Figure):

In[14]: tips = sns.load_dataset('tips')
tips.head()

Out[14]
:

total_bill tip sex smok
er

da
y

time size

 0
 16.9
9

1.0
1

Femal
e

No Su
n

Dinne
r

2

Page 332 of 580

 1
 10.3
4

1.6
6

Male No Su
n

Dinne
r

3

 2
 21.0
1

3.5
0

Male No Su
n

Dinne
r

3

3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

In[15]: tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill']

grid = sns.FacetGrid(tips, row="sex", col="time",
margin_titles=True) grid.map(plt.hist, "tip_pct",

bins=np.linspace(0, 40, 15));

Figure. An example of a faceted histogram

Factor plots

Factor plots can be useful for this kind of visualization as well. This allows you to view the

distribution of a parameter within bins defined by any other parameter (Figure):

In[16]: with sns.axes_style(style='ticks'):

g = sns.factorplot("day", "total_bill", "sex", data=tips, kind="box")
g.set_axis_labels("Day", "Total Bill");

Page 333 of 580

Figure. An example of a factor plot, comparing distributions given various discrete

factors

Joint distributions

Similar to the pair plot we saw earlier, we can use sns.jointplot to show the joint
distribution between different datasets, along with the associated marginal distribu‐
tions (Figure):

In[17]: with sns.axes_style('white'):

sns.jointplot("total_bill", "tip", data=tips, kind='hex')

Figure. A joint distribution plot

The joint plot can even do some automatic kernel density estimation and regression

(Figure):

Page 334 of 580

In[18]: sns.jointplot("total_bill", "tip", data=tips, kind='reg');

Figure. A joint distribution plot with a regression fit

Bar plots

Time series can be plotted with sns.factorplot. In the following example
(visualized in Figure)

In[19]: planets =
sns.load_dataset('planets')
planets.head()

Out[19]: method numb

er
orbital_perio
d

mass distance year

0 Radial Velocity 1 269.300 7.10 77.40 200
6

1 Radial Velocity 1 874.774 2.21 56.95 200
8

2 Radial Velocity 1 763.000 2.60 19.84 201
1

3 Radial Velocity 1 326.030 19.40 110.62 200
7

4 Radial Velocity 1 516.220 10.50 119.47 200
9

In[20]: with sns.axes_style('white'):

g = sns.factorplot("year", data=planets, aspect=2,

Page 335 of 580

kind="count",
color='steelblue') g.set_xticklabels(step=5)

Figure 4-124. A histogram as a special case of a factor plot

We can learn more by looking at the method of discovery of each of these planets, as
illustrated in following Figure:

In[21]: with sns.axes_style('white'):

g = sns.factorplot("year", data=planets, aspect=4.0,
kind='count', hue='method',
order=range(2001, 2015))

g.set_ylabels('Number of Planets Discovered')

Figure . Number of planets discovered by year and type

Example: Exploring Marathon Finishing Times

Here we’ll look at using Seaborn to help visualize and understand finishing results from a
marathon. I’ve scraped the data from sources on the Web, aggregated it and removed

any identifying information, and put it on GitHub where it can be downloa‐ ded (if you

are interested in using Python for web scraping, I would recommend Web Scraping with

Python by Ryan Mitchell). We will start by downloading the data from the Web, and

loading it into Pandas:

In[22]:

!curl -O

https://raw.githubusercontent.com/jakevdp/marathon-

data/ # master/marathon-data.csv

In[23]: data = pd.read_csv('marathon-
data.csv') data.head()

Out[23]: age gender split final
0 33 M 01:05:38
02:08:51

1 32 M 01:06:26 02:09:28

2 31 M 01:06:49 02:10:42

3 38 M 01:06:16 02:13:45

4 31 M 01:06:32 02:13:59

By default, Pandas loaded the time columns as Python strings (type object); we can see

this by looking at the dtypes attribute of the DataFrame:

In[24]: data.dtypes

Out[24]: age

 int6

4

gender object

split object

final
 objec
t dtype: object

Let’s fix this by providing a converter for the times:

In[25]: def convert_time(s):

h, m, s = map(int, s.split(':'))

return pd.datetools.timedelta(hours=h, minutes=m, seconds=s)

data = pd.read_csv('marathon-data.csv',

converters={'split':convert_time, 'final':convert_time})

data.head()

Out[25]
: ag

e
gender split final

 0 3
3

M 01:05:38 02:08:51

 1 3
2

M 01:06:26 02:09:28

 2 3
1

M 01:06:49 02:10:42

 3 3
8

M 01:06:16 02:13:45

 4 3
1

M 01:06:32 02:13:59

In[26]: data.dtypes

Out[26]: age int64

gender object

split timedelta64[ns]
final timedelta64[ns]
dtype: object

That looks much better. For the purpose of our Seaborn plotting utilities, let’s

next add columns that give the times in seconds:

In[27]: data['split_sec'] = data['split'].astype(int) / 1E9
data['final_sec'] = data['final'].astype(int) / 1E9
data.head()

Out[27]
:

age gender split final split_sec final_sec

 0
 3
3

M 01:05:38 02:08:51 3938.0 7731.0

 1
 3
2

M 01:06:26 02:09:28 3986.0 7768.0

 2
 3
1

M 01:06:49 02:10:42 4009.0 7842.0

 3
 3
8

M 01:06:16 02:13:45 3976.0 8025.0

 4
 3
1

M 01:06:32 02:13:59 3992.0 8039.0

To get an idea of what the data looks like, we can plot a jointplot over the
data (Figure):

In[28]: with sns.axes_style('white'):

g = sns.jointplot("split_sec", "final_sec", data, kind='hex')
g.ax_joint.plot(np.linspace(4000, 16000),

np.linspace(8000, 32000), ':k')

Figure 4-126. The relationship between the split for the first half-marathon and the
fin‐ ishing time for the full marathon

The dotted line shows where someone’s time would lie if they ran the marathon at a

perfectly steady pace. The fact that the distribution lies above this indicates (as you might

expect) that most people slow down over the course of the marathon. If you have run

competitively, you’ll know that those who do the opposite—run faster dur‐ ing the

second half of the race—are said to have “negative-split” the race.

Let’s create another column in the data, the split fraction, which measures the degree to
which each runner negative-splits or positive-splits the race:

In[29]: data['split_frac'] = 1 - 2 * data['split_sec'] / data['final_sec']
data.head()

Out[29]
:

age gender split final split_sec final_sec split_frac

 0
 3

M 01:05:38 02:08:51 3938.0 7731.0 -
0.01875

3 6
 1

 3
2

M 01:06:26 02:09:28 3986.0 7768.0 -
0.02626

2
 2

 3
1

M 01:06:49 02:10:42 4009.0 7842.0 -
0.02244

3
 3

 3
8

M 01:06:16 02:13:45 3976.0 8025.0 0.0090
97

 4
 3
1

M 01:06:32 02:13:59 3992.0 8039.0 0.0068
42

Where this split difference is less than zero, the person negative-split the race
by that fraction. Let’s do a distribution plot of this split fraction (Figure):

In[30]: sns.distplot(data['split_frac'], kde=False);
plt.axvline(0, color="k", linestyle="--");

Figure . The distribution of split fractions; 0.0 indicates a runner who completed the
first and second halves in identical times

In[31]: sum(data.split_frac <

0) Out[31]: 251

Out of nearly 40,000 participants, there were only 250 people who negative-split their

marathon.

Let’s see whether there is any correlation between this split fraction and other vari‐

ables. We’ll do this using a pairgrid, which draws plots of all these correlations (Figure):

In[32]:

g = sns.PairGrid(data, vars=['age', 'split_sec', 'final_sec', 'split_frac'],
hue='gender', palette='RdBu_r')

g.map(plt.scatter,
alpha=0.8) g.add_legend();

Figure . The relationship between quantities within the marathon dataset

It looks like the split fraction does not correlate particularly with age, but does corre‐ late

with the final time: faster runners tend to have closer to even splits on their mara‐ thon

time. (We see here that Seaborn is no panacea for Matplotlib’s ills when it comes to plot

styles: in particular, the x-axis labels overlap. Because the output is a simple Matplotlib

plot, however, the methods in “Customizing Ticks” can be used to adjust such things if

desired.)

The difference between men and women here is interesting. Let’s look at the histo‐ gram

of split fractions for these two groups (Figure):

In[33]: sns.kdeplot(data.split_frac[data.gender=='M'], label='men',
shade=True) sns.kdeplot(data.split_frac[data.gender=='W'],
label='women', shade=True) plt.xlabel('split_frac');

Figure . The distribution of split fractions by gender

The interesting thing here is that there are many more men than women who are

running close to an even split! This almost looks like some kind of bimodal distribu‐ tion

among the men and women. Let’s see if we can suss out what’s going on by look‐ ing at the

distributions as a function of age.

A nice way to compare distributions is to use a violin plot (Figure :

In[34]:

sns.violinplot("gender", "split_frac", data=data,

palette=["lightblue", "lightpink"]);

Figure . A violin plot showing the split fraction by gender

This is yet another way to compare the distributions between men and women.

Let’s look a little deeper, and compare these violin plots as a function of age. We’ll start

by creating a new column in the array that specifies the decade of age that each person is

in (Figure):

In[35]: data['age_dec'] = data.age.map(lambda age: 10 * (age //
10)) data.head()

Out[35]:

age gender split final split_sec final_sec split_frac age_dec
0 33 M 01:05:38 02:08:51 3938.0 7731.0 -0.018756
 30

1 32 M 01:06:26 02:09:28 3986.0 7768.0 -0.026262 30

2 31 M 01:06:49 02:10:42 4009.0 7842.0 -0.022443 30

3 38 M 01:06:16 02:13:45 3976.0 8025.0 0.009097 30

4 31 M 01:06:32 02:13:59 3992.0 8039.0 0.006842 30

In[36]:

men = (data.gender == 'M')
women = (data.gender ==
'W')

with sns.axes_style(style=None):

sns.violinplot("age_dec", "split_frac", hue="gender",
data=data, split=True, inner="quartile",
palette=["lightblue", "lightpink"]);

Figure . A violin plot showing the split fraction by gender and age

Looking at this, we can see where the distributions of men and women differ: the split

distributions of men in their 20s to 50s show a pronounced over-density toward

lower splits when compared to women of the same age (or of any age, for that matter).

Also surprisingly, the 80-year-old women seem to outperform everyone in terms of their

split time. This is probably due to the fact that we’re estimating the distribution from

small numbers, as there are only a handful of runners in that range:

In[38]: (data.age >

80).sum() Out[38]: 7

Back to the men with negative splits: who are these runners? Does this split

fraction correlate with finishing quickly? We can plot this very easily. We’ll use

regplot, which will automatically fit a linear regression to the data (Figure):

In[37]: g = sns.lmplot('final_sec', 'split_frac', col='gender', data=data,

markers=".",
scatter_kws=dict(color='c')) g.map(plt.axhline, y=0.1,
color="k", ls=":");

Figure . Split fraction versus finishing time by gender

Apparently the people with fast splits are the elite runners who are finishing within

~15,000 seconds, or about 4 hours. People slower than that are much less likely to have a

fast second split.

Day 02- Data Visualization on World Map- Geographic Data with Basemap

One common type of visualization in data science is that of geographic data. Matplot‐ lib’s

main tool for this type of visualization is the Basemap toolkit, which is one of several

Matplotlib toolkits that live under the mpl_toolkits namespace. Admittedly, Basemap

feels a bit clunky to use, and often even simple visualizations take much longer to render

than you might hope. More modern solutions, such as leaflet or the Google Maps API,

may be a better choice for more intensive map visualizations. Still, Basemap is a useful

tool for Python users to have in their virtual toolbelts. In this sec‐ tion, we’ll show several

examples of the type of map visualization that is possible with this toolkit.

Installation of Basemap is straightforward; if you’re using conda you can type this

and the package will be downloaded:

$ conda install basemap

We add just a single new import to our standard boilerplate:

In[1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import Basemap

Once you have the Basemap toolkit installed and imported, geographic plots are just a

few lines away (the graphics in Figure also require the PIL package in Python 2, or the

pillow package in Python 3):

In[2]: plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho', resolution=None, lat_0=50,
lon_0=-100) m.bluemarble(scale=0.5);

Figure. A “bluemarble” projection of the Earth

The meaning of the arguments to Basemap will be discussed momentarily.

The useful thing is that the globe shown here is not a mere image; it is a fully func‐

tioning Matplotlib axes that understands spherical coordinates and allows us to easily

over-plot data on the map! For example, we can use a different map projection, zoom in

to North America, and plot the location of Seattle. We’ll use an etopo image (which shows

topographical features both on land and under the ocean) as the map back‐ ground

(Figure):

In[3]: fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc',
resolution=None, width=8E6,
height=8E6,

lat_0=45, lon_0=-
100,) m.etopo(scale=0.5,
alpha=0.5)

Map (long, lat) to (x, y) for plotting

x, y = m(-122.3, 47.6)

plt.plot(x, y, 'ok', markersize=5)
plt.text(x, y, ' Seattle', fontsize=12);

Figure. Plotting data and labels on the map

This gives you a brief glimpse into the sort of geographic visualizations that are possi‐ ble

with just a few lines of Python. We’ll now discuss the features of Basemap in more depth,

and provide several examples of visualizing map data. Using these brief exam‐ ples as

building blocks, you should be able to create nearly any map visualization that you desire.

Map Projections

The first thing to decide when you are using maps is which projection to use. You’re

probably familiar with the fact that it is impossible to project a spherical map, such as that

of the Earth, onto a flat surface without somehow distorting it or breaking its continuity.

These projections have been developed over the course of human history, and there are

a lot of choices! Depending on the intended use of the map projection, there are certain

map features (e.g., direction, area, distance, shape, or other consider‐ ations) that are

useful to maintain.

The Basemap package implements several dozen such projections, all

referenced by a short format code. Here we’ll briefly demonstrate some of the

more common ones.

We’ll start by defining a convenience routine to draw our world map along with

the longitude and latitude lines:

In[4]: from itertools import chain

def draw_map(m, scale=0.2):

draw a shaded-relief image

m.shadedrelief(scale=scale)

lats and longs are returned as a dictionary

lats = m.drawparallels(np.linspace(-90, 90, 13))

lons = m.drawmeridians(np.linspace(-180, 180, 13))

keys contain the plt.Line2D instances

lat_lines = chain(*(tup[1][0] for tup in lats.items()))
lon_lines = chain(*(tup[1][0] for tup in lons.items()))
all_lines = chain(lat_lines, lon_lines)

cycle through these lines and set the desired style

for line in all_lines:

line.set(linestyle='-', alpha=0.3, color='w')

Cylindrical projections

The simplest of map projections are cylindrical projections, in which lines of constant

latitude and longitude are mapped to horizontal and vertical lines, respectively. This type

of mapping represents equatorial regions quite well, but results in extreme dis‐ tortions

near the poles. The spacing of latitude lines varies between different cylindri‐ cal

projections, leading to different conservation properties, and different distortion near the

poles. In Figure 4-104, we show an example of the equidistant cylindrical pro‐ jection, which

chooses a latitude scaling that preserves distances along meridians. Other cylindrical

projections are the Mercator (projection='merc') and the cylin‐ drical equal-area

(projection='cea') projections.

In[5]: fig = plt.figure(figsize=(8, 6), edgecolor='w') m
= Basemap(projection='cyl',
resolution=None,

llcrnrlat=-90, urcrnrlat=90,
llcrnrlon=-180, urcrnrlon=180,
)draw_map(m)

Figure. Cylindrical equal-area projection

The additional arguments to Basemap for this view specify the latitude (lat) and lon‐

gitude (lon) of the lower-left corner (llcrnr) and upper-right corner (urcrnr) for the desired

map, in units of degrees.

Pseudo-cylindrical projections

Pseudo-cylindrical projections relax the requirement that meridians (lines of constant

longitude) remain vertical; this can give better properties near the poles of the projec‐

tion. The Mollweide projection (projection='moll') is one common example of this, in

which all meridians are elliptical arcs (Figure). It is constructed so as to preserve area

across the map: though there are distortions near the poles, the area of small patches

reflects the true area. Other pseudo-cylindrical projections are the sinusoidal

(projection='sinu') and Robinson (projection='robin') projections.

In[6]: fig = plt.figure(figsize=(8, 6), edgecolor='w') m
= Basemap(projection='moll',
resolution=None,

lat_0=0, lon_0=0)

draw_map(m)

Figure. The Molleweide projection

The extra arguments to Basemap here refer to the central latitude (lat_0) and longi‐ tude

(lon_0) for the desired map.

Perspective projections

Perspective projections are constructed using a particular choice of perspective point,

similar to if you photographed the Earth from a particular point in space (a point which,

for some projections, technically lies within the Earth!). One common exam‐ ple is the

orthographic projection (projection='ortho'), which shows one side of the globe as seen

from a viewer at a very long distance. Thus, it can show only half the globe at a time. Other

perspective-based projections include the gnomonic projection (projection='gnom') and

stereographic projection (projection='stere'). These are often the most useful for showing

small portions of the map.

Here is an example of the orthographic projection:

In[7]: fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='ortho',
resolution=None, lat_0=50,
lon_0=0)draw_map(m);

Figure. The orthographic projection

Conic projections

A conic projection projects the map onto a single cone, which is then unrolled. This can

lead to very good local properties, but regions far from the focus point of the cone

may become very distorted. One example of this is the Lambert conformal conic

projection (projection='lcc'), which we saw earlier in the map of North America. It

projects the map onto a cone arranged in such a way that two standard parallels

(specified in Basemap by lat_1 and lat_2) have well-represented distances, with scale

decreasing between them and increasing outside of them. Other useful conic projec‐

tions are the equidistant conic (projection='eqdc') and the Albers equal-area (pro

jection='aea') projection (Figure 4-107). Conic projections, like perspective projections,

tend to be good choices for representing small to medium patches of the globe.

In[8]: fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc',
resolution=None, lon_0=0,
lat_0=50, lat_1=45,
lat_2=55,width=1.6E7,
height=1.2E7)

draw_map(m)

Figure. The Albers equal-area projection

Other projections

If you’re going to do much with map-based visualizations, I encourage you to read up on

other available projections, along with their properties, advantages, and disadvan‐ tages.

Most likely, they are available in the Basemap package. If you dig deep enough into this

topic, you’ll find an incredible subculture of geo-viz geeks who will be ready to argue

fervently in support of their favorite projection for any given application!

Drawing a Map Background

Earlier we saw the bluemarble() and shadedrelief() methods for projecting global images
on the map, as well as the drawparallels() and drawmeridians() methods for drawing lines
of constant latitude and longitude. The Basemap package contains a range of useful
functions for drawing borders of physical features like continents, oceans, lakes, and

rivers, as well as political boundaries such as countries and US states and counties. The
following are some of the available drawing functions that you may wish to explore using
IPython’s help features:

• Physical boundaries and bodies of water

drawcoastlines()

Draw continental coast lines

drawlsmask()

Draw a mask between the land and sea, for use with projecting

images on one or the other drawmapboundary()

Draw the map boundary, including the fill color for oceans

drawrivers()

Draw rivers on the map

fillcontinents()

Fill the continents with a given color; optionally fill lakes with another color

• Political boundaries

drawcountries()

Draw country boundaries

drawstates()

Draw US state boundaries

drawcounties()

Draw US county boundaries

• Map features

drawgreatcircle()

Draw a great circle between two points

drawparallels()

Draw lines of constant latitude

drawmeridians()

Draw lines of constant longitude

drawmapscale()

Draw a linear scale on the map

• Whole-globe images

bluemarble()

Project NASA’s blue marble image onto the map

shadedrelief()

Project a shaded relief image onto the map

etopo()

Draw an etopo relief image onto the map

warpimage()

Project a user-provided image onto the mapFor the boundary-based features, you must set the
desired resolution when creating a Basemap image. The resolution argument of the Basemap class
sets the level of detail in boundaries, either 'c' (crude), 'l' (low), 'i' (intermediate), 'h' (high), 'f' (full), or
None if no boundaries will be used. This choice is important: setting high- resolution boundaries on
a global map, for example, can be very slow.

Here’s an example of drawing land/sea boundaries, and the effect of the resolution

parameter. We’ll create both a low- and high-resolution map of Scotland’s beautiful Isle

of Skye. It’s located at 57.3°N, 6.2°W, and a map of 90,000×120,000 kilometers shows it

well (Figure):

In[9]: fig, ax = plt.subplots(1, 2, figsize=(12, 8))

for i, res in enumerate(['l', 'h']):

m = Basemap(projection='gnom', lat_0=57.3, lon_0=-6.2,
width=90000, height=120000, resolution=res,

ax=ax[i])m.fillcontinents(color="#FFDDCC",
lake_color='#DDEEFF')
m.drawmapboundary(fill_color="#DDEEFF")
m.drawcoastlines()
ax[i].set_title("resolution='{0}'".format(res));

Figure. Map boundaries at low and high resolution

Notice that the low-resolution coastlines are not suitable for this level of zoom, while

high-resolution works just fine. The low level would work just fine for a global view,

however, and would be much faster than loading the high-resolution border data for the

entire globe! It might require some experimentation to find the correct resolution

parameter for a given view; the best route is to start with a fast, low-resolution plot and

increase the resolution as needed.

Plotting Data on Maps

Perhaps the most useful piece of the Basemap toolkit is the ability to over-plot a vari‐ ety
of data onto a map background. For simple plotting and text, any plt function works on
the map; you can use the Basemap instance to project latitude and longitude coordinates

to (x, y) coordinates for plotting with plt, as we saw earlier in the Seat‐ tle example.

In addition to this, there are many map-specific functions available as methods of the

Basemap instance. These work very similarly to their standard Matplotlib counter‐ parts,

but have an additional Boolean argument latlon, which if set to True allows you to pass
raw latitudes and longitudes to the method, rather than projected (x, y) coordinates.

Some of these map-specific methods are:

contour()/contourf()

Draw contour lines or filled contours

imshow()

Draw an image

pcolor()/pcolormesh()

Draw a pseudocolor plot for irregular/regular meshes

plot()

Draw lines and/or markers

scatter()

Draw points with markers

quiver()

Draw vectors

barbs()

Draw wind barbs

drawgreatcircle()

Draw a great circle

We’ll see examples of a few of these as we continue. For more information on

these functions, including several example plots, see the online Basemap

documentation.

Example: California Cities

Recall that in “Customizing Plot Legends” on page 249, we demonstrated the use of size
and color in a scatter plot to convey information about the location, size, and population

of California cities. Here, we’ll create this plot again, but using Basemap to put the data in

context.

We start with loading the data, as we did before:

In[10]: import pandas as pd

cities = pd.read_csv('data/california_cities.csv')

Extract the data we're interested in

lat = cities['latd'].values
lon = cities['longd'].values

population =
cities['population_total'].values area =
cities['area_total_km2'].values

Next, we set up the map projection, scatter the data, and then create a colorbar and

legend:

In[11]: # 1. Draw the map background

fig = plt.figure(figsize=(8, 8))

m = Basemap(projection='lcc',
resolution='h', lat_0=37.5,
lon_0=-119, width=1E6,
height=1.2E6)

m.shadedrelief()
m.drawcoastlines(color='gra
y')
m.drawcountries(color='gra
y')
m.drawstates(color='gray')

2. scatter city data, with color reflecting

population # and size reflecting area

m.scatter(lon, lat, latlon=True,

c=np.log10(population),
s=area, cmap='Reds',
alpha=0.5)

3. create colorbar and legend
plt.colorbar(label=r'$\log_{10}({\rm
population})$') plt.clim(3, 7)

make legend with dummy points

for a in [100, 300, 500]:

plt.scatter([], [], c='k', alpha=0.5, s=a,
label=str(a) + ' km2')

plt.legend(scatterpoints=1,
frameon=False, labelspacing=1,

loc='lower left');

Figure. Scatter plot over a map background

This shows us roughly where larger populations of people have settled in California: they

are clustered near the coast in the Los Angeles and San Francisco areas, stretched along

the highways in the flat central valley, and avoiding almost completely the mountainous

regions along the borders of the state.

Example: Surface Temperature Data

As an example of visualizing some more continuous geographic data, let’s consider the

“polar vortex” that hit the eastern half of the United States in January 2014. A great

source for any sort of climatic data is NASA’s Goddard Institute for Space Stud‐ ies. Here

we’ll use the GIS 250 temperature data, which we can download using shell commands

(these commands may have to be modified on Windows machines). The data used here

was downloaded on 6/12/2016, and the file size is approximately 9 MB:

In[12]: # !curl -O
http://data.giss.nasa.gov/pub/gistemp/gistemp250.nc.gz #
!gunzip gistemp250.nc.gz

The data comes in NetCDF format, which can be read in Python by the netCDF4
library. You can install this library as shown here:

$ conda install netcdf4

We read the data as follows:

In[13]: from netCDF4 import
Dataset data =
Dataset('gistemp250.nc')

The file contains many global temperature readings on a variety of dates; we

need to select the index of the date we’re interested in—in this case, January 15,

2014:

In[14]: from netCDF4 import date2index

from datetime import datetime

timeindex = date2index(datetime(2014, 1, 15),

data.variables['time'])

Now we can load the latitude and longitude data, as well as the temperature

anomaly for this index:

In[15]: lat = data.variables['lat'][:] lon
= data.variables['lon'][:] lon,
lat = np.meshgrid(lon, lat)

temp_anomaly = data.variables['tempanomaly'][timeindex]

Finally, we’ll use the pcolormesh() method to draw a color mesh of the data. We’ll look

at North America, and use a shaded relief map in the background. Note that for this data
we specifically chose a divergent colormap, which has a neutral color at zero and two
contrasting colors at negative and positive values (Figure). We’ll also lightly draw the

coastlines over the colors for reference:

In[16]: fig = plt.figure(figsize=(10, 8))

m = Basemap(projection='lcc',
resolution='c', width=8E6,
height=8E6,

lat_0=45, lon_0=-100,)
m.shadedrelief(scale=0.5)
m.pcolormesh(lon, lat,
temp_anomaly,

latlon=True,
cmap='RdBu_r') plt.clim(-8, 8)
m.drawcoastlines(color='lightgray')

plt.title('January 2014 Temperature Anomaly')
plt.colorbar(label='temperature anomaly (°C)');

The data paints a picture of the localized, extreme temperature anomalies that hap‐

pened during that month. The eastern half of the United States was much colder than

normal, while the western half and Alaska were much warmer. Regions with no recorded

temperature show the map background.

Figure. The temperature anomaly in January 2014

Day-03: Visualization using google maps and ArcGis(Iris Data)

Day-04: Discussion on projects and exploring other datasets

Day-05: Mid Assessments

Week 6: Advance Data Analytics

Day-01: Hyperparameters and Model Validation

In the previous section, we saw the basic recipe for applying a supervised machine learning
model:

1. Choose a class of model.

2. Choose model hyperparameters.

3. Fit the model to the training data

4. Use the model to predict labels for new data

The first two pieces of this—the choice of model and choice of hyperparameters—are perhaps
the most important part of using these tools and techniques effectively. In order to make an
informed choice, we need a way to validate that our model and our hyperparameters are a
good fit to the data. While this may sound simple, there are some pitfalls that you must avoid
to do this effectively.

Thinking About Model Validation

In principle, model validation is very simple: after choosing a model and its hyper‐
parameters, we can estimate how effective it is by applying it to some of the training data and
comparing the prediction to the known value.

The following sections first show a naive approach to model validation and why it fails, before
exploring the use of holdout sets and cross-validation for more robust model evaluation.

Model validation the wrong way

Let’s demonstrate the naive approach to validation using the Iris data, which we saw in the
previous section. We will start by loading the data:

In[1]: from sklearn.datasets import load_iris
iris = load_iris()

X = iris.data

y = iris.target

Next we choose a model and hyperparameters. Here we’ll use a k-neighbors classifier with

n_neighbors=1. This is a very simple and intuitive model that says “the label of an unknown

point is the same as the label of its closest training point”:

In[2]: from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=1)

Then we train the model, and use it to predict labels for data we already know:

In[3]: model.fit(X, y)

y_model = model.predict(X)

Finally, we compute the fraction of correctly labeled points:

In[4]: from sklearn.metrics import accuracy_score
accuracy_score(y, y_model)

Out[4]: 1.0

We see an accuracy score of 1.0, which indicates that 100% of points were correctly
labeled by our model! But is this truly measuring the expected accuracy? Have we
really come upon a model that we expect to be correct 100% of the time?

As you may have gathered, the answer is no. In fact, this approach contains a funda‐ mental
flaw: it trains and evaluates the model on the same data. Furthermore, the nearest neighbor
model is an instance-based estimator that simply stores the training data, and predicts labels
by comparing new data to these stored points; except in con‐ trived cases, it will get 100%
accuracy every time!

Model validation the right way: Holdout sets

So what can be done? We can get a better sense of a model’s performance using what’s known as a
holdout set; that is, we hold back some subset of the data from the training of the model, and
then use this holdout set to check the model performance. We can do this splitting using the

train_test_split utility in Scikit-Learn:

In[5]: from sklearn.cross_validation import train_test_split

split the data with 50% in each set

X1, X2, y1, y2 = train_test_split(X, y, random_state=0,

train_size=0.5)

fit the model on one set of data

model.fit(X1, y1)

evaluate the model on the second set of data
y2_model = model.predict(X2)
accuracy_score(y2, y2_model)

Out[5]: 0.90666666666666662

We see here a more reasonable result: the nearest-neighbor classifier is about 90% accurate
on this holdout set. The holdout set is similar to unknown data, because the model has not
“seen” it before.

Model validation via cross-validation

One disadvantage of using a holdout set for model validation is that we have lost a portion of

our data to the model training. In the previous case, half the dataset does not contribute to the
training of the model! This is not optimal, and can cause prob‐ lems—especially if the initial
set of training data is small.

One way to address this is to use cross-validation—that is, to do a sequence of fits
where each subset of the data is used both as a training set and as a validation set.
Visually, it might look something like Figure 5-22.

Figure 5-22. Visualization of two-fold cross-validation

Here we do two validation trials, alternately using each half of the data as a holdout set. Using
the split data from before, we could implement it like this:

In[6]: y2_model = model.fit(X1, y1).predict(X2)
y1_model = model.fit(X2, y2).predict(X1)

accuracy_score(y1, y1_model), accuracy_score(y2, y2_model)

Out[6]: (0.95999999999999996, 0.90666666666666662)

What comes out are two accuracy scores, which we could combine (by, say, taking the mean) to
get a better measure of the global model performance. This particular form of cross-validation
is a two-fold cross-validation—one in which we have split the data into two sets and used each
in turn as a validation set.

We could expand on this idea to use even more trials, and more folds in the data—for example,
Figure 5-23 is a visual depiction of five-fold cross-validation.

Figure 5-23. Visualization of five-fold cross-validation

Here we split the data into five groups, and use each of them in turn to evaluate the model fit
on the other 4/5 of the data. This would be rather tedious to do by hand, and so we can use

Scikit-Learn’s cross_val_score convenience routine to do it succinctly:

In[7]: from sklearn.cross_validation import cross_val_score
cross_val_score(model, X, y, cv=5)

Out[7]: array([0.96666667, 0.96666667, 0.93333333, 0.93333333, 1.])

Repeating the validation across different subsets of the data gives us an even better idea of the
performance of the algorithm.

Scikit-Learn implements a number of cross-validation schemes that are useful in par‐ ticular

situations; these are implemented via iterators in the cross_validation mod‐ ule. For

example, we might wish to go to the extreme case in which our number of folds is equal to the
number of data points; that is, we train on all points but one in each trial. This type of cross-
validation is known as leave-one-out cross-validation, and can be used as follows:

In[8]: from sklearn.cross_validation import LeaveOneOut

scores = cross_val_score(model, X, y, cv=LeaveOneOut(len(X)))
scores

Out[8]: array([
1.,

1., 1.
,

1.
,

1.
,

1.
,

1.
,

1.
,

1.
,

1.
,

1.
,

1.
,

1.
,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1.

,

1., 1., 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1.

, , , , , , , , , , ,

1., 1.
,

1.
,

1.
,

1., 0.
,

1., 1., 1.
,

1.
,

1.
,

1.
,

1.
,

1., 1.

,

1.

,

1.

,

1., 1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1., 1.

,

0.

,

1.

,

1., 1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1., 1.

,

0.

,

1.

,

1., 1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1., 1.

,

1.

,

0.

,

1., 1.

,

1., 1., 1.

,

1.

,

1.

,

1.

,

1.

,

1., 1.
,

1.
,

1.
,

1., 1.
,

1.]
)

Because we have 150 samples, the leave-one-out cross-validation yields scores for 150 trials,
and the score indicates either successful (1.0) or unsuccessful (0.0) prediction. Taking the
mean of these gives an estimate of the error rate:

In[9]: scores.mean()

Out[9]: 0.95999999999999996

Other cross-validation schemes can be used similarly. For a description of what is available in

Scikit-Learn, use IPython to explore the sklearn.cross_validation sub‐ module, or take a look

at Scikit-Learn’s online cross-validation documentation.

Selecting the Best Model

Now that we’ve seen the basics of validation and cross-validation, we will go into a little more
depth regarding model selection and selection of hyperparameters. These issues are some of
the most important aspects of the practice of machine learning, and I find that this
information is often glossed over in introductory machine learn‐ ing tutorials.

Of core importance is the following question: if our estimator is underperforming, how

should we move forward? There are several possible answers:

• Use a more complicated/more flexible model

• Use a less complicated/less flexible model

• Gather more training samples

• Gather more data to add features to each sample

The answer to this question is often counterintuitive. In particular, sometimes using a more
complicated model will give worse results, and adding more training samples may not
improve your results! The ability to determine what steps will improve your model is what
separates the successful machine learning practitioners from the unsuccessful.

The bias–variance trade-off

Fundamentally, the question of “the best model” is about finding a sweet spot in the trade-off
between bias and variance. Consider Figure 5-24, which presents two regression fits to the
same dataset.

Figure 5-24. A high-bias and high-variance regression model

It is clear that neither of these models is a particularly good fit to the data, but they
fail in different ways.

The model on the left attempts to find a straight-line fit through the data. Because the data are
intrinsically more complicated than a straight line, the straight-line model will never be able
to describe this dataset well. Such a model is said to underfit the data; that is, it does not have

enough model flexibility to suitably account for all the features in the data. Another way of
saying this is that the model has high bias.

The model on the right attempts to fit a high-order polynomial through the data. Here
the model fit has enough flexibility to nearly perfectly account for the fine fea‐ tures in the
data, but even though it very accurately describes the training data, its precise form seems to
be more reflective of the particular noise properties of the data rather than the intrinsic
properties of whatever process generated that data. Such a model is said to overfit the data;

that is, it has so much model flexibility that the model ends up accounting for random errors
as well as the underlying data distribu‐ tion. Another way of saying this is that the model has
high variance.

To look at this in another light, consider what happens if we use these two models to predict
the y-value for some new data. In diagrams in Figure 5-25, the red/lighter points indicate data
that is omitted from the training set.

Figure 5-25. Training and validation scores in high-bias and high-variance models

The score here is the R2 score, or coefficient of determination, which measures how well a

model performs relative to a simple mean of the target values. R2 = 1 indicates a perfect

match, R2 = 0 indicates the model does no better than simply taking the mean of the data, and

negative values mean even worse models. From the scores asso‐ ciated with these two models,

we can make an observation that holds more generally:

• For high-bias models, the performance of the model on the validation set is simi‐

lar to the performance on the training set.

• For high-variance models, the performance of the model on the validation set is

far worse than the performance on the training set.

If we imagine that we have some ability to tune the model complexity, we would
expect the training score and validation score to behave as illustrated in Figure 5-26.

The diagram shown in Figure 5-26 is often called a validation curve, and we see the following
essential features:

• The training score is everywhere higher than the validation score. This is gener‐

ally the case: the model will be a better fit to data it has seen than to data it has

not seen.

• For very low model complexity (a high-bias model), the training data is underfit,

which means that the model is a poor predictor both for the training data and for

any previously unseen data.

• For very high model complexity (a high-variance model), the training data is

overfit, which means that the model predicts the training data very well, but fails

for any previously unseen data.

• For some intermediate value, the validation curve has a maximum. This level of

complexity indicates a suitable trade-off between bias and variance.

Figure 5-26. A schematic of the relationship between model complexity, training score, and

validation score

The means of tuning the model complexity varies from model to model; when we discuss
individual models in depth in later sections, we will see how each model allows for such
tuning.

Validation curves in Scikit-Learn

Let’s look at an example of using cross-validation to compute the validation curve for a class of
models. Here we will use a polynomial regression model: this is a generalized linear model in
which the degree of the polynomial is a tunable parameter. For example, a degree-1
polynomial fits a straight line to the data; for model parameters a and b:

y = ax + b

A degree-3 polynomial fits a cubic curve to the data; for model parameters a, b, c, d:

y = ax3 + bx2 + cx + d

We can generalize this to any number of polynomial features. In Scikit-Learn, we can
implement this with a simple linear regression combined with the polynomial pre‐ processor.
We will use a pipeline to string these operations together (we will discuss polynomial features
and pipelines more fully in “Feature Engineering” on page 375):

In[10]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import make_pipeline

def PolynomialRegression(degree=2, **kwargs):

return make_pipeline(PolynomialFeatures(degree),

LinearRegression(**kwargs))

Now let’s create some data to which we will fit our model:

In[11]: import numpy as np

def make_data(N, err=1.0, rseed=1):

randomly sample the data

rng = np.random.RandomState(rseed)

X = rng.rand(N, 1) ** 2

y = 10 - 1. / (X.ravel() + 0.1)

if err > 0:

y += err * rng.randn(N)

return X, y

X, y = make_data(40)

We can now visualize our data, along with polynomial fits of several degrees
(Figure 5-27):

In[12]: %matplotlib inline

import matplotlib.pyplot as plt

import seaborn; seaborn.set() # plot formatting

X_test = np.linspace(-0.1, 1.1, 500)[:, None]

plt.scatter(X.ravel(), y, color='black')

axis = plt.axis()

for degree in [1, 3, 5]:

y_test = PolynomialRegression(degree).fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test, label='degree={0}'.format(degree))

plt.xlim(-0.1, 1.0)

plt.ylim(-2, 12)
plt.legend(loc='best');

The knob controlling model complexity in this case is the degree of the polynomial, which can
be any non-negative integer. A useful question to answer is this: what degree of polynomial
provides a suitable trade-off between bias (underfitting) and variance (overfitting)?

Figure 5-27. Three different polynomial models fit to a dataset

We can make progress in this by visualizing the validation curve for this particular data and

model; we can do this straightforwardly using the validation_curve conve‐ nience routine

provided by Scikit-Learn. Given a model, data, parameter name, and a range to explore, this
function will automatically compute both the training score and validation score across the
range (Figure 5-28):

In[13]:

from sklearn.learning_curve import validation_curve
degree = np.arange(0, 21)

train_score, val_score = validation_curve(PolynomialRegression(), X, y,

'polynomialfeatures degree',
degree, cv=7)

plt.plot(degree, np.median(train_score, 1), color='blue', label='training score')
plt.plot(degree, np.median(val_score, 1), color='red', label='validation score')
plt.legend(loc='best')

plt.ylim(0, 1)
plt.xlabel('degree')
plt.ylabel('score');

This shows precisely the qualitative behavior we expect: the training score is every‐ where
higher than the validation score; the training score is monotonically improving with increased
model complexity; and the validation score reaches a maximum before dropping off as the

model becomes overfit.

Figure 5-28. The validation curves for the data in Figure 5-27 (cf. Figure 5-26)

From the validation curve, we can read off that the optimal trade-off between bias and
variance is found for a third-order polynomial; we can compute and display this fit over the
original data as follows (Figure 5-29):

In[14]: plt.scatter(X.ravel(), y)
lim = plt.axis()

y_test = PolynomialRegression(3).fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test);

plt.axis(lim);

Figure 5-29. The cross-validated optimal model for the data in Figure 5-27

Notice that finding this optimal model did not actually require us to compute the training
score, but examining the relationship between the training score and valida‐ tion score can
give us useful insight into the performance of the model.

Learning Curves

One important aspect of model complexity is that the optimal model will generally depend on
the size of your training data. For example, let’s generate a new dataset with a factor of five
more points (Figure 5-30):

In[15]: X2, y2 = make_data(200)
plt.scatter(X2.ravel(), y2);

Figure 5-30. Data to demonstrate learning curves

We will duplicate the preceding code to plot the validation curve for this larger
data‐ set; for reference let’s over-plot the previous results as well (Figure 5-31):

In[16]:

degree = np.arange(21)

train_score2, val_score2 = validation_curve(PolynomialRegression(), X2, y2,

'polynomialfeatures degree',
degree, cv=7)

plt.plot(degree, np.median(train_score2, 1), color='blue',
label='training score')

plt.plot(degree, np.median(val_score2, 1), color='red', label='validation score')
plt.plot(degree, np.median(train_score, 1), color='blue', alpha=0.3,

linestyle='dashed')

plt.plot(degree, np.median(val_score, 1), color='red', alpha=0.3,
linestyle='dashed')

plt.legend(loc='lower center')
plt.ylim(0, 1)

plt.xlabel('degree')
plt.ylabel('score');

Figure 5-31. Learning curves for the polynomial model fit to data in Figure 5-30

The solid lines show the new results, while the fainter dashed lines show the results of the
previous smaller dataset. It is clear from the validation curve that the larger data‐ set can
support a much more complicated model: the peak here is probably around a degree of 6, but
even a degree-20 model is not seriously overfitting the data—the vali‐ dation and training
scores remain very close.

Thus we see that the behavior of the validation curve has not one, but two, important inputs:
the model complexity and the number of training points. It is often useful to explore the
behavior of the model as a function of the number of training points, which we can do by
using increasingly larger subsets of the data to fit our model. A plot of the training/validation
score with respect to the size of the training set is known as a learning curve.

The general behavior we would expect from a learning curve is this:

• A model of a given complexity will overfit a small dataset: this means the training
score will be relatively high, while the validation score will be relatively low.

• A model of a given complexity will underfit a large dataset: this means that the
training score will decrease, but the validation score will increase.

• A model will never, except by chance, give a better score to the validation set than

the training set: this means the curves should keep getting closer together but

never cross.

With these features in mind, we would expect a learning curve to look qualitatively like that
shown in Figure 5-32.

Figure 5-32. Schematic showing the typical interpretation of learning curves

The notable feature of the learning curve is the convergence to a particular score as the
number of training samples grows. In particular, once you have enough points that a
particular model has converged, adding more training data will not help you! The only way to
increase model performance in this case is to use another (often more complex) model.

Learning curves in Scikit-Learn

Scikit-Learn offers a convenient utility for computing such learning curves from your models;
here we will compute a learning curve for our original dataset with a second- order
polynomial model and a ninth-order polynomial (Figure 5-33):

In[17]:

from sklearn.learning_curve import learning_curve

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for i, degree in enumerate([2, 9]):

N, train_lc, val_lc = learning_curve(PolynomialRegression(degree),

X, y, cv=7,
train_sizes=np.linspace(0.3, 1, 25))

ax[i].plot(N, np.mean(train_lc, 1), color='blue', label='training score')
ax[i].plot(N, np.mean(val_lc, 1), color='red', label='validation score')
ax[i].hlines(np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1], color='gray',

linestyle='dashed')

ax[i].set_ylim(0, 1)
ax[i].set_xlim(N[0], N[-1])
ax[i].set_xlabel('training size')
ax[i].set_ylabel('score')

ax[i].set_title('degree = {0}'.format(degree), size=14)
ax[i].legend(loc='best')

Figure 5-33. Learning curves for a low-complexity model (left) and a high-complexity

model (right)

This is a valuable diagnostic, because it gives us a visual depiction of how our model responds
to increasing training data. In particular, when your learning curve has already converged
(i.e., when the training and validation curves are already close to each other), adding more
training data will not significantly improve the fit! This situa‐ tion is seen in the left panel, with

the learning curve for the degree-2 model.

The only way to increase the converged score is to use a different (usually more com‐ plicated)
model. We see this in the right panel: by moving to a much more compli‐ cated model, we
increase the score of convergence (indicated by the dashed line), but at the expense of higher
model variance (indicated by the difference between the training and validation scores). If we
were to add even more data points, the learning curve for the more complicated model would
eventually converge.

Plotting a learning curve for your particular choice of model and dataset can help
you to make this type of decision about how to move forward in improving your
analysis.

Validation in Practice: Grid Search

The preceding discussion is meant to give you some intuition into the trade-off between bias
and variance, and its dependence on model complexity and training set size. In practice,
models generally have more than one knob to turn, and thus plots of validation and learning
curves change from lines to multidimensional surfaces. In these cases, such visualizations are
difficult and we would rather simply find the par‐ ticular model that maximizes the validation
score.

Scikit-Learn provides automated tools to do this in the grid_search module. Here is an

example of using grid search to find the optimal polynomial model. We will explore a three-
dimensional grid of model features—namely, the polynomial degree, the flag telling us
whether to fit the intercept, and the flag telling us whether to nor‐ malize the problem. We can

set this up using Scikit-Learn’s GridSearchCV meta- estimator:

In[18]: from sklearn.grid_search import GridSearchCV

param_grid = {'polynomialfeatures degree': np.arange(21),
'linearregression fit_intercept': [True, False],
'linearregression normalize': [True, False]}

grid = GridSearchCV(PolynomialRegression(), param_grid, cv=7)

Notice that like a normal estimator, this has not yet been applied to any data. Calling the fit()

method will fit the model at each grid point, keeping track of the scores along the way:

In[19]: grid.fit(X, y);

Now that this is fit, we can ask for the best parameters as follows:

In[20]: grid.best_params_

Out[20]: {'linearregression fit_intercept': False,
'linearregression normalize': True,
'polynomialfeatures degree': 4}

Finally, if we wish, we can use the best model and show the fit to our data using code from
before (Figure 5-34):

In[21]: model = grid.best_estimator_

plt.scatter(X.ravel(), y)
lim = plt.axis()

y_test = model.fit(X, y).predict(X_test)
plt.plot(X_test.ravel(), y_test, hold=True);
plt.axis(lim);

The grid search provides many more options, including the ability to specify a cus‐ tom
scoring function, to parallelize the computations, to do randomized searches, and more.
For information, see the examples in “In-Depth: Kernel Density Estima‐ tion” on page 491 and
“Application: A Face Detection Pipeline” on page 506, or refer to Scikit-Learn’s grid search
documentation.

Figure 5-34. The best-fit model determined via an automatic grid-search

Day-02: Feature Engineering

The previous sections outline the fundamental ideas of machine learning, but all of the

examples assume that you have numerical data in a tidy, [n_samples, n_fea tures] format.

In the real world, data rarely comes in such a form. With this in mind, one of the more
important steps in using machine learning in practice is feature engi‐ neering—that is, taking
whatever information you have about your problem and turning it into numbers that you can
use to build your feature matrix.

In this section, we will cover a few common examples of feature engineering tasks: features
for representing categorical data, features for representing text, and features for representing
images. Additionally, we will discuss derived features for increasing model complexity and
imputation of missing data. Often this process is known as vec‐ torization, as it involves
converting arbitrary data into well-behaved vectors.

Categorical Features

One common type of non-numerical data is categorical data. For example, imagine you are
exploring some data on housing prices, and along with numerical features like “price” and
“rooms,” you also have “neighborhood” information. For example, your data might look
something like this:

In[1]: data = [

{'price': 850000, 'rooms': 4, 'neighborhood': 'Queen Anne'},

{'price': 700000, 'rooms': 3, 'neighborhood': 'Fremont'},

{'price': 650000, 'rooms': 3, 'neighborhood': 'Wallingford'},

{'price': 600000, 'rooms': 2, 'neighborhood': 'Fremont'}

]

You might be tempted to encode this data with a straightforward numerical mapping:

In[2]: {'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};

It turns out that this is not generally a useful approach in Scikit-Learn: the package’s models
make the fundamental assumption that numerical features reflect algebraic quantities. Thus
such a mapping would imply, for example, that Queen Anne < Fre‐ mont < Wallingford, or even
that Wallingford - Queen Anne = Fremont, which (niche demographic jokes aside) does not
make much sense.

In this case, one proven technique is to use one-hot encoding, which effectively creates extra
columns indicating the presence or absence of a category with a value of 1 or 0, respectively.

When your data comes as a list of dictionaries, Scikit-Learn’s DictVector izer will do this for

you:

In[3]: from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False, dtype=int)
vec.fit_transform(data)

Out[3]:
array([[

0, 1, 0, 850000, 4],

[1, 0, 0, 700000, 3],

[0, 0, 1, 650000, 3],

[1, 0, 0, 600000, 2]],
dtype=int64)

Notice that the neighborhood column has been expanded into three separate columns,
representing the three neighborhood labels, and that each row has a 1 in the column
associated with its neighborhood. With these categorical features thus encoded, you can
proceed as normal with fitting a Scikit-Learn model.

To see the meaning of each column, you can inspect the feature names:

In[4]: vec.get_feature_names()

Out[4]: ['neighborhood=Fremont',

'neighborhood=Queen Anne',
'neighborhood=Wallingford',
'price',

'rooms']

There is one clear disadvantage of this approach: if your category has many possible values,
this can greatly increase the size of your dataset. However, because the enco‐ ded data
contains mostly zeros, a sparse output can be a very efficient solution:

In[5]: vec = DictVectorizer(sparse=True, dtype=int)
vec.fit_transform(data)

Out[5]: <4x5 sparse matrix of type '<class 'numpy.int64'>'

with 12 stored elements in Compressed Sparse Row format>

Many (though not yet all) of the Scikit-Learn estimators accept such sparse inputs

when fitting and evaluating models. sklearn.preprocessing.OneHotEncoder and

sklearn.feature_extraction.FeatureHasher are two additional tools that Scikit-

Learn includes to support this type of encoding.

Text Features

Another common need in feature engineering is to convert text to a set of representa‐ tive
numerical values. For example, most automatic mining of social media data relies on some
form of encoding the text as numbers. One of the simplest methods of encoding data is by
word counts: you take each snippet of text, count the occurrences of each word within it, and
put the results in a table.

For example, consider the following set of three phrases:

In[6]: sample = ['problem of evil',

'evil queen',
'horizon problem']

For a vectorization of this data based on word count, we could construct a column
representing the word “problem,” the word “evil,” the word “horizon,” and so on. While doing
this by hand would be possible, we can avoid the tedium by using Scikit- Learn’s

CountVectorizer:

In[7]: from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer()

X = vec.fit_transform(sample)
X

Out[7]: <3x5 sparse matrix of type '<class 'numpy.int64'>'

with 7 stored elements in Compressed Sparse Row format>

The result is a sparse matrix recording the number of times each word appears; it is easier to

inspect if we convert this to a DataFrame with labeled columns:

In[8]: import pandas as pd

pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Out[8]
:

evil horizo
n

of proble
m

quee
n

 0 1 0 1 1 0

 1 1 0 0 0 1
 2 0 1 0 1 0

There are some issues with this approach, however: the raw word counts lead to fea‐ tures
that put too much weight on words that appear very frequently, and this can be suboptimal
in some classification algorithms. One approach to fix this is known as term frequency–
inverse document frequency (TF–IDF), which weights the word counts by a measure of how
often they appear in the documents. The syntax for computing these features is similar to the
previous example:

In[9]: from sklearn.feature_extraction.text import TfidfVectorizer
vec = TfidfVectorizer()

X = vec.fit_transform(sample)

pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Out[9]
:

evil horizo
n

of proble
m

queen

 0

0.517856

0.00000

0

0.68091

9

0.51785

6

0.00000

0

 1

0.605349

0.00000

0

0.00000

0

0.00000

0

0.79596

1
 2

0.000000
0.79596

1
0.00000
0

0.60534
9

0.00000
0

For an example of using TF–IDF in a classification problem, see “In Depth: Naive Bayes
Classification” on page 382.

Image Features

Another common need is to suitably encode images for machine learning analysis. The
simplest approach is what we used for the digits data in “Introducing Scikit- Learn” on page
343: simply using the pixel values themselves. But depending on the application, such
approaches may not be optimal.

A comprehensive summary of feature extraction techniques for images is well beyond the
scope of this section, but you can find excellent implementations of many of the standard
approaches in the Scikit-Image project. For one example of using Scikit- Learn and Scikit-
Image together, see “Application: A Face Detection Pipeline” on page 506.

Derived Features

Another useful type of feature is one that is mathematically derived from some input features.
We saw an example of this in “Hyperparameters and Model Validation” on page 359 when we
constructed polynomial features from our input data. We saw that we could convert a linear
regression into a polynomial regression not by changing the model, but by transforming the
input! This is sometimes known as basis function regression, and is explored further in “In
Depth: Linear Regression” on page 390.

For example, this data clearly cannot be well described by a straight line (Figure 5-35):

In[10]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

x = np.array([1, 2, 3, 4, 5])

y = np.array([4, 2, 1, 3, 7])
plt.scatter(x, y);

Figure 5-35. Data that is not well described by a straight line

Still, we can fit a line to the data using LinearRegression and get the optimal result (Figure
5-36):

In[11]: from sklearn.linear_model import LinearRegression
X = x[:, np.newaxis]

model = LinearRegression().fit(X, y)
yfit = model.predict(X)
plt.scatter(x, y)

plt.plot(x, yfit);

Figure 5-36. A poor straight-line fit

It’s clear that we need a more sophisticated model to describe the relationship between x and
y. We can do this by transforming the data, adding extra columns of features to drive more
flexibility in the model. For example, we can add polynomial features to the data this way:

In[12]: from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3, include_bias=False)
X2 = poly.fit_transform(X)

print(X2)

[[1. 1. 1.]

[2. 4. 8.]

[3. 9. 27.]

[4. 16. 64.]

[5. 25. 125.]
]

The derived feature matrix has one column representing x, and a second column rep‐

resenting x2, and a third column representing x3. Computing a linear regression on this

expanded input gives a much closer fit to our data (Figure 5-37):

In[13]: model = LinearRegression().fit(X2, y)
yfit = model.predict(X2)
plt.scatter(x, y)

plt.plot(x, yfit);

Figure 5-37. A linear fit to polynomial features derived from the data

This idea of improving a model not by changing the model, but by transforming the inputs, is
fundamental to many of the more powerful machine learning methods. We explore this idea
further in “In Depth: Linear Regression” on page 390 in the context of basis function
regression. More generally, this is one motivational path to the pow‐ erful set of techniques
known as kernel methods, which we will explore in “In-Depth: Support Vector Machines” on
age 405.

Imputation of Missing Data

Another common need in feature engineering is handling missing data. We discussed the

handling of missing data in DataFrames in “Handling Missing Data” on page 119, and saw that

often the NaN value is used to mark missing values. For example, we might have a dataset that

looks like this:

In[14]: from numpy import nan

X = np.array([[nan, 0, 3],
[
3,

7, 9],

[

3,

5, 2],

[nan 6],

4, ,

[
8,

8, 1]])

y = np.array([14, 16, -1, 8, -5])

When applying a typical machine learning model to such data, we will need to first replace
such missing data with some appropriate fill value. This is known as imputa‐ tion of missing
values, and strategies range from simple (e.g., replacing missing values with the mean of the
column) to sophisticated (e.g., using matrix completion or a robust model to handle such
data).

The sophisticated approaches tend to be very application-specific, and we won’t dive into

them here. For a baseline imputation approach, using the mean, median, or most frequent

value, Scikit-Learn provides the Imputer class:

In[15]: from sklearn.preprocessing import Imputer
imp = Imputer(strategy='mean')

X2 = imp.fit_transform(X)
X2

Out[15]: array([[
4.5,

0.
,

3.
],

[3. , 7.

,

9.

],

[3. , 5.

,

2.

],

[4. , 5.

,

6.

],

[8. , 8.
,

1.
]])

We see that in the resulting data, the two missing values have been replaced with the mean of

the remaining values in the column. This imputed data can then be fed directly into, for

example, a LinearRegression estimator:

In[16]: model = LinearRegression().fit(X2, y)
model.predict(X2)

Out[16]:

array([13.14869292, 14.3784627 , -1.15539732, 10.96606197, -5.33782027])

Feature Pipelines

With any of the preceding examples, it can quickly become tedious to do the transfor‐ mations
by hand, especially if you wish to string together multiple steps. For example, we might want a
processing pipeline that looks something like this:

1. Impute missing values using the mean

2. Transform features to quadratic

3. Fit a linear regression

To streamline this type of processing pipeline, Scikit-Learn provides a pipeline object, which can
be used as follows:

In[17]: from sklearn.pipeline import make_pipeline

model = make_pipeline(Imputer(strategy='mean'),

PolynomialFeatures(degree=2),
LinearRegression())

This pipeline looks and acts like a standard Scikit-Learn object, and will apply all the specified
steps to any input data.

In[18]: model.fit(X, y) # X with missing values, from above

print(y)
print(model.predict(X))

[14 16 -1 8 -5]

[14. 16. -1. 8. -5.]

All the steps of the model are applied automatically. Notice that for the simplicity of this
demonstration, we’ve applied the model to the data it was trained on; this is why it was able
to perfectly predict the result (refer back to “Hyperparameters and Model Validation” on page
359 for further discussion of this).

For some examples of Scikit-Learn pipelines in action, see the following section on naive
Bayes classification as well as “In Depth: Linear Regression” on page 390 and “In-Depth:
Support Vector Machines” on page 405.

Day-03: Linear Regression

Just as naive Bayes (discussed earlier in “In Depth: Naive Bayes Classification” on page 382) is
a good starting point for classification tasks, linear regression models are a good starting point
for regression tasks. Such models are popular because they can be fit very quickly, and are
very interpretable. You are probably familiar with the sim‐ plest form of a linear regression
model (i.e., fitting a straight line to data), but such models can be extended to model more
complicated data behavior.

In this section we will start with a quick intuitive walk-through of the mathematics behind
this well-known problem, before moving on to see how linear models can be generalized to
account for more complicated patterns in data. We begin with the stan‐ dard imports:

In[1]: %matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()
import numpy as np

Simple Linear Regression

We will start with the most familiar linear regression, a straight-line fit to data. A straight-line

fit is a model of the form y = ax + b where a is commonly known as the slope, and b is
commonly known as the intercept.

Consider the following data, which is scattered about a line with a slope of 2 and an intercept
of –5 (Figure 5-42):

In[2]: rng = np.random.RandomState(1)
x = 10 * rng.rand(50)

y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);

Figure 5-42. Data for linear regression

We can use Scikit-Learn’s LinearRegression estimator to fit this data and construct the best-
fit line (Figure 5-43):

In[3]: from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 10, 1000)

yfit = model.predict(xfit[:, np.newaxis])plt.scatter(x, y) plt.plot(xfit, yfit);

Figure 5-43. A linear regression model

The slope and intercept of the data are contained in the model’s fit parameters, which in
Scikit-Learn are always marked by a trailing underscore. Here the relevant parame‐ ters are

coef_ and intercept_:

In[4]: print("Model slope: ", model.coef_[0])

print("Model intercept:", model.intercept_)

Model slope: 2.02720881036

Model intercept: -4.99857708555

We see that the results are very close to the inputs, as we might hope.

The LinearRegression estimator is much more capable than this, however—in addi‐ tion to

simple straight-line fits, it can also handle multidimensional linear models of the form:

y = a0 + a1x1 + a2x2 + ⋯

where there are multiple x values. Geometrically, this is akin to fitting a plane to
points in three dimensions, or fitting a hyper-plane to points in higher dimensions.

The multidimensional nature of such regressions makes them more difficult to visu‐ alize, but
we can see one of these fits in action by building some example data, using NumPy’s matrix
multiplication operator:

In[5]: rng = np.random.RandomState(1)
X = 10 * rng.rand(100, 3)

y = 0.5 + np.dot(X, [1.5, -2., 1.])

model.fit(X, y)
print(model.intercept_)
print(model.coef_)

0.5

[1.5 -2. 1.]

Here the y data is constructed from three random x values, and the linear regression recovers
the coefficients used to construct the data.

In this way, we can use the single LinearRegression estimator to fit lines, planes, or

hyperplanes to our data. It still appears that this approach would be limited to strictly linear
relationships between variables, but it turns out we can relax this as well.

Basis Function Regression

One trick you can use to adapt linear regression to nonlinear relationships between variables
is to transform the data according to basis functions. We have seen one ver‐ sion of this before,

in the PolynomialRegression pipeline used in “Hyperparameters and Model Validation” on

page 359 and “Feature Engineering” on page 375. The idea is to take our multidimensional
linear model:

y = a0 + a1x1 + a2x2 + a3x3 + ⋯

and build the x1, x2, x3, and so on from our single-dimensional input x. That is, we let

xn = f n x , where f n is some function that transforms our data.

For example, if f n x = xn, our model becomes a polynomial regression:

y = a0 + a1x + a2x2 + a3x3 + ⋯

Notice that this is still a linear model—the linearity refers to the fact that the coeffi‐ cients an

never multiply or divide each other. What we have effectively done is taken our one-
dimensional x values and projected them into a higher dimension, so that a linear fit can fit
more complicated relationships between x and y.

Polynomial basis functions

This polynomial projection is useful enough that it is built into Scikit-Learn, using

the PolynomialFeatures transformer:

In[6]: from sklearn.preprocessing import PolynomialFeatures
x = np.array([2, 3, 4])

poly = PolynomialFeatures(3, include_bias=False)
poly.fit_transform(x[:, None])

Out[6]:
array([[

2.
,

4.
,

8.],

[3.

,

9.

,

27.]

,

[4.
,

16.
,

64.]]
)

We see here that the transformer has converted our one-dimensional array into a three-
dimensional array by taking the exponent of each value. This new, higher- dimensional data
representation can then be plugged into a linear regression.

As we saw in “Feature Engineering” on page 375, the cleanest way to accomplish this is to use a
pipeline. Let’s make a 7th-degree polynomial model in this way:

In[7]: from sklearn.pipeline import make_pipeline
poly_model = make_pipeline(PolynomialFeatures(7),

LinearRegression())

With this transform in place, we can use the linear model to fit much more compli‐ cated
relationships between x and y. For example, here is a sine wave with noise (Figure 5-44):

In[8]: rng = np.random.RandomState(1)
x = 10 * rng.rand(50)

y = np.sin(x) + 0.1 * rng.randn(50)

poly_model.fit(x[:, np.newaxis], y)

yfit = poly_model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);

Figure 5-44. A linear polynomial fit to nonlinear training data

Our linear model, through the use of 7th-order polynomial basis functions, can pro‐
vide an excellent fit to this nonlinear data!

Gaussian basis functions

Of course, other basis functions are possible. For example, one useful pattern is to fit
a model that is not a sum of polynomial bases, but a sum of Gaussian bases. The
result might look something like Figure 5-45.

Figure 5-45. A Gaussian basis function fit to nonlinear data

The shaded regions in the plot shown in Figure 5-45 are the scaled basis functions, and when
added together they reproduce the smooth curve through the data. These Gaussian basis
functions are not built into Scikit-Learn, but we can write a custom transformer that will
create them, as shown here and illustrated in Figure 5-46 (Scikit-Learn transformers are
implemented as Python classes; reading Scikit-Learn’s source is a good way to see how they
can be created):

In[9]:

from sklearn.base import BaseEstimator, TransformerMixin

class GaussianFeatures(BaseEstimator, TransformerMixin):

"""Uniformly spaced Gaussian features for one-dimensional input"""

def __init__(self, N, width_factor=2.0):

self.N = N

self.width_factor = width_factor

@staticmethod

def _gauss_basis(x, y, width, axis=None):
arg = (x - y) / width

return np.exp(-0.5 * np.sum(arg ** 2, axis))

def fit(self, X, y=None):

create N centers spread along the data range

self.centers_ = np.linspace(X.min(), X.max(), self.N)

self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])

return self

def transform(self, X):

return self._gauss_basis(X[:, :, np.newaxis], self.centers_,

self.width_, axis=1)

gauss_model = make_pipeline(GaussianFeatures(20),

LinearRegression())
gauss_model.fit(x[:, np.newaxis], y)

yfit = gauss_model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.xlim(0, 10);

Figure 5-46. A Gaussian basis function fit computed with a custom transformer

We put this example here just to make clear that there is nothing magic about poly‐ nomial
basis functions: if you have some sort of intuition into the generating process of your data that
makes you think one basis or another might be appropriate, you can use them as well.

Regularization

The introduction of basis functions into our linear regression makes the model much more
flexible, but it also can very quickly lead to overfitting (refer back to “Hyper‐ parameters and
Model Validation” on page 359 for a discussion of this). For example, if we choose too many
Gaussian basis functions, we end up with results that don’t look so good (Figure 5-47):

In[10]: model = make_pipeline(GaussianFeatures(30),

LinearRegression())
model.fit(x[:, np.newaxis], y)

plt.scatter(x, y)

plt.plot(xfit, model.predict(xfit[:, np.newaxis]))

plt.xlim(0, 10)

plt.ylim(-1.5, 1.5);

Figure 5-47. An overly complex basis function model that overfits the data

With the data projected to the 30-dimensional basis, the model has far too much flex‐ ibility
and goes to extreme values between locations where it is constrained by data. We can see the
reason for this if we plot the coefficients of the Gaussian bases with respect to their locations
(Figure 5-48):

In[11]: def basis_plot(model, title=None):

fig, ax = plt.subplots(2, sharex=True)
model.fit(x[:, np.newaxis], y)
ax[0].scatter(x, y)

ax[0].plot(xfit, model.predict(xfit[:, np.newaxis]))
ax[0].set(xlabel='x', ylabel='y', ylim=(-1.5, 1.5))

if title:

ax[0].set_title(title)

ax[1].plot(model.steps[0][1].centers_,
model.steps[1][1].coef_)

ax[1].set(xlabel='basis location',
ylabel='coefficient',
xlim=(0, 10))

model = make_pipeline(GaussianFeatures(30), LinearRegression())
basis_plot(model)

Figure 5-48. The coefficients of the Gaussian bases in the overly complex model

The lower panel in Figure 5-48 shows the amplitude of the basis function at each location.
This is typical overfitting behavior when basis functions overlap: the coeffi‐ cients of adjacent
basis functions blow up and cancel each other out. We know that such behavior is
problematic, and it would be nice if we could limit such spikes explicitly in the model by
penalizing large values of the model parameters. Such a penalty is known as regularization,
and comes in several forms.

Ridge regression (L2 regularization)

Perhaps the most common form of regularization is known as ridge regression or L2

regularization, sometimes also called Tikhonov regularization. This proceeds by penal‐ izing the

sum of squares (2-norms) of the model coefficients; in this case, the penalty on the model fit

would be:

P = α∑N θ2

n = 1 n

where α is a free parameter that controls the strength of the penalty. This type of

penalized model is built into Scikit-Learn with the Ridge estimator (Figure 5-49):

In[12]: from sklearn.linear_model import Ridge

model = make_pipeline(GaussianFeatures(30), Ridge(alpha=0.1))
basis_plot(model, title='Ridge Regression')

Figure 5-49. Ridge (L2) regularization applied to the overly complex model (compare to

Figure 5-48)

The α parameter is essentially a knob controlling the complexity of the resulting model. In
the limit α 0, we recover the standard linear regression result; in the limit α ∞, all model
responses will be suppressed. One advantage of ridge regres‐ sion in particular is that it can
be computed very efficiently—at hardly more compu‐ tational cost than the original linear
regression model.

Lasso regularization (L1)

Another very common type of regularization is known as lasso, and involves
penaliz‐ ing the sum of absolute values (1-norms) of regression coefficients:

P = α∑N θ

n = 1 n

Though this is conceptually very similar to ridge regression, the results can differ
sur‐ prisingly: for example, due to geometric reasons lasso regression tends to favor
sparse models where possible; that is, it preferentially sets model coefficients to
exactly zero.

We can see this behavior in duplicating the plot shown in Figure 5-49, but using L1-
normalized coefficients (Figure 5-50):

In[13]: from sklearn.linear_model import Lasso

model = make_pipeline(GaussianFeatures(30), Lasso(alpha=0.001))
basis_plot(model, title='Lasso Regression')

Figure 5-50. Lasso (L1) regularization applied to the overly complex model (compare to

Figure 5-48)

With the lasso regression penalty, the majority of the coefficients are exactly zero, with the
functional behavior being modeled by a small subset of the available basis functions. As with
ridge regularization, the α parameter tunes the strength of the penalty, and should be
determined via, for example, cross-validation (refer back to “Hyperparameters and Model
Validation” on page 359 for a discussion of this).

Example: Predicting Bicycle Traffic

As an example, let’s take a look at whether we can predict the number of bicycle
trips across Seattle’s Fremont Bridge based on weather, season, and other factors.
We have seen this data already in “Working with Time Series” on page 188.

In this section, we will join the bike data with another dataset, and try to determine the extent
to which weather and seasonal factors—temperature, precipitation, and daylight hours—affect
the volume of bicycle traffic through this corridor. Fortunately, the NOAA makes available their
daily weather station data (I used station ID USW00024233) and we can easily use Pandas to
join the two data sources. We will perform a simple linear regression to relate weather and
other information to bicycle counts, in order to estimate how a change in any one of these
parameters affects the number of riders on a given day.

In particular, this is an example of how the tools of Scikit-Learn can be used in a stat‐ istical
modeling framework, in which the parameters of the model are assumed to have interpretable
meaning. As discussed previously, this is not a standard approach within machine learning, but
such interpretation is possible for some models.

Let’s start by loading the two datasets, indexing by date:

In[14]:

import pandas as pd

counts = pd.read_csv('fremont_hourly.csv', index_col='Date', parse_dates=True)
weather = pd.read_csv('599021.csv', index_col='DATE', parse_dates=True)

Next we will compute the total daily bicycle traffic, and put this in its own DataFrame:

In[15]: daily = counts.resample('d', how='sum')
daily['Total'] = daily.sum(axis=1)

daily = daily[['Total']] # remove other columns

We saw previously that the patterns of use generally vary from day to day; let’s account for
this in our data by adding binary columns that indicate the day of the week:

In[16]: days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

for i in range(7):

daily[days[i]] = (daily.index.dayofweek == i).astype(float)

Similarly, we might expect riders to behave differently on holidays; let’s add an indica‐ tor of this
as well:

In[17]: from pandas.tseries.holiday import USFederalHolidayCalendar
cal = USFederalHolidayCalendar()

holidays = cal.holidays('2012', '2016')

daily = daily.join(pd.Series(1, index=holidays, name='holiday'))
daily['holiday'].fillna(0, inplace=True)

We also might suspect that the hours of daylight would affect how many people ride;
let’s use the standard astronomical calculation to add this information (Figure 5-51):

In[18]: def hours_of_daylight(date, axis=23.44, latitude=47.61):
"""Compute the hours of daylight for the given date"""

days = (date - pd.datetime(2000, 12, 21)).days

m = (1. - np.tan(np.radians(latitude))

* np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25)))

return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180.

daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index))
daily[['daylight_hrs']].plot();

Figure 5-51. Visualization of hours of daylight in Seattle

We can also add the average temperature and total precipitation to the data. In addi‐ tion to
the inches of precipitation, let’s add a flag that indicates whether a day is dry (has zero
precipitation):

In[19]: # temperatures are in 1/10 deg C; convert to C

weather['TMIN'] /= 10

weather['TMAX'] /= 10

weather['Temp (C)'] = 0.5 * (weather['TMIN'] + weather['TMAX'])

precip is in 1/10 mm; convert to inches

weather['PRCP'] /= 254

weather['dry day'] = (weather['PRCP'] == 0).astype(int)

daily = daily.join(weather[['PRCP', 'Temp (C)', 'dry day']])

Finally, let’s add a counter that increases from day 1, and measures how many years have
passed. This will let us measure any observed annual increase or decrease in daily crossings:

In[20]: daily['annual'] = (daily.index - daily.index[0]).days / 365.

Now our data is in order, and we can take a look at it:

In[21]: daily.head()

Out[21]:

Date

Tota

l

Mon

Tue

Wed

Thu

Fri

Sat

Sun

holida

y

daylight_hrs

\\

2012-10-

03

352

1

0 0 1 0 0 0 0 0 11.277359

2012-10-

04

347

5

0 0 0 1 0 0 0 0 11.219142

2012-10-

05

314

8

0 0 0 0 1 0 0 0 11.161038

2012-10-
06

200
6

0 0 0 0 0 1 0 0 11.103056

 2012-10-07 2142 0 0 0 0 0 0 1 0 11.045208

Date
PRCP Temp

(C)

dry

day

annual

2012-10-

03

0 13.35 1 0.00000

0

2012-10-

04

0 13.60 1 0.00274

0

2012-10-

05

0 15.30 1 0.00547

9

2012-10-

06

0 15.85 1 0.00821

9

2012-10-
07

0 15.85 1 0.01095
9

With this in place, we can choose the columns to use, and fit a linear

regression model to our data. We will set fit_intercept = False, because the daily

flags essen‐ tially operate as their own day-specific intercepts:

In[22]:

column_names = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun', 'holiday',
'daylight_hrs', 'PRCP', 'dry day', 'Temp (C)', 'annual']

X = daily[column_names]
y = daily['Total']

model = LinearRegression(fit_intercept=False)
model.fit(X, y)

daily['predicted'] = model.predict(X)

Finally, we can compare the total and predicted bicycle traffic visually (Figure 5-52):In[23]:
daily[['Total', 'predicted']].plot(alpha=0.5);

Figure 5-52. Our model’s prediction of bicycle traffic

It is evident that we have missed some key features, especially during the summer time.
Either our features are not complete (i.e., people decide whether to ride to work based on
more than just these) or there are some nonlinear relationships that we have failed to take
into account (e.g., perhaps people ride less at both high and low temper‐ atures). Nevertheless,
our rough approximation is enough to give us some insights, and we can take a look at the
coefficients of the linear model to estimate how much each feature contributes to the daily
bicycle count:

In[24]: params = pd.Series(model.coef_, index=X.columns)
params

Out[24]
:

Mon 503.797330

 Tue 612.088879

 Wed 591.611292

 Thu 481.250377

 Fri 176.838999

 Sat -

1104.32140

6

 Sun -

1134.61032

2

 holiday -

1187.21268

8

 daylight_hrs 128.873251

 PRCP -

665.185105

 dry day 546.185613

 Temp (C) 65.194390

 annual 27.865349

 dtype:
float64

These numbers are difficult to interpret without some measure of their uncertainty. We can
compute these uncertainties quickly using bootstrap resamplings of the data:

In[25]: from sklearn.utils import resample
np.random.seed(1)

err = np.std([model.fit(*resample(X, y)).coef_

for i in range(1000)], 0)

 With these errors estimated, let’s again look at the results:

In[26]: print(pd.DataFrame({'effect': params.round(0),

'error': err.round(0)}))

 effec
t

error

Mon 504 85

Tue 612 82

Wed 592 82

Thu 481 85

Fri 177 81

Sat -1104 79

Sun -1135 82

holiday -1187 164

daylight_h

rs

129 9

PRCP -665 62

dry day 546 33

Temp (C) 65 4

annual 28 18

We first see that there is a relatively stable trend in the weekly baseline: there are many more
riders on weekdays than on weekends and holidays. We see that for each additional hour of
daylight, 129 ± 9 more people choose to ride; a temperature increase of one degree Celsius
encourages 65 ± 4 people to grab their bicycle; a dry day means an average of 546 ± 33 more
riders; and each inch of precipitation means 665 ± 62 more people leave their bike at home.
Once all these effects are accounted for, we see a modest increase of 28 ± 18 new daily riders
each year.

Our model is almost certainly missing some relevant information. For example, non‐ linear
effects (such as effects of precipitation and cold temperature) and nonlinear trends within each
variable (such as disinclination to ride at very cold and very hot temperatures) cannot be
accounted for in this model. Additionally, we have thrown away some of the finer-grained
information (such as the difference between a rainy morning and a rainy afternoon), and we
have ignored correlations between days (such as the possible effect of a rainy Tuesday on
Wednesday’s numbers, or the effect of an unexpected sunny day after a streak of rainy days).
These are all potentially interesting effects, and you now have the tools to begin exploring them
if you wish!

Day-04: Support Vector Machines

Support vector machines (SVMs) are a particularly powerful and flexible class of supervised
algorithms for both classification and regression. In this section, we will develop the intuition
behind support vector machines and their use in classification problems. We begin with the
standard imports:

In[1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

use Seaborn plotting defaults

import seaborn as sns; sns.set()

Motivating Support Vector Machines

As part of our discussion of Bayesian classification (see “In Depth: Naive Bayes Clas‐ sification”
on page 382), we learned a simple model describing the distribution of each underlying class,
and used these generative models to probabilistically deter‐ mine labels for new points. That
was an example of generative classification; here we will consider instead discriminative
classification: rather than modeling each class, we simply find a line or curve (in two

dimensions) or manifold (in multiple dimensions) that divides the classes from each other.

As an example of this, consider the simple case of a classification task, in which the two
classes of points are well separated (Figure 5-53):

In[2]: from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50,
centers=2,random_state=0, cluster_std=0.60)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

Figure 5-53. Simple data for classification

A linear discriminative classifier would attempt to draw a straight line separating the two sets
of data, and thereby create a model for classification. For two-dimensional data like that
shown here, this is a task we could do by hand. But immediately we see a problem: there is
more than one possible dividing line that can perfectly discrimi‐ nate between the two classes!

We can draw them as follows (Figure 5-54):

In[3]: xfit = np.linspace(-1, 3.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:

plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

Figure 5-54. Three perfect linear discriminative classifiers for our data

These are three very different separators that, nevertheless, perfectly discriminate between
these samples. Depending on which you choose, a new data point (e.g., the one marked by the
“X” in Figure 5-54) will be assigned a different label! Evidently our simple intuition of “drawing
a line between classes” is not enough, and we need to think a bit deeper.

Support Vector Machines: Maximizing the Margin

Support vector machines offer one way to improve on this. The intuition is this: rather
than simply drawing a zero-width line between the classes, we can draw around each
line a margin of some width, up to the nearest point. Here is an example of how this might

look (Figure 5-55):

In[4]:

xfit = np.linspace(-1, 3.5)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:

yfit = m * xfit + b
plt.plot(xfit, yfit, '-k')

plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none', color='#AAAAAA',
alpha=0.4)

plt.xlim(-1, 3.5);

Figure 5-55. Visualization of “margins” within discriminative classifiers

In support vector machines, the line that maximizes this margin is the one we will choose as
the optimal model. Support vector machines are an example of such a max‐ imum margin
estimator.

Fitting a support vector machine

Let’s see the result of an actual fit to this data: we will use Scikit-Learn’s support vector classifier

to train an SVM model on this data. For the time being, we will use a linear kernel and set the C

parameter to a very large number (we’ll discuss the meaning of these in more depth
momentarily):

In[5]: from sklearn.svm import SVC # "Support vector classifier"

model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

Out[5]: SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

To better visualize what’s happening here, let’s create a quick convenience function that will
plot SVM decision boundaries for us (Figure 5-56):

In[6]: def plot_svc_decision_function(model, ax=None, plot_support=True):

"""Plot the decision function for a two-dimensional SVC"""

if ax is None:

ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

create grid to evaluate model

x = np.linspace(xlim[0], xlim[1], 30)

y = np.linspace(ylim[0], ylim[1], 30) Y, X = np.meshgrid(y, x)

xy = np.vstack([X.ravel(), Y.ravel()]).T

P = model.decision_function(xy).reshape(X.shape)

plot decision boundary and margins

ax.contour(X, Y, P, colors='k',

levels=[-1, 0, 1], alpha=0.5,
linestyles=['--', '-', '--'])

plot support vectors

if plot_support:
ax.scatter(model.support_vectors_[:, 0],

model.support_vectors_[:, 1],

s=300, linewidth=1, facecolors='none');
ax.set_xlim(xlim)

ax.set_ylim(ylim)

In[7]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model);

Figure 5-56. A support vector machine classifier fit to the data, with margins (dashed

lines) and support vectors (circles) shown

This is the dividing line that maximizes the margin between the two sets of points. Notice that
a few of the training points just touch the margin; they are indicated by the black circles in
Figure 5-56. These points are the pivotal elements of this fit, and are known as the support
vectors, and give the algorithm its name. In Scikit-Learn, the identity of these points is stored in

the support_vectors_ attribute of the classifier:

In[8]: model.support_vectors_

Out[8]: array([[
0.44359863,

3.11530945]
,

[2.33812285, 3.43116792]

,

[2.06156753, 1.96918596]
])

A key to this classifier’s success is that for the fit, only the position of the support vec‐ tors
matters; any points further from the margin that are on the correct side do not modify the fit!
Technically, this is because these points do not contribute to the loss function used to fit the
model, so their position and number do not matter so long as they do not cross the margin.

We can see this, for example, if we plot the model learned from the first 60 points and first 120
points of this dataset (Figure 5-57):

In[9]: def plot_svm(N=10, ax=None):

X, y = make_blobs(n_samples=200, centers=2,

random_state=0, cluster_std=0.60)

X = X[:N]

y = y[:N]

model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

ax = ax or plt.gca()

ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
ax.set_xlim(-1, 4)

ax.set_ylim(-1, 6)
plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):

plot_svm(N, axi)

axi.set_title('N = {0}'.format(N))

Figure 5-57. The influence of new training points on the SVM model

In the left panel, we see the model and the support vectors for 60 training points. In the right
panel, we have doubled the number of training points, but the model has not changed: the
three support vectors from the left panel are still the support vectors from the right panel.
This insensitivity to the exact behavior of distant points is one of the strengths of the SVM
model.

If you are running this notebook live, you can use IPython’s interactive widgets to view this
feature of the SVM model interactively (Figure 5-58):

In[10]: from ipywidgets import interact, fixed
interact(plot_svm, N=[10, 200], ax=fixed(None));

Figure 5-58. The first frame of the interactive SVM visualization (see the online appen‐ dix

for the full version)

Beyond linear boundaries: Kernel SVM

Where SVM becomes extremely powerful is when it is combined with kernels. We have seen a
version of kernels before, in the basis function regressions of “In Depth: Linear Regression” on
page 390. There we projected our data into higher-dimensional space defined by polynomials
and Gaussian basis functions, and thereby were able to fit for nonlinear relationships with a
linear classifier.

In SVM models, we can use a version of the same idea. To motivate the need for ker‐ nels, let’s
look at some data that is not linearly separable (Figure 5-59):

In[11]: from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);

Figure 5-59. A linear classifier performs poorly for nonlinear boundaries

It is clear that no linear discrimination will ever be able to separate this data. But we can draw
a lesson from the basis function regressions in “In Depth: Linear Regres‐ sion” on page 390,
and think about how we might project the data into a higher dimension such that a linear
separator would be sufficient. For example, one simple projection we could use would be to
compute a radial basis function centered on the middle clump:

In[12]: r = np.exp(-(X ** 2).sum(1))

We can visualize this extra data dimension using a three-dimensional plot—if you are running
this notebook live, you will be able to use the sliders to rotate the plot (Figure 5-60):

In[13]: from mpl_toolkits import mplot3d

def plot_3D(elev=30, azim=30, X=X, y=y):
ax = plt.subplot(projection='3d')

ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
ax.view_init(elev=elev, azim=azim)

ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('r')

interact(plot_3D, elev=[-90, 90], azip=(-180, 180),
X=fixed(X), y=fixed(y));

Figure 5-60. A third dimension added to the data allows for linear separation

We can see that with this additional dimension, the data becomes trivially linearly separable,
by drawing a separating plane at, say, r=0.7.

Here we had to choose and carefully tune our projection; if we had not centered our radial
basis function in the right location, we would not have seen such clean, linearly separable
results. In general, the need to make such a choice is a problem: we would like to somehow
automatically find the best basis functions to use.

One strategy to this end is to compute a basis function centered at every point in the dataset,
and let the SVM algorithm sift through the results. This type of basis function transformation is
known as a kernel transformation, as it is based on a similarity rela‐ tionship (or kernel)
between each pair of points.

A potential problem with this strategy—projecting N points into N dimensions—is that it
might become very computationally intensive as N grows large. However, because of a neat
little procedure known as the kernel trick, a fit on kernel- transformed data can be done
implicitly—that is, without ever building the full N- dimensional representation of the kernel
projection! This kernel trick is built into the SVM, and is one of the reasons the method is so
powerful.

In Scikit-Learn, we can apply kernelized SVM simply by changing our linear kernel to an RBF

(radial basis function) kernel, using the kernel model hyperparameter (Figure 5-61):

In[14]: clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)

Out[14]: SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

In[15]: plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');

Figure 5-61. Kernel SVM fit to the data

Using this kernelized support vector machine, we learn a suitable nonlinear decision
boundary. This kernel transformation strategy is used often in machine learning to turn
fast linear methods into fast nonlinear methods, especially for models in which the kernel
trick can be used.

Tuning the SVM: Softening margins

Our discussion so far has centered on very clean datasets, in which a perfect decision
boundary exists. But what if your data has some amount of overlap? For example, you may
have data like this (Figure 5-62):

In[16]: X, y = make_blobs(n_samples=100, centers=2,

random_state=0, cluster_std=1.2)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

Figure 5-62. Data with some level of overlap

To handle this case, the SVM implementation has a bit of a fudge-factor that “softens” the margin;
that is, it allows some of the points to creep into the margin if that allows a better fit. The
hardness of the margin is controlled by a tuning parameter, most often known as C. For very
large C, the margin is hard, and points cannot lie in it. For smaller C, the margin is softer, and can
grow to encompass some points.

The plot shown in Figure 5-63 gives a visual picture of how a changing C parameter
affects the final fit, via the softening of the margin:

In[17]: X, y = make_blobs(n_samples=100, centers=2,

random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, C in zip(ax, [10.0, 0.1]):

model = SVC(kernel='linear', C=C).fit(X, y)
axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model, axi)
axi.scatter(model.support_vectors_[:, 0],

model.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');

axi.set_title('C = {0:.1f}'.format(C), size=14)

Figure 5-63. The effect of the C parameter on the support vector fit

The optimal value of the C parameter will depend on your dataset, and should be
tuned via cross-validation or a similar procedure (refer back to
“Hyperparameters and Model Validation” on page 359 for further information).

Example: Face Recognition

As an example of support vector machines in action, let’s take a look at the facial rec‐ ognition
problem. We will use the Labeled Faces in the Wild dataset, which consists of several

thousand collated photos of various public figures. A fetcher for the dataset is built into Scikit-
Learn:

In[18]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)

Let’s plot a few of these faces to see what we’re working with (Figure 5-64):

In[19]: fig, ax = plt.subplots(3, 5)

for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[],

xlabel=faces.target_names[faces.target[i]])

Figure 5-64. Examples from the Labeled Faces in the Wild dataset

Each image contains [62×47] or nearly 3,000 pixels. We could proceed by simply using each
pixel value as a feature, but often it is more effective to use some sort of preprocessor to
extract more meaningful features; here we will use a principal com‐ ponent analysis (see “In
Depth: Principal Component Analysis” on page 433) to extract 150 fundamental components
to feed into our support vector machine classi‐ fier. We can do this most straightforwardly by
packaging the preprocessor and the classifier into a single pipeline:

In[20]: from sklearn.svm import SVC

from sklearn.decomposition import RandomizedPCA

from sklearn.pipeline import make_pipeline

pca = RandomizedPCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel='rbf', class_weight='balanced')

model = make_pipeline(pca, svc)

For the sake of testing our classifier output, we will split the data into a training and
testing set:

In[21]: from sklearn.cross_validation import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target,

random_state=42)

Finally, we can use a grid search cross-validation to explore combinations of parame‐ ters.

Here we will adjust C (which controls the margin hardness) and gamma (which controls the

size of the radial basis function kernel), and determine the best model:

In[22]: from sklearn.grid_search import GridSearchCV
param_grid = {'svc C': [1, 5, 10, 50],

'svc gamma': [0.0001, 0.0005, 0.001, 0.005]}

grid = GridSearchCV(model, param_grid)

%time grid.fit(Xtrain, ytrain)

print(grid.best_params_)

CPU times: user 47.8 s, sys: 4.08 s, total: 51.8 s
Wall time: 26 s

{'svc gamma': 0.001, 'svc C': 10}

The optimal values fall toward the middle of our grid; if they fell at the edges, we
would want to expand the grid to make sure we have found the true optimum.

Now with this cross-validated model, we can predict the labels for the test data,
which the model has not yet seen:

In[23]: model = grid.best_estimator_
yfit = model.predict(Xtest)

Let’s take a look at a few of the test images along with their predicted values (Figure
5-65):

In[24]: fig, ax = plt.subplots(4, 6)

for i, axi in enumerate(ax.flat):
axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[yfit[i]].split()[-1],

color='black' if yfit[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14);

Figure 5-65. Labels predicted by our model

Out of this small sample, our optimal estimator mislabeled only a single face (Bush’s face in the
bottom row was mislabeled as Blair). We can get a better sense of our esti‐ mator’s
performance using the classification report, which lists recovery statistics label by label:

In[25]: from sklearn.metrics import classification_report

print(classification_report(ytest, yfit,

target_names=faces.target_names))

 precisio

n

recall f1-

score

support

Ariel Sharon 0.65 0.73 0.69 15

Colin Powell 0.81 0.87 0.84 68

Donald

Rumsfeld

0.75 0.87 0.81 31

George W Bush 0.93 0.83 0.88 126

Gerhard

Schroeder

0.86 0.78 0.82 23

Hugo Chavez 0.93 0.70 0.80 20

Junichiro

Koizumi

0.80 1.00 0.89 12

Tony Blair 0.83 0.93 0.88 42

avg / total 0.85 0.85 0.85 337

We might also display the confusion matrix between these classes (Figure 5-66):

In[26]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, yfit)

sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=faces.target_names,

yticklabels=faces.target_names)plt.xlabel('true
label') plt.ylabel('predicted label');

Figure 5-66. Confusion matrix for the faces data

This helps us get a sense of which labels are likely to be confused by the estimator.

For a real-world facial recognition task, in which the photos do not come precropped into nice
grids, the only difference in the facial classification scheme is the feature selection: you would
need to use a more sophisticated algorithm to find the faces, and extract features that are
independent of the pixellation. For this kind of application, one good option is to make use of
OpenCV, which among other things, includes pre‐ trained implementations of state-of-the-art
feature extraction tools for images in gen‐ eral and faces in particular.

Day-05: Decision Trees and Random Forests

Previously we have looked in depth at a simple generative classifier (naive Bayes; see “In Depth:
Naive Bayes Classification” on page 382) and a powerful discriminative classifier (support
vector machines; see “In-Depth: Support Vector Machines” on page 405). Here we’ll take a
look at motivating another powerful algorithm—a non‐ parametric algorithm called random
forests. Random forests are an example of an ensemble method, a method that relies on
aggregating the results of an ensemble of simpler estimators. The somewhat surprising result
with such ensemble methods is that the sum can be greater than the parts; that is, a majority
vote among a number of estimators can end up being better than any of the individual
estimators doing the voting! We will see examples of this in the following sections. We begin with
the stan‐ dard imports:

In[1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

Motivating Random Forests: Decision Trees

Random forests are an example of an ensemble learner built on decision trees. For
this reason we’ll start by discussing decision trees themselves.

Decision trees are extremely intuitive ways to classify or label objects: you simply ask a series
of questions designed to zero in on the classification. For example, if you wanted to build a
decision tree to classify an animal you come across while on a hike, you might construct the
one shown in Figure 5-67.

Figure 5-67. An example of a binary decision tree

The binary splitting makes this extremely efficient: in a well-constructed tree, each question
will cut the number of options by approximately half, very quickly narrow‐ ing the options
even among a large number of classes. The trick, of course, comes in deciding which questions
to ask at each step. In machine learning implementations of decision trees, the questions
generally take the form of axis-aligned splits in the data; that is, each node in the tree splits
the data into two groups using a cutoff value within one of the features. Let’s now take a
look at an example.

Creating a decision tree

Consider the following two-dimensional data, which has one of four class labels (Figure 5-68):

In[2]: from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=300, centers=4,random_state=0, cluster_std=1.0)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow');

Figure 5-68. Data for the decision tree classifier

A simple decision tree built on this data will iteratively split the data along one or the other
axis according to some quantitative criterion, and at each level assign the label of the new
region according to a majority vote of points within it. Figure 5-69 presents a visualization of
the first four levels of a decision tree classifier for this data.

Figure 5-69. Visualization of how the decision tree splits the data

Notice that after the first split, every point in the upper branch remains unchanged, so there
is no need to further subdivide this branch. Except for nodes that contain all of one color, at
each level every region is again split along one of the two features.

This process of fitting a decision tree to our data can be done in Scikit-Learn with the

DecisionTreeClassifier estimator:

In[3]: from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier().fit(X, y)

Let’s write a quick utility function to help us visualize the output of the classifier:

In[4]: def visualize_classifier(model, X, y, ax=None, cmap='rainbow'):
ax = ax or plt.gca()

Plot the training points

ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=cmap,

clim=(y.min(), y.max()), zorder=3)
ax.axis('tight')

ax.axis('off')

xlim = ax.get_xlim()
ylim = ax.get_ylim()

fit the estimator

model.fit(X, y)

xx, yy = np.meshgrid(np.linspace(*xlim, num=200),

np.linspace(*ylim, num=200))

Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

Create a color plot with the results

n_classes = len(np.unique(y))

contours = ax.contourf(xx, yy, Z, alpha=0.3,

levels=np.arange(n_classes + 1) - 0.5,
cmap=cmap, clim=(y.min(), y.max()),
zorder=1)

ax.set(xlim=xlim, ylim=ylim)

Now we can examine what the decision tree classification looks like (Figure 5-70):

In[5]: visualize_classifier(DecisionTreeClassifier(), X, y)

Figure 5-70. Visualization of a decision tree classification

If you’re running this notebook live, you can use the helpers script included in the online

appendix to bring up an interactive visualization of the decision tree building process (Figure
5-71):

In[6]: # helpers_05_08 is found in the online appendix

(https://github.com/jakevdp/PythonDataScienceHandbook)
import helpers_05_08

helpers_05_08.plot_tree_interactive(X, y);

Figure 5-71. First frame of the interactive decision tree widget; for the full version, see

the online appendix

Notice that as the depth increases, we tend to get very strangely shaped classification regions;
for example, at a depth of five, there is a tall and skinny purple region between the yellow
and blue regions. It’s clear that this is less a result of the true, intrinsic data distribution, and
more a result of the particular sampling or noise prop‐ erties of the data. That is, this decision
tree, even at only five levels deep, is clearly overfitting our data.

Decision trees and overfitting

Such overfitting turns out to be a general property of decision trees; it is very easy to go too
deep in the tree, and thus to fit details of the particular data rather than the overall properties
of the distributions they are drawn from. Another way to see this overfitting is to look at models
trained on different subsets of the data—for example, in Figure 5-72 we train two different
trees, each on half of the original data.

Figure 5-72. An example of two randomized decision trees

It is clear that in some places, the two trees produce consistent results (e.g., in the four
corners), while in other places, the two trees give very different classifications (e.g., in the
regions between any two clusters). The key observation is that the incon‐ sistencies tend to
happen where the classification is less certain, and thus by using information from both of
these trees, we might come up with a better result!

If you are running this notebook live, the following function will allow you to interac‐
tively display the fits of trees trained on a random subset of the data (Figure 5-73):

In[7]: # helpers_05_08 is found in the online appendix

(https://github.com/jakevdp/PythonDataScienceHandbook)
import helpers_05_08

helpers_05_08.randomized_tree_interactive(X, y)

Figure 5-73. First frame of the interactive randomized decision tree widget; for the full
version, see the online appendix

Just as using information from two trees improves our results, we might expect that using
information from many trees would improve our results even further.

Ensembles of Estimators: Random Forests

This notion—that multiple overfitting estimators can be combined to reduce the effect of
this overfitting—is what underlies an ensemble method called bagging. Bag‐ ging makes use of
an ensemble (a grab bag, perhaps) of parallel estimators, each of which overfits the data, and
averages the results to find a better classification. An ensemble of randomized decision trees
is known as a random forest.

We can do this type of bagging classification manually using Scikit-Learn’s Bagging

Classifier meta-estimator as shown here (Figure 5-74):

In[8]: from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import BaggingClassifier

tree = DecisionTreeClassifier()

bag = BaggingClassifier(tree, n_estimators=100, max_samples=0.8,
random_state=1)

bag.fit(X, y)
visualize_classifier(bag, X, y)

Figure 5-74. Decision boundaries for an ensemble of random decision trees

In this example, we have randomized the data by fitting each estimator with a ran‐ dom
subset of 80% of the training points. In practice, decision trees are more effec‐ tively
randomized when some stochasticity is injected in how the splits are chosen; this way, all the
data contributes to the fit each time, but the results of the fit still have the desired
randomness. For example, when determining which feature to split on, the randomized tree
might select from among the top several features. You can read more technical details about
these randomization strategies in the Scikit-Learn docu‐ mentation and references within.

In Scikit-Learn, such an optimized ensemble of randomized decision trees is imple‐ mented in

the RandomForestClassifier estimator, which takes care of all the ran‐ domization

automatically. All you need to do is select a number of estimators, and it will very quickly (in
parallel, if desired) fit the ensemble of trees (Figure 5-75):

In[9]: from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=0)
visualize_classifier(model, X, y);

Figure 5-75. Decision boundaries for a random forest, which is an optimized ensemble of

decision trees

We see that by averaging over 100 randomly perturbed models, we end up with an overall
model that is much closer to our intuition about how the parameter space should be split.

Random Forest Regression

In the previous section we considered random forests within the context of classifica‐ tion.
Random forests can also be made to work in the case of regression (that is, con‐ tinuous
rather than categorical variables). The estimator to use for this is the

RandomForestRegressor, and the syntax is very similar to what we saw earlier.

Consider the following data, drawn from the combination of a fast and slow oscilla‐
tion (Figure 5-76):

In[10]: rng = np.random.RandomState(42)
x = 10 * rng.rand(200)

def model(x, sigma=0.3):
fast_oscillation = np.sin(5 * x)
slow_oscillation = np.sin(0.5 * x)
noise = sigma * rng.randn(len(x))

return slow_oscillation + fast_oscillation + noise

y = model(x)

plt.errorbar(x, y, 0.3, fmt='o');

Figure 5-76. Data for random forest regression

Using the random forest regressor, we can find the best-fit curve as follows (Figure 5-77):

In[11]: from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor(200)
forest.fit(x[:, None], y)

xfit = np.linspace(0, 10, 1000)

yfit = forest.predict(xfit[:, None])
ytrue = model(xfit, sigma=0)

plt.errorbar(x, y, 0.3, fmt='o', alpha=0.5)
plt.plot(xfit, yfit, '-r');

plt.plot(xfit, ytrue, '-k', alpha=0.5);

Here the true model is shown by the smooth curve, while the random forest model is shown
by the jagged curve. As you can see, the nonparametric random forest model is flexible
enough to fit the multiperiod data, without us needing to specify a multi‐ period model!

Figure 5-77. Random forest model fit to the data

Example: Random Forest for Classifying Digits

Earlier we took a quick look at the handwritten digits data (see “Introducing Scikit- Learn” on
page 343). Let’s use that again here to see how the random forest classifier can be used in this
context.

In[12]: from sklearn.datasets import load_digits
digits = load_digits()

digits.keys()

Out[12]: dict_keys(['target', 'data', 'target_names', 'DESCR', 'images'])

To remind us what we’re looking at, we’ll visualize the first few data points
(Figure 5-78):

In[13]:

set up the figure

fig = plt.figure(figsize=(6, 6)) # figure size in inches

fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

plot the digits: each image is 8x8 pixels

for i in range(64):

ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest')

label the image with the target value

ax.text(0, 7, str(digits.target[i]))

Figure 5-78. Representation of the digits data

We can quickly classify the digits using a random forest as follows (Figure 5-79):

In[14]:

from sklearn.cross_validation import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target,

random_state=0)
model = RandomForestClassifier(n_estimators=1000)
model.fit(Xtrain, ytrain)

ypred = model.predict(Xtest)

We can take a look at the classification report for this classifier:

In[15]: from sklearn import metrics

print(metrics.classification_report(ypred, ytest))

 precisio
n

recall f1-
score

support

0 1.00 0.97 0.99 38

1 1.00 0.98 0.99 44

2 0.95 1.00 0.98 42

3 0.98 0.96 0.97 46

4 0.97 1.00 0.99 37

5 0.98 0.96 0.97 49

6 1.00 1.00 1.00 52

7 1.00 0.96 0.98 50

8 0.94 0.98 0.96 46

9 0.96 0.98 0.97 46

avg /

total

0.98 0.98 0.98 450

And for good measure, plot the confusion matrix (Figure 5-79):

In[16]: from sklearn.metrics import confusion_matrix
mat = confusion_matrix(ytest, ypred)

sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.xlabel('true label')

plt.ylabel('predicted label');

Figure 5-79. Confusion matrix for digit classification with random forests

We find that a simple, untuned random forest results in a very accurate
classification of the digits data.

Summary of Random Forests

This section contained a brief introduction to the concept of ensemble estimators,
and in particular the random forest model—an ensemble of randomized decision
trees. Random forests are a powerful method with several advantages:

• Both training and prediction are very fast, because of the simplicity of the under‐

lying decision trees. In addition, both tasks can be straightforwardly parallelized,

because the individual trees are entirely independent entities.

• The multiple trees allow for a probabilistic classification: a majority vote among

estimators gives an estimate of the probability (accessed in Scikit-Learn with the

predict_proba() method).

• The nonparametric model is extremely flexible, and can thus perform well on tasks

that are underfit by other estimators.

A primary disadvantage of random forests is that the results are not easily interpreta‐ ble;
that is, if you would like to draw conclusions about the meaning of the classifica‐ tion model,
random forests may not be the best choice.

In Depth: Principal Component Analysis

Up until now, we have been looking in depth at supervised learning estimators: those
estimators that predict labels based on labeled training data. Here we begin looking at several
unsupervised estimators, which can highlight interesting aspects of the data without
reference to any known labels.

In this section, we explore what is perhaps one of the most broadly used of unsuper‐ vised
algorithms, principal component analysis (PCA). PCA is fundamentally a dimensionality
reduction algorithm, but it can also be useful as a tool for visualiza‐ tion, for noise filtering, for
feature extraction and engineering, and much more. After a brief conceptual discussion of the
PCA algorithm, we will see a couple examples of these further applications. We begin with the
standard imports:

In[1]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

Introducing Principal Component Analysis

Principal component analysis is a fast and flexible unsupervised method for dimen‐ sionality
reduction in data, which we saw briefly in “Introducing Scikit-Learn” on page 343. Its
behavior is easiest to visualize by looking at a two-dimensional dataset. Consider the
following 200 points (Figure 5-80):

In[2]: rng = np.random.RandomState(1)

X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T

plt.scatter(X[:, 0], X[:, 1])
plt.axis('equal');

By eye, it is clear that there is a nearly linear relationship between the x and y vari‐ ables. This
is reminiscent of the linear regression data we explored in “In Depth: Lin‐ ear Regression” on
page 390, but the problem setting here is slightly different: rather than attempting to predict
the y values from the x values, the unsupervised learning problem attempts to learn about the
relationship between the x and y values.

Figure 5-80. Data for demonstration of PCA

In principal component analysis, one quantifies this relationship by finding a list of the

principal axes in the data, and using those axes to describe the dataset. Using Scikit-Learn’s PCA

estimator, we can compute this as follows:

In[3]: from sklearn.decomposition import PCA
pca = PCA(n_components=2)

pca.fit(X)

Out[3]: PCA(copy=True, n_components=2, whiten=False)

The fit learns some quantities from the data, most importantly the “components”
and “explained variance”:

In[4]: print(pca.components_)

[[0.94446029 0.32862557]

[0.32862557 -0.94446029]]

In[5]: print(pca.explained_variance_)

[0.75871884 0.01838551]

To see what these numbers mean, let’s visualize them as vectors over the input data, using the
“components” to define the direction of the vector, and the “explained var‐ iance” to define the
squared-length of the vector (Figure 5-81):

In[6]: def draw_vector(v0, v1, ax=None):
ax = ax or plt.gca()

arrowprops=dict(arrowstyle='->',

linewidth=2,
shrinkA=0, shrinkB=0)

ax.annotate('', v1, v0, arrowprops=arrowprops)

plot data

plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

for length, vector in zip(pca.explained_variance_, pca.components_):
v = vector * 3 * np.sqrt(length)

draw_vector(pca.mean_, pca.mean_ + v)
plt.axis('equal');

Figure 5-81. Visualization of the principal axes in the data

These vectors represent the principal axes of the data, and the length shown in Figure
5-81 is an indication of how “important” that axis is in describing the distribu‐ tion of the
data—more precisely, it is a measure of the variance of the data when pro‐ jected onto that
axis. The projection of each data point onto the principal axes are the “principal components”
of the data.

If we plot these principal components beside the original data, we see the plots shown in
Figure 5-82.

Figure 5-82. Transformed principal axes in the data

This transformation from data axes to principal axes is as an affine transformation, which
basically means it is composed of a translation, rotation, and uniform scaling.

While this algorithm to find principal components may seem like just a
mathematical curiosity, it turns out to have very far-reaching applications in the
world of machine learning and data exploration.

PCA as dimensionality reduction

Using PCA for dimensionality reduction involves zeroing out one or more of the smallest
principal components, resulting in a lower-dimensional projection of the data that
preserves the maximal data variance.

Here is an example of using PCA as a dimensionality reduction transform:

In[7]: pca = PCA(n_components=1)
pca.fit(X)

X_pca = pca.transform(X)

print("original shape: ", X.shape)

print("transformed shape:", X_pca.shape)

original shape: (200, 2)

transformed shape: (200, 1)

The transformed data has been reduced to a single dimension. To understand the effect of this
dimensionality reduction, we can perform the inverse transform of this reduced data and plot
it along with the original data (Figure 5-83):

In[8]: X_new = pca.inverse_transform(X_pca)
plt.scatter(X[:, 0], X[:, 1], alpha=0.2)

plt.scatter(X_new[:, 0], X_new[:, 1], alpha=0.8)
plt.axis('equal');

Figure 5-83. Visualization of PCA as dimensionality reduction

The light points are the original data, while the dark points are the projected version. This
makes clear what a PCA dimensionality reduction means: the information along the least
important principal axis or axes is removed, leaving only the component(s) of the data with the
highest variance. The fraction of variance that is cut out (propor‐ tional to the spread of points
about the line formed in Figure 5-83) is roughly a meas‐ ure of how much “information” is
discarded in this reduction of dimensionality.

This reduced-dimension dataset is in some senses “good enough” to encode the most important
relationships between the points: despite reducing the dimension of the data by 50%, the
overall relationship between the data points is mostly preserved.

PCA for visualization: Handwritten digits

The usefulness of the dimensionality reduction may not be entirely apparent in only two
dimensions, but becomes much more clear when we look at high-dimensional data. To see this,
let’s take a quick look at the application of PCA to the digits data we saw in “In-Depth: Decision
Trees and Random Forests” on page 421.

We start by loading the data:

In[9]: from sklearn.datasets import load_digits
digits = load_digits()

digits.data.shape

Out[9]:

(1797, 64)

Recall that the data consists of 8×8 pixel images, meaning that they are 64-
dimensional. To gain some intuition into the relationships between these points, we
can use PCA to project them to a more manageable number of dimensions, say two:

In[10]: pca = PCA(2) # project from 64 to 2 dimensions

projected = pca.fit_transform(digits.data)
print(digits.data.shape)

print(projected.shape)

(1797, 64)

(1797, 2)

We can now plot the first two principal components of each point to learn about the data
(Figure 5-84):

In[11]: plt.scatter(projected[:, 0], projected[:, 1],

c=digits.target, edgecolor='none', alpha=0.5,
cmap=plt.cm.get_cmap('spectral', 10))

plt.xlabel('component 1') plt.ylabel('component 2') plt.colorbar();

Figure 5-84. PCA applied to the handwritten digits data

Recall what these components mean: the full data is a 64-dimensional point cloud, and these
points are the projection of each data point along the directions with the largest variance.
Essentially, we have found the optimal stretch and rotation in 64- dimensional space that
allows us to see the layout of the digits in two dimensions, and have done this in an
unsupervised manner—that is, without reference to the labels.

What do the components mean?

We can go a bit further here, and begin to ask what the reduced dimensions mean. This
meaning can be understood in terms of combinations of basis vectors. For example, each
image in the training set is defined by a collection of 64 pixel values, which we will call the
vector x:

x = x1, x2, x3⋯x64

One way we can think about this is in terms of a pixel basis. That is, to construct the image, we
multiply each element of the vector by the pixel it describes, and then add the results together
to build the image:

image x = x1 · pixel 1 + x2 · pixel 2 + x3 · pixel 3 ⋯x64 · pixel 64

One way we might imagine reducing the dimension of this data is to zero out all but a few of
these basis vectors. For example, if we use only the first eight pixels, we get an eight-
dimensional projection of the data (Figure 5-85), but it is not very reflective of the whole
image: we’ve thrown out nearly 90% of the pixels!

Figure 5-85. A naive dimensionality reduction achieved by discarding pixels

The upper row of panels shows the individual pixels, and the lower row shows the cumulative
contribution of these pixels to the construction of the image. Using only eight of the pixel-
basis components, we can only construct a small portion of the 64- pixel image. Were we to
continue this sequence and use all 64 pixels, we would recover the original image.

But the pixel-wise representation is not the only choice of basis. We can also use other basis
functions, which each contain some predefined contribution from each pixel, and write
something like:

image x = mean + x1 · basis 1 + x2 · basis 2 + x3 · basis 3 ⋯

PCA can be thought of as a process of choosing optimal basis functions, such that adding
together just the first few of them is enough to suitably reconstruct the bulk of the elements in
the dataset. The principal components, which act as the low- dimensional representation of
our data, are simply the coefficients that multiply each of the elements in this series. Figure 5-
86 is a similar depiction of reconstructing this digit using the mean plus the first eight PCA
basis functions.

Figure 5-86. A more sophisticated dimensionality reduction achieved by discarding the

least important principal components (compare to Figure 5-85)

Unlike the pixel basis, the PCA basis allows us to recover the salient features of the input
image with just a mean plus eight components! The amount of each pixel in each component
is the corollary of the orientation of the vector in our two- dimensional example. This is the
sense in which PCA provides a low-dimensional representation of the data: it discovers a set
of basis functions that are more efficient than the native pixel-basis of the input data.

Choosing the number of components

A vital part of using PCA in practice is the ability to estimate how many components
are needed to describe the data. We can determine this by looking at the cumulative
explained variance ratio as a function of the number of components (Figure 5-87):

In[12]: pca = PCA().fit(digits.data)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');

Figure 5-87. The cumulative explained variance, which measures how well PCA pre‐ serves

the content of the data

This curve quantifies how much of the total, 64-dimensional variance is contained within the
first N components. For example, we see that with the digits the first 10 components contain
approximately 75% of the variance, while you need around 50 components to describe close
to 100% of the variance.

Here we see that our two-dimensional projection loses a lot of information (as meas‐ ured by
the explained variance) and that we’d need about 20 components to retain 90% of the
variance. Looking at this plot for a high-dimensional dataset can help you understand the level
of redundancy present in multiple observations.

PCA as Noise Filtering

PCA can also be used as a filtering approach for noisy data. The idea is this: any com‐ ponents
with variance much larger than the effect of the noise should be relatively unaffected by the
noise. So if you reconstruct the data using just the largest subset of principal components, you
should be preferentially keeping the signal and throwing out the noise.

Let’s see how this looks with the digits data. First we will plot several of the input noise-
free data (Figure 5-88):

In[13]: def plot_digits(data):

fig, axes = plt.subplots(4, 10, figsize=(10, 4),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8, 8),

cmap='binary', interpolation='nearest',
clim=(0, 16))

plot_digits(digits.data)

Figure 5-88. Digits without noise

Now let’s add some random noise to create a noisy dataset, and replot it (Figure 5-89):

In[14]: np.random.seed(42)

noisy = np.random.normal(digits.data, 4)
plot_digits(noisy)

Figure 5-89. Digits with Gaussian random noise added

It’s clear by eye that the images are noisy, and contain spurious pixels. Let’s train a PCA on
the noisy data, requesting that the projection preserve 50% of the variance:

In[15]: pca = PCA(0.50).fit(noisy)
pca.n_components_

Out[15]: 12

Here 50% of the variance amounts to 12 principal components. Now we compute these
components, and then use the inverse of the transform to reconstruct the fil‐ tered digits
(Figure 5-90):

In[16]: components = pca.transform(noisy)

filtered = pca.inverse_transform(components)
plot_digits(filtered)

Figure 5-90. Digits “denoised” using PCA

This signal preserving/noise filtering property makes PCA a very useful feature selec‐ tion
routine—for example, rather than training a classifier on very high-dimensional data, you
might instead train the classifier on the lower-dimensional representation, which will
automatically serve to filter out random noise in the inputs.

Example: Eigenfaces

Earlier we explored an example of using a PCA projection as a feature selector for facial
recognition with a support vector machine (“In-Depth: Support Vector Machines” on page
405). Here we will take a look back and explore a bit more of what went into that. Recall that
we were using the Labeled Faces in the Wild dataset made available through Scikit-Learn:

In[17]: from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)

Let’s take a look at the principal axes that span this dataset. Because this is a large

dataset, we will use RandomizedPCA—it contains a randomized method to

approxi‐

mate the first N principal components much more quickly than the standard PCA esti‐ mator,

and thus is very useful for high-dimensional data (here, a dimensionality of nearly 3,000). We
will take a look at the first 150 components:

In[18]: from sklearn.decomposition import RandomizedPCA
pca = RandomizedPCA(150)

pca.fit(faces.data)

Out[18]: RandomizedPCA(copy=True, iterated_power=3, n_components=150,
random_state=None, whiten=False)

In this case, it can be interesting to visualize the images associated with the first sev‐ eral
principal components (these components are technically known as “eigenvec‐ tors,” so these
types of images are often called “eigenfaces”). As you can see in Figure 5-91, they are as creepy
as they sound:

In[19]: fig, axes = plt.subplots(3, 8, figsize=(9, 4),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i, ax in enumerate(axes.flat):
ax.imshow(pca.components_[i].reshape(62, 47), cmap='bone')

Figure 5-91. A visualization of eigenfaces learned from the LFW dataset

The results are very interesting, and give us insight into how the images vary: for example, the
first few eigenfaces (from the top left) seem to be associated with the angle of lighting on the
face, and later principal vectors seem to be picking out certain features, such as eyes, noses,
and lips. Let’s take a look at the cumulative variance of these components to see how much of
the data information the projection is preserv‐ ing (Figure 5-92):

In[20]: plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');

Page 446 of 580

Figure 5-92. Cumulative explained variance for the LFW data

We see that these 150 components account for just over 90% of the variance. That would lead
us to believe that using these 150 components, we would recover most of the essential
characteristics of the data. To make this more concrete, we can compare the input images with
the images reconstructed from these 150 components (Figure 5-93):

In[21]: # Compute the components and projected faces

pca = RandomizedPCA(150).fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

In[22]: # Plot the results

fig, ax = plt.subplots(2, 10, figsize=(10, 2.5),

subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))

for i in range(10):

ax[0, i].imshow(faces.data[i].reshape(62, 47), cmap='binary_r')
ax[1, i].imshow(projected[i].reshape(62, 47), cmap='binary_r')

ax[0, 0].set_ylabel('full-dim\ninput')

ax[1, 0].set_ylabel('150-dim\nreconstruction');

Figure 5-93. 150-dimensional PCA reconstruction of the LFW data

The top row here shows the input images, while the bottom row shows the recon‐ struction of
the images from just 150 of the ~3,000 initial features. This visualization makes clear why the
PCA feature selection used in “In-Depth: Support Vector Machines” on page 405 was so
successful: although it reduces the dimensionality of the data by nearly a factor of 20, the
projected images contain enough information that we might, by eye, recognize the individuals
in the image. What this means is that our classification algorithm needs to be trained on 150-
dimensional data rather than 3,000-dimensional data, which depending on the particular
algorithm we choose, can lead to a much more efficient classification.

Page 447 of 580

Week 7: Creating Reports and Dashboards

Day-01 : Introduction to Dashboards

A dashboard for data analytics is a tool used to multi-task, organize, visualize, analyze, and track
data. The overall purpose of a data analytics dashboard is to make it easier for data analysts,
decision makers, and average users to understand their data, gain deeper insights, and make better
data-driven decisions.

Data dashboards are designed to connect and help extract important information from a wide
variety of different data sources, services, and APIs. This information is displayed in a single, unified
view via visuals such as charts, figures, graphs, and tables. An organization can have a different
customizable dashboard for each department and even a dashboard for each individual project,
which helps provide granular monitoring of very specific KPIs.

“Smart” data analytics dashboard software uses AI and Machine Learning to save time and automate
processes like data collection, discovery, preparation, replication, and reporting, which is crucial for
big data sets where manual processing is impractical. Advanced interactive dashboards will provide
compelling storytelling through attractive designs and real-time, interactive dynamic data
visualizations that empower team members to quickly and easily reveal hidden insights and draw
valuable conclusions that can help answer business questions and informa business decisions.

Data Analytics Dashboard Benefits

There are many different benefits to be gained from the many different kinds of data analytics
dashboards. Some of the most common benefits include: data visibility and accessibility, measuring
performance, business forecasting abilities, and agile responses:

Visibility and Accessibility: One of the primary benefits of a dashboard is its ability to display all of
the most relevant, important data in a way that is intuitive, digestible, and useful for the average
user. Dashboards should be a place where users can easily access key metrics and insights in a
unified space so that anyone in the organization can derive value from it.

Measuring Performance: Dashboards will help measure and keep track of the performance of
different teams, departments, products, and services. When analyzing the performance of an
organization as a whole, it is crucial to set KPIs and have access to specific performance data in order
to be able to hone in on processes that are creating inefficiencies and develop new strategies.

Agility: Dashboards help users detect changes in data quickly, in turn empowering users to react
quickly. Real-time updates enable users to immediately correct course in the moment, or even get a
jump on forthcoming trends.

Forecasting: AI and machine learning algorithms take historical data and current, real-time data in
order to identify trends and anomalies, and forecast potential issues before they become problems.
Forecasting can help direct things like demand planning, financial operations, future production, risk
reduction, and digital marketing operations.

Page 448 of 580

What are some Data Analytics Dashboard Examples?

Big data analytics is leveraged in nearly every modern industry. Some big data analytics examples
include retail, manufacturing, oil and gas, government, healthy industries, education, sports,
sciences, airlines, banking, business analytics dashboards, and marketing analytics dashboards. All of
these industries can benefit enormously from data analytics dashboards tailored to their specific
needs. Read on to see some data analytics dashboard examples and data analytics demos.

Example1: Oil and Gas Data Analytics Dashboard

Companies throughout the oil and gas industry can derive enormous value from big data
analytics dashboards. Industry professionals can interact with spatiotemporal data analytics
in energy to determine things like productivity drivers, assess suitable land, and understand
benchmark performance.

Oil industry professionals can visually analyze data and conclude why wells are over or
underperforming, forecast their estimated potential, compare daily drill and well
performance, manage fleets, and identify production trends across basins. Dashboards for
data analytics can help renewable energy industry professionals visualize and interact with
massive multi-sourced datasets to determine where their customers should make wind,
solar, biomass, hydroelectric, or geothermal energy investments.

In this oil and gas demo, visualizations for 250 million well production records across the
entire United States are available for analysis. Research scenarios and quickly analyze
production decline performance, correlations, and rate of change with a few clicks.

Page 449 of 580

Example2: Covid-19 Pandemic Data Analytics Dashboard

Covid-19 data maps updated with real-time information were crucial for tracking the spread of the
pandemic, recovery rates, and monitoring the effectiveness of quarantine orders and mask
mandates. Covid-19 data analytics dashboards provided a simple, unified view of cases around the
world filtered across location and time, informing decisions made by hospital administrators and
lawmakers, such as office, school and business closure orders; mask mandated spaces; travel bans;
PPE inventory forecasts; and more.

Government data analytics dashboards compile data from a wide variety of sources, like hospitals,
government agencies, the CDC, World Health Organization, and make it easier for users to quickly
identify patterns and draw conclusions.

In this Covid-19 demo, visualize the spread of the virus using maps and charts, compare the growth
of cases across various countries and US states, and analyze the recovery rate in various regions of
the world.

What are the Best Analytics Dashboard Tools?

The quality, variety, and volume of data analytics dashboard tools has increased in recent years. The
best option for your organization depends on a number of factors, such as budget, deployment,
client, and the specific goals and objectives of the project at hand. There are three main types of
dashboard software: operational, strategic, tactical, and analytical. Analytical dashboard software
functionality is prevalent in many business intelligence tools as they provide the greatest value to
data analysts and data scientists. Learn how to make the most out of your business intelligence
dashboard here.

Page 450 of 580

The best data analytics dashboard tools will offer: the ability to connect your data from multiple
sources, embedding capabilities, self-service reporting, automated real-time updates, streaming and
predictive analytics driven by AI, filtering across time and location, interactive visual analytics, full
customization, and at-a-click exploration. Some examples of popular enterprise analytics dashboard
software include: HEAVY’s visual analytics platform, Izenda, Periscope Data, Dundas BI analytics
dashboard, Microsoft Power BI, IBM Cognos, TIBCO Spotfire, Looker, and Sisense.

Every data analytics dashboard will look different depending on each different project’s goals and
objectives. The best option will be one that empowers you to be at one with your data and to interact
with it instantly and effortlessly. See the key capabilities that OmniSci’s converged analytics platform
provides to help users achieve insights from your largest datasets at the speed of curiosity.

 Building interactive dashboards with libraries like Dash or Streamlit

What’s a real-time live dashboard?

A real-time live dashboard is a web app used to display Key Performance Indicators (KPIs).

If you want to build a dashboard to monitor the stock market, IoT Sensor Data, AI Model Training, or
anything else with streaming data, then this tutorial is for you.

1. How to import the required libraries and read input data
Here are the libraries that you’ll need for this dashboard:

Streamlit (st). As you might’ve guessed, you’ll be using Streamlit for building the web

app/dashboard.

Time, NumPy (np). Because you don’t have a data source, you’ll need to simulate a live data feed.

Use NumPy to generate data and make it live (looped) with the Time library (unless you already have

a live data feed).

Pandas (pd). You’ll use pandas to read the input data source. In this case, you’ll use a Comma

Separated Values (CSV) file.

Go ahead and import all the required libraries:

import time # to simulate a real time data, time loop
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
import plotly.express as px # interactive charts
import streamlit as st # data web app development

You can read your input data in a CSV by using pd.read_csv(). But remember, this data source could

be streaming from an API, a JSON or an XML object, or even a CSV that gets updated at regular

intervals.

Next, add the pd.read_csv() call within a new function get_data() so that it gets properly cached.

What's caching? It's simple. Adding the decorator @st.experimental_memo will make the function

get_data() run once. Then every time you rerun your app, the data will stay memoized! This way you

can avoid downloading the dataset again and again. Read more about caching in Streamlit docs.

dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-

analysis/master/bank.csv"

read csv from a URL

Page 451 of 580

@st.experimental_memo

def get_data() -> pd.DataFrame:

 return pd.read_csv(dataset_url)

df = get_data()

table-1

2. How to do a basic dashboard setup
Now let’s set up a basic dashboard. Use st.set_page_config() with parameters serving the following

purpose:

The web app title page_title in the HTML tag <title> and in the browser tab

The favicon that uses the argument page_icon (also in the browser tab)

The layout = "wide" that renders the web app/dashboard with a wide-screen layout

st.set_page_config(
 page_title="Real-Time Data Science Dashboard",

 page_icon="✅",
 layout="wide",
)

3. How to design a user interface
A typical dashboard contains the following basic UI design components:

• A page title

• A top-level filter

• KPIs/summary cards

• Interactive charts

• A data table

Let’s drill into them in detail.

Page title
The title is rendered as the <h1> tag. To display the title, use st.title(). It’ll take the string “Real-Time /

Live Data Science Dashboard” and display it in the Page Title.

dashboard title
st.title("Real-Time / Live Data Science Dashboard")

Top-level filter
First, create the filter by using st.selectbox(). It’ll display a dropdown with a list of options. To

generate it, take the unique elements of the job column from the dataframe df. The selected item is

saved in an object named job_filter:

top-level filters

job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))

Now that your filter UI is ready, use job_filter to filter your dataframe df.

Page 452 of 580

dataframe filter
df = df[df["job"] == job_filter]

KPIs/summary cards
Before you can design your KPIs, divide your layout into a 3 column layout by using st.columns(3). The

three columns are kpi1, kpi2, and kpi3. st.metric() helps you create a KPI card. Use it to fill one KPI in

each of those columns.

st.metric()’s label helps you display the KPI title. The value **is the argument that helps you show the

actual metric (value) and add-ons like delta to compare the KPI value with the KPI goal.

create three columns
kpi1, kpi2, kpi3 = st.columns(3)
fill in those three columns with respective metrics or KPIs
kpi1.metric(

 label="Age ⏳",
 value=round(avg_age),
 delta=round(avg_age) - 10,
)

kpi2.metric(

 label="Married Count 💍",
 value=int(count_married),
 delta=-10 + count_married,
)

kpi3.metric(
 label="A/C Balance ＄",
 value=f"$ {round(balance,2)} ",
 delta=-round(balance / count_married) * 100,
)

Interactive charts
Split your layout into 2 columns and fill them with charts. Unlike the metric above, use the with clause

to fill the interactive charts in the respective columns:

Density_heatmap in fig_col1

Histogram in fig_col2

create two columns for charts
fig_col1, fig_col2 = st.columns(2)

with fig_col1:
 st.markdown("### First Chart")
 fig = px.density_heatmap(
 data_frame=df, y="age_new", x="marital"
)
 st.write(fig)

with fig_col2:
 st.markdown("### Second Chart")
 fig2 = px.histogram(data_frame=df, x="age_new")
 st.write(fig2)

Page 453 of 580

Data table
Use st.dataframe() to display the data frame. Remember, your data frame gets filtered based on the

filter option selected at the top:

st.markdown("### Detailed Data View")
st.dataframe(df)

4. How to refresh the dashboard for real-time or live data feed
Since you don’t have a real-time or live data feed yet, you’re going to simulate your existing data

frame (unless you already have a live data feed or real-time data flowing in).

To simulate it, use a for loop from 0 to 200 seconds (as an option, on every iteration you’ll have a

second sleep/pause):

for seconds in range(200):
 df["age_new"] = df["age"] * np.random.choice(range(1, 5))
 df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))
 time.sleep(1)

Inside the loop, use NumPy's random.choice to generate a random number between 1 to 5. Use it as

a multiplier to randomize the values of age and balance columns that you’ve used for your metrics

and charts.

5. How to auto-update components
Now you know how to do a Streamlit web app!

To display the live data feed with auto-updating KPIs/Metrics/Charts, put all these components inside

a single-element container using st.empty(). Call it placeholder:

creating a single-element container.
placeholder = st.empty()

Put your components inside the placeholder by using a with clause. This way you’ll replace them in

every iteration of the data update. The code below contains the placeholder.container() along with

the UI components you created above:

with placeholder.container():

 # create three columns
 kpi1, kpi2, kpi3 = st.columns(3)

 # fill in those three columns with respective metrics or KPIs
 kpi1.metric(

 label="Age ⏳",
 value=round(avg_age),
 delta=round(avg_age) - 10,
)

 kpi2.metric(

 label="Married Count 💍",
 value=int(count_married),
 delta=-10 + count_married,
)

 kpi3.metric(
 label="A/C Balance ＄",
 value=f"$ {round(balance,2)} ",

Page 454 of 580

 delta=-round(balance / count_married) * 100,
)

 # create two columns for charts
 fig_col1, fig_col2 = st.columns(2)

 with fig_col1:
 st.markdown("### First Chart")
 fig = px.density_heatmap(
 data_frame=df, y="age_new", x="marital"
)
 st.write(fig)

 with fig_col2:
 st.markdown("### Second Chart")
 fig2 = px.histogram(data_frame=df, x="age_new")
 st.write(fig2)

 st.markdown("### Detailed Data View")
 st.dataframe(df)
 time.sleep(1)

And...here is the full code!

import time # to simulate a real time data, time loop
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
import plotly.express as px # interactive charts

import streamlit as st # 🎈 data web app development

st.set_page_config(
 page_title="Real-Time Data Science Dashboard",

 page_icon="✅",
 layout="wide",
)

read csv from a github repo
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-
analysis/master/bank.csv"

read csv from a URL
@st.experimental_memo
def get_data() -> pd.DataFrame:
 return pd.read_csv(dataset_url)

df = get_data()

dashboard title
st.title("Real-Time / Live Data Science Dashboard")

top-level filters
job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))

creating a single-element container
placeholder = st.empty()

dataframe filter
df = df[df["job"] == job_filter]

Page 455 of 580

near real-time / live feed simulation
for seconds in range(200):

 df["age_new"] = df["age"] * np.random.choice(range(1, 5))
 df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))

 # creating KPIs
 avg_age = np.mean(df["age_new"])

 count_married = int(
 df[(df["marital"] == "married")]["marital"].count()
 + np.random.choice(range(1, 30))
)

 balance = np.mean(df["balance_new"])

 with placeholder.container():

 # create three columns
 kpi1, kpi2, kpi3 = st.columns(3)

 # fill in those three columns with respective metrics or KPIs
 kpi1.metric(

 label="Age ⏳",
 value=round(avg_age),
 delta=round(avg_age) - 10,
)

 kpi2.metric(

 label="Married Count 💍",
 value=int(count_married),
 delta=-10 + count_married,
)

 kpi3.metric(
 label="A/C Balance ＄",
 value=f"$ {round(balance,2)} ",
 delta=-round(balance / count_married) * 100,
)

 # create two columns for charts
 fig_col1, fig_col2 = st.columns(2)
 with fig_col1:
 st.markdown("### First Chart")
 fig = px.density_heatmap(
 data_frame=df, y="age_new", x="marital"
)
 st.write(fig)
 with fig_col2:
 st.markdown("### Second Chart")
 fig2 = px.histogram(data_frame=df, x="age_new")
 st.write(fig2)

 st.markdown("### Detailed Data View")
 st.dataframe(df)
 time.sleep(1)

To run this dashboard on your local computer:

Page 456 of 580

• Save the code as a single monolithic app.py.

• Open your Terminal or Command Prompt in the same path where the app.py is stored.

• Execute streamlit run app.py for the dashboard to start running on your localhost and the link

would be displayed in your Terminal and also opened as a new Tab in your default browser.

Day-02: Develop Data Visualization Interfaces in Python With Dash
Dash gives data scientists the ability to showcase their results in interactive web applications.
You don’t need to be an expert in web development. In an afternoon, you can build and deploy
a Dash app to share with others.

Here you’ll learn how to:

• Create a Dash application
• Use Dash core components and HTML components

• Customize the style of your Dash application
• Use callbacks to build interactive applications

• Deploy your application on PythonAnywhere

You can download the source code, data, and resources for the sample application that you’ll
make in this tutorial by clicking the link below:

What Is Dash?

Dash is an open-source framework for building data visualization interfaces. Released in 2017 as
a Python library, it’s grown to include implementations for R, Julia, and F#. Dash helps data
scientists build analytical web applications without requiring advanced web development
knowledge.

Three technologies constitute the core of Dash:

1. Flask supplies the web server functionality.
2. React.js renders the user interface of the web page.

3. Plotly.js generates the charts used in your application.

But you don’t have to worry about making all these technologies work together. Dash will do
that for you. You just need to write Python, R, Julia, or F# and sprinkle in a bit of CSS.

Plotly, a Canada-based company, built Dash and supports its development. You may know the
company from the popular graphing libraries that share its name. The company released Dash
as open source under an MIT license, so you can use Dash at no cost.

Plotly also offers a commercial companion to Dash called Dash Enterprise. This paid service
provides companies with support services such as hosting, deploying, and handling
authentication on Dash applications. But these features live outside of Dash’s open-source
ecosystem.

Dash will help you build dashboards quickly. If you’re used to analyzing data or building data
visualizations using Python, then Dash will be a useful addition to your toolbox. Here are a few
examples of what you can make with Dash:

Page 457 of 580

1. A dashboard showing object detection for self-driving cars

2. A visualization of millions of Uber rides
3. An interactive tool for analyzing soccer match data

This is just a tiny sample. If you’d like to see other interesting use cases, then go

check out the Dash App Gallery.

Note: You don’t need advanced knowledge of web development to follow this
manual, but some familiarity with HTML and CSS won’t hurt.

You should know the basics of the following topics, though:

• Python graphing libraries such as Plotly, Bokeh, and Matplotlib
• HTML and the structure of an HTML file CSS and style sheets

Get Started With Dash in Python

You’ll go through the end-to-end process of building a dashboard using Dash. If you follow along
with the examples, then you’ll go from a bare-bones dashboard on your local machine to a
styled dashboard deployed on PythonAnywhere.

To build the dashboard, you’ll use a dataset of sales and prices of avocados in the United States
between 2015 and 2018. Justin Kiggins compiled this dataset using data from the Hass Avocado
Board.

How to Set Up Your Local Environment

To develop your app, you’ll need a new directory to store your code and data. You’ll also need a
clean Python virtual environment. To create those, execute the commands below, choosing the
version that matches your operating system:

PS> mkdir avocado_analytics

PS> cd avocado_analytics

PS> python -m venv venv

PS> venv\Scripts\activate

The first two commands create a directory for your project and move your current location there.
The next command creates a virtual environment in that location. The last command activates
the virtual environment.

Next, you need to install the required libraries. You can do that using pip inside your virtual
environment. Install the libraries as follows:

(venv) $ python -m pip install dash==2.8.1 pandas==1.5.3

This command will install Dash and pandas in your virtual environment. You’ll use specific
versions of these packages to make sure that you have the same environment as the one used
throughout this tutorial. Alongside Dash, pandas will help you handle reading and wrangling the
data that you’ll use in your app.

Page 458 of 580

Save the data as avocado.csv in the root directory of the project. By now, you should have a virtual
environment with the required libraries and the data in the root folder of your project. Your
project’s structure should look like this:

avocado_analytics/

venv/

avocado.csv

Now you’ll build your first Dash application.

How to Build a Dash Application

For development purposes, it’s useful to think of the process of building a Dash application in
three steps:

1. Define the content of your application using the app’s layout.
2. Style the looks of your app with CSS or styled components.
3. Use callbacks to determine which parts of your app are interactive and what they react to.

Initializing Your Dash Application

Create an empty file named app.py in the root directory of your project, then review the code
of app.py in this section. To make it easier for you to copy the full code, you’ll find the entire
contents of app.py at the end of this section.

Here are the first few lines of app.py:

 1# app.py

 2

 3import pandas as pd

 4from dash import Dash, dcc, html

 5

 6data = (

 7 pd.read_csv("avocado.csv")

 8 .query("type == 'conventional' and region == 'Albany'")

 9 .assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d"))

10 .sort_values(by="Date")

11)

12

13app = Dash(__name__)

On lines 3 and 4, you import the required libraries: pandas and dash. You’ll use pandas to read
and organize the data. You’re importing the following elements from dash:

• Dash helps you initialize your application.
• html, also called Dash HTML Components, lets you access HTML tags.
• dcc, short for Dash Core Components, allows you to create interactive components like

graphs, dropdowns, or date ranges.

Page 459 of 580

On lines 6 to 11, you read the data and preprocess it for use in the dashboard. You filter some of
the data because your dashboard isn’t interactive yet, and the plotted values wouldn’t make
sense otherwise.

On line 13, you create an instance of the Dash class you use Dash(__name__).

Defining the Layout of Your Dash Application

Next, you’ll define the layout property of your application. This property dictates the content of
your app. In this case, you’ll use a heading with a description immediately below it, followed by
two graphs. Here’s how you define it:

 1# app.py

 2

 3# ...

 4

 5app.layout = html.Div(

 6 children=[

 7 html.H1(children="Avocado Analytics"),

 8 html.P(

 9 children=(

10 "Analyze the behavior of avocado prices and the number"

11 " of avocados sold in the US between 2015 and 2018"

12),

13),

14 dcc.Graph(

15 figure={

16 "data": [

17 {

18 "x": data["Date"],

19 "y": data["AveragePrice"],

20 "type": "lines",

21 },

22],

23 "layout": {"title": "Average Price of Avocados"},

24 },

25),

26 dcc.Graph(

27 figure={

28 "data": [

29 {

30 "x": data["Date"],

Page 460 of 580

31 "y": data["Total Volume"],

32 "type": "lines",

33 },

34],

35 "layout": {"title": "Avocados Sold"},

36 },

37),

38]

39)

With this code, you define the .layout property of the app object. This property determines the
content of your application using a tree structure made of Dash components.

Dash components come prepackaged in Python libraries. Some of them come with Dash when
you install it. You have to install the rest separately. You’ll see two sets of components in almost
every app:

1. The Dash HTML Components module provides you with Python wrappers for HTML

elements. For example, you could use Dash HTML Components to create elements
such as paragraphs, headings, or lists.

2. The Dash Core Components module provides you with Python abstractions for
creating interactive user interfaces. You can use these components to create

interactive elements such as graphs, sliders, or dropdowns.

On lines 5 to 13, you can see the Dash HTML components in practice. You start by defining the
parent component, html.Div. Then you add two more elements, a heading (html.H1) and a
paragraph (html.P), as its children.

These components are equivalent to the <div>, <h1>, and <p> HTML tags. You can use the
components’ arguments to modify attributes or the content of the tags. For example, to specify
what goes inside the <div> tag, you use the children argument in html.Div.

There are also other arguments in the components, such as style, className, and id, that refer to
attributes of the HTML tags. You’ll see how to use some of these properties to style your
dashboard in the next section.

The part of the layout shown on lines 5 to 13 will get transformed into the following HTML code:

<div>

 <h1>Avocado Analytics</h1>

 <p>

 Analyze the behavior of avocado prices and the number

 of avocados sold in the US between 2015 and 2018

 </p>

 <!-- Rest of the app -->

Page 461 of 580

</div>

This HTML code is rendered when you open your application in the browser. It follows the same
structure as your Python code, with a <div> tag containing an <h1> and a <p> element.

On lines 14 and 26 in the layout code snippet, you can see the graph component from Dash Core
Components in practice. There are two dcc.Graph components in app.layout. The first one plots
the average prices of avocados during the period of study, and the second plots the number of
avocados sold in the United States during the same period.

Under the hood, Dash uses Plotly.js to generate graphs. The dcc.Graph components expect
a figure object or a Python dictionary containing the plot’s data and layout. In this case, you
provide the latter.

Finally, these two lines of code help you run your application:

app.py

...

if __name__ == "__main__":

 app.run_server(debug=True)

These lines make it possible to run your Dash application locally using Flask’s built-in server.
The debug=True parameter enables the hot-reloading option in your application. This means that
when you make a change to your app, it reloads automatically, without you having to restart the
server.

This is the code for your bare-bones dashboard. It includes all the snippets of code that you
reviewed earlier in this section.

Now it’s time to run your application. Open a terminal inside your project’s root directory with
the project’s virtual environment activated. Run python app.py, then go
to http://localhost:8050 using your preferred browser.

Note: Install dash by typing followin command on Shell:
 conda install dash dash-core-components dash-html-components dash-renderer
-c conda-forge

and the py -m pip install dash

Your dashboard should look like this:

Page 462 of 580

The dashboard is far from visually pleasing, and you still need to add some interactivity to it.

Style Your Dash Application

Dash provides you with a lot of flexibility to customize the look of your application. You can use
your own CSS or JavaScript files, set a favicon—the small icon shown on tabs in the web
browser—and embed images, among other advanced options.

Now you’ll see how to show off your own style with CSS. There are several packages on PyPI that
provide styled Dash components. For example, dash-bootstrap-components are Bootstrap
themed.

Apply custom styles to components, and then you’ll style the dashboard that you built in the
previous section.

How to Apply a Custom Style to Your Components

You can style components in two ways:

• Using the style argument of individual components

• Providing an external CSS file

Page 463 of 580

Using the style argument to customize your dashboard is straightforward. This argument takes a
Python dictionary with key-value pairs consisting of the names of CSS properties and the values
that you want to set.

When specifying CSS properties in the style argument, you should use mixedCase syntax instead

of hyphen-separated words. For example, to change the background color of an element, you should

use backgroundColor and not background-color.

If you wanted to change the size and color of the H1 element in app.py, then you could set the
element’s style argument as follows:

html.H1(

 children="Avocado Analytics",

 style={"fontSize": "48px", "color": "red"},

),
If you want to include your own local CSS or JavaScript files, then you need to create a folder
called assets/ in the root directory of your project and save the files that you want to add there.
By default, Dash automatically serves any file included in assets/. This will also work for adding a
favicon or embedding images, as you’ll see in a bit.

Then you can use the className or id arguments of the components to adjust their styles using
CSS. These arguments correspond with the class and id attributes when they’re transformed into
HTML tags.

If you wanted to adjust the font size and text color of the H1 element in app.py, then you could
use the className argument as follows:

html.H1(

 children="Avocado Analytics",

 className="header-title",

),

Setting the className argument will define the class attribute for the <h1> element. You could
then use a CSS file in the assets folder to specify how you want it to look:

.header-title {

 font-size: 48px;

 color: red;

}

You use a class selector to format the heading in your CSS file. This selector will adjust the heading
format. You could also use it with another element that needs to share the format by
setting className="header-title".

Page 464 of 580

How to Improve the Looks of Your Dashboard

You just covered the basics of styling in Dash. Now, you’ll learn how to customize your
dashboard’s looks. You’ll make these improvements:

• Add a favicon and title to the page.

• Change the font family of your dashboard.

• Use an external CSS file to style Dash components.

You’ll start by learning how to use external assets in your application. That’ll allow you to add a
favicon, a custom font family, and a CSS style sheet. Then you’ll learn how to use
the className argument to apply custom styles to your Dash components.

Adding External Assets to Your Application

Create a folder called assets/ in your project’s root directory. Download a favicon from
the Twemoji open-source project and save it as favicon.ico in assets/. Finally, create a CSS file
in assets/ called style.css and add the code in the collapsible section below:

style.cssShow/Hide

The assets/style.css file contains the styles that you’ll apply to components in your application’s
layout. By now, your project structure should look like this:

avocado_analytics/

│

├── assets/

│ ├── favicon.ico

│ └── style.css

│

├── venv/

│

├── app.py

└── avocado.csv

Once you start the server, Dash will automatically serve the files located in assets/. You include
two files, favicon.ico and style.css, in assets/. To set a default favicon, you don’t have to take any
additional steps. To use the styles that you defined in style.css, you’ll need to use
the className argument in Dash components.

You need to make a few changes in app.py. You’ll include an external style sheet, add a title to
your dashboard, and style the components using the style.css file. Review the changes below.
Then, in the last part of this section, you’ll find the full code for your updated version of app.py.

Here’s how you include an external style sheet and add a title to your dashboard:

app.py

Page 465 of 580

...

external_stylesheets = [

 {

 "href": (

 "https://fonts.googleapis.com/css2?"

 "family=Lato:wght@400;700&display=swap"

),

 "rel": "stylesheet",

 },

]

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

app.title = "Avocado Analytics: Understand Your Avocados!"

...

In these code lines, you specify an external CSS file containing a font family, which you want to
load in your application. You add external files to the head tag of your application, so they load
before the body of your application loads. You use the external_stylesheets argument for adding
external CSS files or external_scripts for external JavaScript files like Google Analytics.

You also set the title of your application. This is the text that appears in the title bar of your web
browser, in Google’s search results, and in social media cards when you share your site.

Customizing the Styles of Components

To use the styles in style.css, you’ll need to use the className argument in Dash components.
The code below adds a className with a corresponding class selector to each of the components
in the header of your dashboard:

app.py

...

app.layout = html.Div(

 children=[

 html.Div(

 children=[

 html.P(children="🥑", className="header-emoji"),

 html.H1(

 children="Avocado Analytics", className="header-title"

),

 html.P(

Page 466 of 580

 children=(

 "Analyze the behavior of avocado prices and the number"

 " of avocados sold in the US between 2015 and 2018"

),

 className="header-description",

),

],

 className="header",

 # ...

In the highlighted lines, you can see that you’ve made three changes to the initial version of the
dashboard:

1. There’s a new <div> element that wraps all the header components.

2. There’s a new paragraph element with an avocado emoji, , that’ll serve as a logo on the
page.

3. There’s a className argument in each component. These class names match a class
selector in style.css, which defines the looks of each component.

For example, the header-description class assigned to the paragraph component starting
with "Analyze the behavior of avocado prices" has a corresponding selector in style.css. In that
file, you’ll see the following:

.header-description {

 color: #CFCFCF;

 margin: 4px auto;

 text-align: center;

 max-width: 384px;

}

These lines define the format for the header-description class selector. They’ll change the color,
margin, alignment, and maximum width of any component with className="header-
description". All the components have corresponding class selectors in the CSS file.

The other significant change is in the graphs. Here’s the new code for the price chart:

 1# app.py

 2

 3# ...

 4

 5app.layout = html.Div(

 6 children=[

 7 # ...

 8

Page 467 of 580

 9 html.Div(

10 children=[

11 html.Div(

12 children=dcc.Graph(

13 id="price-chart",

14 config={"displayModeBar": False},

15 figure={

16 "data": [

17 {

18 "x": data["Date"],

19 "y": data["AveragePrice"],

20 "type": "lines",

21 "hovertemplate": (

22 "$%{y:.2f}<extra></extra>"

23),

24 },

25],

26 "layout": {

27 "title": {

28 "text": "Average Price of Avocados",

29 "x": 0.05,

30 "xanchor": "left",

31 },

32 "xaxis": {"fixedrange": True},

33 "yaxis": {

34 "tickprefix": "$",

35 "fixedrange": True,

36 },

37 "colorway": ["#17b897"],

38 },

39 },

40),

41 className="card",

42),

43

44 # ...

45

46],

Page 468 of 580

47 className="wrapper",

48),

49]

50)

51

52# ...

In this code, you define a className and a few customizations for

the config and figure parameters of your chart. Here are the changes:

• Line 14: You remove the floating toolbar that Plotly shows by default.
• Lines 21 to 23: You set the hover template so that when users hover over a data point, it

shows the price in dollars. Instead of 2.5, it’ll show as $2.5.
• Lines 26 to 38: You adjust the axes, the color of the figure, and the title format in the layout

section of the graph.
• Lines 11 and 41: You wrap the graph in a <div> element with a "card" class. This will give

the graph a white background and add a small shadow below it.
• Lines 9 and 47: You add a <div> element that wraps the graph components with

a wrapper class.

There are similar adjustments to the sales and volume charts. You can see those in the full

code for the updated app.py in the collapsible section below:

app.py

import pandas as pd

from dash import Dash, dcc, html

data = (

 pd.read_csv("avocado.csv")

 .query("type == 'conventional' and region == 'Albany'")

 .assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d"))

 .sort_values(by="Date")

)

external_stylesheets = [

 {

 "href": (

 "https://fonts.googleapis.com/css2?"

 "family=Lato:wght@400;700&display=swap"

),

 "rel": "stylesheet",

 },

Page 469 of 580

]

app = Dash(__name__, external_stylesheets=external_stylesheets)

app.title = "Avocado Analytics: Understand Your Avocados!"

app.layout = html.Div(

 children=[

 html.Div(

 children=[

 html.P(children="🥑", className="header-emoji"),

 html.H1(

 children="Avocado Analytics", className="header-title"

),

 html.P(

 children=(

 "Analyze the behavior of avocado prices and the number"

 " of avocados sold in the US between 2015 and 2018"

),

 className="header-description",

),

],

 className="header",

),

 html.Div(

 children=[

 html.Div(

 children=dcc.Graph(

 id="price-chart",

 config={"displayModeBar": False},

 figure={

 "data": [

 {

 "x": data["Date"],

 "y": data["AveragePrice"],

 "type": "lines",

 "hovertemplate": (

 "$%{y:.2f}<extra></extra>"

),

 },

Page 470 of 580

],

 "layout": {

 "title": {

 "text": "Average Price of Avocados",

 "x": 0.05,

 "xanchor": "left",

 },

 "xaxis": {"fixedrange": True},

 "yaxis": {

 "tickprefix": "$",

 "fixedrange": True,

 },

 "colorway": ["#17b897"],

 },

 },

),

 className="card",

),

 html.Div(

 children=dcc.Graph(

 id="volume-chart",

 config={"displayModeBar": False},

 figure={

 "data": [

 {

 "x": data["Date"],

 "y": data["Total Volume"],

 "type": "lines",

 },

],

 "layout": {

 "title": {

 "text": "Avocados Sold",

 "x": 0.05,

 "xanchor": "left",

 },

 "xaxis": {"fixedrange": True},

 "yaxis": {"fixedrange": True},

Page 471 of 580

 "colorway": ["#E12D39"],

 },

 },

),

 className="card",

),

],

 className="wrapper",

),

]

)

if __name__ == "__main__":

 app.run_server(debug=True)

This is the updated version of app.py. It has the required changes in the code to
add a favicon and a page title, update the font family, and use an external CSS

file. After these changes, your dashboard should look like this:

Add Interactivity to Your Dash Apps Using Callbacks
In this section, you’ll learn how to add interactive elements to your dashboard.

Page 472 of 580

Dash’s interactivity is based on a reactive programming paradigm. This means that you can

link components with elements of your app that you want to update. If a user interacts with an

input component like a dropdown or a range slider, then the output, such as a graph, will react

automatically to the changes in the input.

Now you’re going to make your dashboard interactive. This new version of your dashboard

will allow the user to interact with the following filters:

• Region
• Type of avocado
• Date range

The collapsible boxes below contain the full source code that you’ll be exploring in this

section. Start by replacing your local app.py with the new version in the collapsible section

below:

app.pyShow/Hide

Next, replace style.css with the code in the collapsible section below:

style.cssShow/Hide

Now you’re ready to explore the interactive components that you’ve added to your

application!

How to Create Interactive Components

First, you’ll learn how to create components that users can interact with. For
that, you’ll include a new <div> element above your charts. It’ll include two

dropdowns and a date range selector that the user can use to filter the data and

update the graphs.

You start by changing how you process your data. You no longer filter the data

when you read them. Instead you find the regions and avocado types that are

present in your data:

app.py

...

data = (

 pd.read_csv("avocado.csv")

 # Remove .query(...)

 .assign(Date=lambda data: pd.to_datetime(data["Date"], format="%Y-%m-%d"))

 .sort_values(by="Date")

)

regions = data["region"].sort_values().unique()

avocado_types = data["type"].sort_values().unique()

Page 473 of 580

...

Next, you’ll use regions and avocado_types to populate a few dropdowns. Here’s

how that looks in app.py:

 1# app.py

 2

 3# ...

 4

 5app.layout = html.Div(

 6 children=[

 7

 8 # ...

 9

10 html.Div(

11 children=[

12 html.Div(

13 children=[

14 html.Div(children="Region", className="menu-title"),

15 dcc.Dropdown(

16 id="region-filter",

17 options=[

18 {"label": region, "value": region}

19 for region in regions

20],

21 value="Albany",

22 clearable=False,

23 className="dropdown",

24),

25]

26),

27 html.Div(

28 children=[

29 html.Div(children="Type", className="menu-title"),

30 dcc.Dropdown(

31 id="type-filter",

32 options=[

33 {

34 "label": avocado_type.title(),

Page 474 of 580

35 "value": avocado_type,

36 }

37 for avocado_type in avocado_types

38],

39 value="organic",

40 clearable=False,

41 searchable=False,

42 className="dropdown",

43),

44],

45),

46 html.Div(

47 children=[

48 html.Div(

49 children="Date Range", className="menu-title"

50),

51 dcc.DatePickerRange(

52 id="date-range",

53 min_date_allowed=data["Date"].min().date(),

54 max_date_allowed=data["Date"].max().date(),

55 start_date=data["Date"].min().date(),

56 end_date=data["Date"].max().date(),

57),

58]

59),

60],

61 className="menu",

62),

63

64 # ...

On lines 10 to 62, you define a <div> element above your graphs, consisting of
two dropdowns and a date range selector. It’ll serve as a menu that the user will

use to interact with the data:

Page 475 of 580

The first component in the menu is the Region dropdown. Focus on the code for

that component:

html.Div(

 children=[

 html.Div(children="Region", className="menu-title"),

 dcc.Dropdown(

 id="region-filter",

 options=[

 {"label": region, "value": region}

 for region in regions

],

 value="Albany",

 clearable=False,

 className="dropdown",

),

]

),

Here, you define the dropdown that users will use to filter the data by region. In

addition to the title, it has a dcc.Dropdown component. Here’s what each of the

parameters means:

• id is the identifier of this element.

• options indicates the options shown when the dropdown is selected. It
expects a dictionary with labels and values.

• value is the default value when the page loads.
• clearable allows the user to leave this field empty if set to True.

• className is a CSS class selector used for applying styles.

The Type and Date Range selectors follow the same structure as the Region

dropdown. Feel free to review them on your own.

Next, take a look at the dcc.Graphs components:

app.py

...

app.layout = html.Div(

 children=[

Page 476 of 580

 # ...

 html.Div(

 children=[

 html.Div(

 children=dcc.Graph(

 id="price-chart",

 config={"displayModeBar": False},

),

 className="card",

),

 html.Div(

 children=dcc.Graph(

 id="volume-chart",

 config={"displayModeBar": False},

),

 className="card",

),

],

 className="wrapper",

),

]

)

...

In this part of the code, you define the dcc.Graph components. You may have
noticed that, compared to the previous version of the dashboard, the

components are missing the figure argument. That’s because a callback
function will now generate the figure argument using the inputs that the user

sets using the Region, Type, and Date Range selectors.

How to Define Callbacks

You’ve defined how the user will interact with your application. Now you need to make your

application react to user interactions. For that, you’ll use callback functions.

Dash’s callback functions are regular Python functions with an app.callback decorator. In

Dash, when an input changes, a callback function is triggered. The function performs some

predetermined operations, like filtering a dataset, and returns an output to the application. In

essence, callbacks link inputs and outputs in your app.

Page 477 of 580

Here’s the callback function that’s used for updating the graphs:

 1# app.py

 2

 3# ..

 4

 5@app.callback(

 6 Output("price-chart", "figure"),

 7 Output("volume-chart", "figure"),

 8 Input("region-filter", "value"),

 9 Input("type-filter", "value"),

10 Input("date-range", "start_date"),

11 Input("date-range", "end_date"),

12)

13def update_charts(region, avocado_type, start_date, end_date):

14 filtered_data = data.query(

15 "region == @region and type == @avocado_type"

16 " and Date >= @start_date and Date <= @end_date"

17)

18 price_chart_figure = {

19 "data": [

20 {

21 "x": filtered_data["Date"],

22 "y": filtered_data["AveragePrice"],

23 "type": "lines",

24 "hovertemplate": "$%{y:.2f}<extra></extra>",

25 },

26],

27 "layout": {

28 "title": {

29 "text": "Average Price of Avocados",

30 "x": 0.05,

31 "xanchor": "left",

32 },

33 "xaxis": {"fixedrange": True},

34 "yaxis": {"tickprefix": "$", "fixedrange": True},

35 "colorway": ["#17B897"],

36 },

37 }

Page 478 of 580

38

39 volume_chart_figure = {

40 "data": [

41 {

42 "x": filtered_data["Date"],

43 "y": filtered_data["Total Volume"],

44 "type": "lines",

45 },

46],

47 "layout": {

48 "title": {"text": "Avocados Sold", "x": 0.05, "xanchor": "left"},

49 "xaxis": {"fixedrange": True},

50 "yaxis": {"fixedrange": True},

51 "colorway": ["#E12D39"],

52 },

53 }

54 return price_chart_figure, volume_chart_figure

55

56# ...

On lines 6 to 11, you define the inputs and outputs inside the app.callback decorator.

First, you define the outputs using Output objects. They take two arguments:

1. The identifier of the element that they’ll modify when the function executes
2. The property of the element to be modified

For example, Output("price-chart", "figure") will update the figure property of

the "price-chart" element.

Then you define the inputs using Input objects. They also take two arguments:

1. The identifier of the element that they’ll be watching for changes
2. The property of the watched element that they’ll be watching for changes

So, Input("region-filter", "value") will watch the "region-filter" element and

its value property for changes. The argument passed on to the callback function will be the

new value of region-filter.value.

Note: The Input object that you’re using here is imported directly from dash. Be careful not

to confuse it with the Input component coming from dcc. These objects aren’t

interchangeable, and they have different purposes.

On line 13, you define the function that’ll be applied when an input changes. It’s worth

noticing that the arguments of the function will correspond with the order of

Page 479 of 580

the Input objects supplied to the callback. There’s no explicit relationship between the

names of the arguments in the function and the values specified in the Input objects.

Finally, on lines 14 to 54, you define the body of the function. In this case, the function takes

the inputs (region, type of avocado, and date range), filters the data, and generates the figure

objects for the price and volume charts.

That’s all! If you’ve followed along to this point, then your dashboard should look like this:

Way to go! That’s the final version of your dashboard. In addition to making it look beautiful,

you also made it interactive. The only missing step is making it public so you can share it

with others.

Deploy Your Dash Application to PythonAnywhere

You’re done building your application, and you have a beautiful, fully interactive

dashboard. Now you’ll learn how to deploy it.

Dash apps are Flask apps, so both share the same deployment options. In this

section, you’ll deploy your app on PythonAnywhere, which offers a free tier for

hosting Python web applications in the cloud.

Day-03: Host, run, and code Python in the cloud!
PythonAnywhere by anaconda

How to Create a Free PythonAnywhere Account

Before you get started, make sure you’ve signed up for a PythonAnywhere beginner

account, which is completely free of charge and doesn’t require you to provide any payment

details. That said, it comes with a few limitations that you should be aware of. The most

important ones will prevent you from doing the following:

• Running more than one web application at a time
• Defining a custom domain name
• Exceeding the available disk quota (512 MB)
• Using the CPU for longer than 100 seconds per day
• Making unrestricted HTTP requests from your app

For this tutorial, though, you won’t need any of that!

If you’re based in Europe, then consider signing up through eu.pythonanywhere.com instead

of the www.pythonanywhere.com. It’ll ensure GDPR compliance for your data, which

PythonAnywhere will store on servers in Germany. Because of that, you may also experience

slightly faster response times. Finally, if you decide to become a paid customer one day, then

you’ll be charged in euros instead of US dollars.

Feel free to follow either of the two PythonAnywhere links above if you don’t care about any

of these features at the moment. Note, however, that once you register a username on one

domain, then you won’t be able to reuse it on the other!

Page 480 of 580

Another reason to think carefully about your username is that it must be unique, as it’ll

become a part of your very own domain name, such as in these examples:

http://realpython.pythonanywhere.com/

http://realpython.eu.pythonanywhere.com/

Once you register a new account on PythonAnywhere, you must confirm your email address

so that you can reset the password if you forget it. Also, it might be a good idea to

enable two-factor authentication on the Security tab in your Account settings as an extra

security measure.

If you’ve just created a new account, then you’re already good to go. But if you registered a

PythonAnywhere account a while ago, then you might need to change your system image to a

newer one, which comes with a more recent Python version and newer third-party libraries.

At the time of writing, the latest image, called haggis, shipped with Python 3.10.5, pandas

1.3.5, and Dash 2.4.1.

Note: You can always check the available batteries for a given image and Python version.

With that out of the way, it’s time to create your first web app on PythonAnywhere!

How to Deploy Your Avocado Analytics App

Because Dash apps are Flask apps with some extra frills, you can take advantage of

PythonAnywhere’s excellent support for this popular Python web framework.

When you’re logged in to your PythonAnywhere account, create a new Bash shell console,

either from the Dashboard or the Consoles tab. This will throw you into an interactive

prompt of the virtual server, letting you remotely execute commands straight from your web

browser.

There are already several useful programs installed for you, including a Git client, which

you’ll use to get your project’s source code into PythonAnywhere. You can also upload files

in other ways, but using Git seems the most convenient. If you haven’t made your own

repository yet, then you might clone Real Python’s materials repository with your sample

Dash application in it:

$ git clone --depth=1 https://github.com/realpython/materials.git

The --depth=1 option tells Git only to clone the latest commit, which saves time and disk

space. Note that if you don’t want to configure SSH keys for your PythonAnywhere machine,

then you’ll have to clone a public repository using the HTTPS protocol. Since August 2021,

cloning private repositories has been possible only after configuring a personal access

token in GitHub.

When the repository is cloned, you can move and rename a subfolder with the finished

avocado app to your home folder on PythonAnywhere, and then remove the rest of the

materials:

$ mv materials/python-dash/avocado_analytics_3/ ~/avocado_analytics

$ rm -rf materials/

Page 481 of 580

Remember that you only have 512 megabytes of disk space on the free tier at your disposal,

and the materials take up a significant portion of that!

At this point, your home folder should look like this:

home/realpython/

│

└── avocado_analytics/

 │

 ├── assets/

 │ ├── favicon.ico

 │ └── style.css

 │

 ├── app.py

 └── avocado.csv

Of course, the username realpython will be different on your account, but the overall folder

structure should remain the same.

Now, go the Web tab and click the button labeled Add a new web app. This will open a

wizard, asking you a few questions. First, select Flask as the Python web framework of your

choice:

Page 482 of 580

Next, you’ll see a specific Flask version running on top of the given Python interpreter.

Select the latest version available:

Page 483 of 580

In the next step, you’ll need to update the file path leading up to the main Python module

with your Flask app:

Page 484 of 580

While you can change it later, it’s much easier if you do it right now, so make sure to rename

the default mysite/ folder with avocado_analytics/ to match your project’s name. At the

same time, you want to keep the suggested flask_app.py filename intact. PythonAnywhere

will generate this file and populate it with a demo app, so if you renamed it to app.py, then

the code that you cloned from GitHub would get overwritten!

Once this is done, you’ll be presented with a number of configuration options for your new

web app. First, you need to update the working directory of the app to be the same as the

source code:

This will ensure that Python can find your avocado.csv file at runtime and open it for

reading.

Page 485 of 580

Next, you’ll need to tweak the default WSGI server configuration, which is slightly different

for Dash apps than it is for Flask. PythonAnywhere uses the uWSGI server behind the scenes,

which reads the configuration from a special Python module located in the /var/www/ folder.

Click the WSGI configuration file option visible in the screenshot above to open it in an

editor in your web browser:

 # This file contains the WSGI configuration required to serve up your

 # web application at http://<your-username>.pythonanywhere.com/

 # It works by setting the variable 'application' to a WSGI handler of some

 # description.

 #

 # The below has been auto-generated for your Flask project

 import sys

 # add your project directory to the sys.path

 project_home = '/home/realpython/avocado_analytics'

 if project_home not in sys.path:

 sys.path = [project_home] + sys.path

 # import flask app but need to call it "application" for WSGI to work

-from flask_app import app as application # noqa

+from app import app

+application = app.server

You need to rename the flask_app module generated by the wizard to the actual app module

that came with your avocado project. Besides that, you must expose the callable WSGI

application through the Dash app’s .server field, as described in the official help page on

PythonAnywhere. You might as well double-check if the path in

your project_home variable is correct.

Finally, save the file by hitting Ctrl + S , go back to the Web tab, and click the green button

to reload your web app:

When you visit the corresponding URL of your web app deployed to PythonAnywhere, you

should see the familiar interface:

Page 486 of 580

Avocado Analytics Web App Deployed to PythonAnywhere

That’s it! Note that you never installed Dash or pandas because they were already shipped

with PythonAnywhere. Also, you didn’t have to configure static resources, which are

typically served by the web server rather than Flask, because Dash takes care of them

automatically.

Note: If you need more control over the external library versions, then you can

use virtualenvwrapper to create a virtual environment for the platform and manually install

those dependencies. Unfortunately, doing so will likely consume all of your disk space and

drain your CPU bandwidth to the point you’ll end up in the tarpit.

You can now share your Dash apps with the world by deploying them to PythonAnywhere or

other web hosting providers.

Page 487 of 580

Day-04: Interactive Data Visualization in

Python With Bokeh

Bokeh prides itself on being a library for interactive data visualization.

Unlike popular counterparts in the Python visualization space, like Matplotlib and Seaborn, Bokeh

renders its graphics using HTML and JavaScript. This makes it a great candidate for building web-

based dashboards and applications. However, it’s an equally powerful tool for exploring and

understanding your data or creating beautiful custom charts for a project or report.

Using a number of examples on a real-world dataset, the goal of this tutorial is to get you up and

running with Bokeh.

• Transform your data into visualizations, using Bokeh

• Customize and organize your visualizations

• Add interactivity to your visualizations

Building a visualization with Bokeh involves the following steps:

• Prepare the data

• Determine where the visualization will be rendered

• Set up the figure(s)

• Connect to and draw your data

• Organize the layout

• Preview and save your beautiful data creation

Prepare the Data

Any good data visualization starts with—you guessed it—data. If you need a quick refresher

on handling data in Python.

This step commonly involves data handling libraries like Pandas and Numpy and is all about

taking the required steps to transform it into a form that is best suited for your intended

visualization.

Determine Where the Visualization Will Be Rendered

At this step, you’ll determine how you want to generate and ultimately view your

visualization. In this tutorial, you’ll learn about two common options that Bokeh provides:

generating a static HTML file and rendering your visualization inline in a Jupyter Notebook.

Set up the Figure(s)

From here, you’ll assemble your figure, preparing the canvas for your visualization. In this

step, you can customize everything from the titles to the tick marks. You can also set up a

suite of tools that can enable various user interactions with your visualization.

Page 488 of 580

Connect to and Draw Your Data

Next, you’ll use Bokeh’s multitude of renderers to give shape to your data. Here, you have

the flexibility to draw your data from scratch using the many available marker and shape

options, all of which are easily customizable. This functionality gives you incredible creative

freedom in representing your data.

Additionally, Bokeh has some built-in functionality for building things like stacked bar charts

and plenty of examples for creating more advanced visualizations like network graphs and

maps.

Organize the Layout

If you need more than one figure to express your data, Bokeh’s got you covered. Not only

does Bokeh offer the standard grid-like layout options, but it also allows you to easily

organize your visualizations into a tabbed layout in just a few lines of code.

In addition, your plots can be quickly linked together, so a selection on one will be reflected

on any combination of the others.

Preview and Save Your Beautiful Data Creation

Finally, it’s time to see what you created.

Whether you’re viewing your visualization in a browser or notebook, you’ll be able to

explore your visualization, examine your customizations, and play with any interactions that

were added.

If you like what you see, you can save your visualization to an image file. Otherwise, you can

revisit the steps above as needed to bring your data vision to reality.

That’s it! Those six steps are the building blocks for a tidy, flexible template that can be used

to take your data from the table to the big screen:

"""Bokeh Visualization Template

This template is a general outline for turning your data into a

visualization using Bokeh.

"""

Data handling

import pandas as pd

import numpy as np

Bokeh libraries

from bokeh.io import output_file, output_notebook

from bokeh.plotting import figure, show

from bokeh.models import ColumnDataSource

from bokeh.layouts import row, column, gridplot

from bokeh.models.widgets import Tabs, Panel

Prepare the data

Determine where the visualization will be rendered

Page 489 of 580

output_file('filename.html') # Render to static HTML, or

output_notebook() # Render inline in a Jupyter Notebook

Set up the figure(s)

fig = figure() # Instantiate a figure() object

Connect to and draw the data

Organize the layout

Preview and save

show(fig) # See what I made, and save if I like it

Some common code snippets that are found in each step are previewed above, and you’ll see

how to fill out the rest as you move through the rest of the tutorial!

Generating Your First Figure

There are multiple ways to output your visualization in Bokeh. In this tutorial, you’ll see

these two options:

• output_file('filename.html') will write the visualization to a static HTML file.
• output_notebook() will render your visualization directly in a Jupyter Notebook.

It’s important to note that neither function will actually show you the visualization. That

doesn’t happen until show() is called. However, they will ensure that, when show() is called,

the visualization appears where you intend it to.

By calling both output_file() and output_notebook() in the same execution, the

visualization will be rendered both to a static HTML file and inline in the notebook.

However, if for whatever reason you run multiple output_file() commands in the same

execution, only the last one will be used for rendering.

This is a great opportunity to give you your first glimpse at a default Bokeh figure() using

output_file():

Bokeh Libraries

from bokeh.io import output_file

from bokeh.plotting import figure, show

The figure will be rendered in a static HTML file called

output_file_test.html

output_file('output_file_test.html',

 title='Empty Bokeh Figure')

Set up a generic figure() object

fig = figure()

See what it looks like

show(fig)

Page 490 of 580

As you can see, a new browser window opened with a tab called Empty Bokeh Figure and an

empty figure. Not shown is the file generated with the name output_file_test.html in your

current working directory.

If you were to run the same code snippet with output_notebook() in place of

output_file(), assuming you have a Jupyter Notebook fired up and ready to go, you will

get the following:

Bokeh Libraries

from bokeh.io import output_notebook

from bokeh.plotting import figure, show

The figure will be right in my Jupyter Notebook

output_notebook()

Set up a generic figure() object

Page 491 of 580

fig = figure()

See what it looks like

show(fig)

As you can see, the result is the same, just rendered in a different location.

More information about both output_file() and output_notebook() can be found in the

Bokeh official docs.

Note: Sometimes, when rendering multiple visualizations sequentially, you’ll see that past

renders are not being cleared with each execution. If you experience this, import and run the

following between executions:

Import reset_output (only needed once)

from bokeh.plotting import reset_output

Use reset_output() between subsequent show() calls, as needed

reset_output()

Before moving on, you may have noticed that the default Bokeh figure comes pre-loaded

with a toolbar. This is an important sneak preview into the interactive elements of Bokeh that

Page 492 of 580

come right out of the box. You’ll find out more about the toolbar and how to configure it in

the Adding Interaction section at the end of this tutorial.

Getting Your Figure Ready for Data

Now that you know how to create and view a generic Bokeh figure either in a browser or

Jupyter Notebook, it’s time to learn more about how to configure the figure() object.

The figure() object is not only the foundation of your data visualization but also the object

that unlocks all of Bokeh’s available tools for visualizing data. The Bokeh figure is a subclass

of the Bokeh Plot object, which provides many of the parameters that make it possible to

configure the aesthetic elements of your figure.

To show you just a glimpse into the customization options available, let’s create the ugliest

figure ever:

Bokeh Libraries

from bokeh.io import output_notebook

from bokeh.plotting import figure, show

The figure will be rendered inline in my Jupyter Notebook

output_notebook()

Example figure

fig = figure(background_fill_color='gray',

 background_fill_alpha=0.5,

 border_fill_color='blue',

 border_fill_alpha=0.25,

 plot_height=300,

 plot_width=500,

 h_symmetry=True,

 x_axis_label='X Label',

 x_axis_type='datetime',

 x_axis_location='above',

 x_range=('2018-01-01', '2018-06-30'),

 y_axis_label='Y Label',

 y_axis_type='linear',

 y_axis_location='left',

 y_range=(0, 100),

 title='Example Figure',

 title_location='right',

 toolbar_location='below',

 tools='save')

See what it looks like

show(fig)

Page 493 of 580

Once the figure() object is instantiated, you can still configure it after the fact. Let’s say

you want to get rid of the gridlines:

Remove the gridlines from the figure() object

fig.grid.grid_line_color = None

See what it looks like

show(fig)

The gridline properties are accessible via the figure’s grid attribute. In this case, setting

grid_line_color to None effectively removes the gridlines altogether. More details about

figure attributes can be found below the fold in the Plot class documentation.

Page 494 of 580

Note: If you’re working in a notebook or IDE with auto-complete functionality, this feature

can definitely be your friend! With so many customizable elements, it can be very helpful in

discovering the available options:

Otherwise, doing a quick web search, with the keyword bokeh and what you are trying to do,

will generally point you in the right direction.

There is tons more I could touch on here, but don’t feel like you’re missing out. I’ll make

sure to introduce different figure tweaks as the tutorial progresses. Here are some other

helpful links on the topic:

• The Bokeh Plot Class is the superclass of the figure() object, from which figures inherit a
lot of their attributes.

• The Figure Class documentation is a good place to find more detail about the arguments of
the figure() object.

Page 495 of 580

Here are a few specific customization options worth checking out:

• Text Properties covers all the attributes related to changing font styles, sizes, colors, and so
forth.

• TickFormatters are built-in objects specifically for formatting your axes using Python-like
string formatting syntax.

Sometimes, it isn’t clear how your figure needs to be customized until it actually has some

data visualized in it, so next you’ll learn how to make that happen.

Drawing Data With Glyphs

An empty figure isn’t all that exciting, so let’s look at glyphs: the building blocks of Bokeh

visualizations. A glyph is a vectorized graphical shape or marker that is used to represent your data,

like a circle or square. More examples can be found in the Bokeh gallery. After you create your

figure, you are given access to a bevy of configurable glyph methods.

Let’s start with a very basic example, drawing some points on an x-y coordinate grid:

Bokeh Libraries

from bokeh.io import output_file

from bokeh.plotting import figure, show

My x-y coordinate data

x = [1, 2, 1]

y = [1, 1, 2]

Output the visualization directly in the notebook

output_file('first_glyphs.html', title='First Glyphs')

Create a figure with no toolbar and axis ranges of [0,3]

fig = figure(title='My Coordinates',

 plot_height=300, plot_width=300,

 x_range=(0, 3), y_range=(0, 3),

 toolbar_location=None)

Page 496 of 580

Draw the coordinates as circles

fig.circle(x=x, y=y,

 color='green', size=10, alpha=0.5)

Show plot

show(fig)

First Glyphs

Once your figure is instantiated, you can see how it can be used to draw the x-y coordinate data
using customized circle glyphs.

Here are a few categories of glyphs:

 Marker includes shapes like circles, diamonds, squares, and triangles and is effective for creating
visualizations like scatter and bubble charts.

 Line covers things like single, step, and multi-line shapes that can be used to build line charts.

 Bar/Rectangle shapes can be used to create traditional or stacked bar (hbar) and column (vbar)
charts as well as waterfall or gantt charts.

Information about the glyphs above, as well as others, can be found in Bokeh’s Reference Guide.

These glyphs can be combined as needed to fit your visualization needs. Let’s say I want to create
a visualization that shows how many words I wrote per day to make this tutorial, with an overlaid
trend line of the cumulative word count:

import numpy as np

Bokeh libraries

from bokeh.io import output_notebook

from bokeh.plotting import figure, show

My word count data

day_num = np.linspace(1, 10, 10)

daily_words = [450, 628, 488, 210, 287, 791, 508, 639, 397, 943]

cumulative_words = np.cumsum(daily_words)

Page 497 of 580

Output the visualization directly in the notebook

output_notebook()

Create a figure with a datetime type x-axis

fig = figure(title='My Tutorial Progress',

 plot_height=400, plot_width=700,

 x_axis_label='Day Number', y_axis_label='Words Written',

 x_minor_ticks=2, y_range=(0, 6000),

 toolbar_location=None)

The daily words will be represented as vertical bars (columns)

fig.vbar(x=day_num, bottom=0, top=daily_words,

 color='blue', width=0.75,

 legend='Daily')

The cumulative sum will be a trend line

fig.line(x=day_num, y=cumulative_words,

 color='gray', line_width=1,

 legend='Cumulative')

Put the legend in the upper left corner

fig.legend.location = 'top_left'

Let's check it out

show(fig)

Multi-Glyph Example

To combine the columns and lines on the figure, they are simply created using the same figure()
object.

Page 498 of 580

Additionally, you can see above how seamlessly a legend can be created by setting the legend
property for each glyph. The legend was then moved to the upper left corner of the plot by
assigning 'top_left' to fig.legend.location.

You can check out much more info about styling legends. Teaser: they will show up again later in
the tutorial when we start digging into interactive elements of the visualization.

A Quick Aside About Data

Anytime you are exploring a new visualization library, it’s a good idea to start with some data in a
domain you are familiar with. The beauty of Bokeh is that nearly any idea you have should be
possible. It’s just a matter of how you want to leverage the available tools to do so.

The remaining examples will use publicly available data from Kaggle, which has information about
the National Basketball Association’s (NBA) 2017-18 season, specifically:

 2017-18_playerBoxScore.csv: game-by-game snapshots of player statistics

 2017-18_teamBoxScore.csv: game-by-game snapshots of team statistics

 2017-18_standings.csv: daily team standings and rankings

This data has nothing to do with what I do for work, but I love basketball and enjoy thinking about
ways to visualize the ever-growing amount of data associated with it.

If you don’t have data to play with from school or work, think about something you’re interested
in and try to find some data related to that. It will go a long way in making both the learning and
the creative process faster and more enjoyable!

To follow along with the examples in the tutorial, you can download the datasets from the links
above and read them into a Pandas DataFrame using the following commands:

import pandas as pd

Read the csv files

player_stats = pd.read_csv('2017-18_playerBoxScore.csv', parse_dates=['gmDate'])

team_stats = pd.read_csv('2017-18_teamBoxScore.csv', parse_dates=['gmDate'])

standings = pd.read_csv('2017-18_standings.csv', parse_dates=['stDate'])

This code snippet reads the data from the three CSV files and automatically interprets the date
columns as datetime objects.

It’s now time to get your hands on some real data.

Using the ColumnDataSource Object

Page 499 of 580

The examples above used Python lists and Numpy arrays to represent the data, and Bokeh is well
equipped to handle these datatypes. However, when it comes to data in Python, you are most
likely going to come across Python dictionaries and Pandas DataFrames, especially if you’re
reading in data from a file or external data source.

Bokeh is well equipped to work with these more complex data structures and even has built-in
functionality to handle them, namely the ColumnDataSource.

You may be asking yourself, “Why use a ColumnDataSource when Bokeh can interface with other
data types directly?”

For one, whether you reference a list, array, dictionary, or DataFrame directly, Bokeh is going to
turn it into a ColumnDataSource behind the scenes anyway. More importantly, the
ColumnDataSource makes it much easier to implement Bokeh’s interactive affordances.

The ColumnDataSource is foundational in passing the data to the glyphs you are using to visualize.
Its primary functionality is to map names to the columns of your data. This makes it easier for you
to reference elements of your data when building your visualization. It also makes it easier for
Bokeh to do the same when building your visualization.

The ColumnDataSource can interpret three types of data objects:

 Python dict: The keys are names associated with the respective value sequences (lists, arrays,
and so forth).

 Pandas DataFrame: The columns of the DataFrame become the reference names for the
ColumnDataSource.

 Pandas groupby: The columns of the ColumnDataSource reference the columns as seen by
calling groupby.describe().

Let’s start by visualizing the race for first place in the NBA’s Western Conference in 2017-18
between the defending champion Golden State Warriors and the challenger Houston Rockets. The
daily win-loss records of these two teams is stored in a DataFrame named west_top_2:

>>> west_top_2 = (standings[(standings['teamAbbr'] == 'HOU') | (standings['teamAbbr'] == 'GS')]

... .loc[:, ['stDate', 'teamAbbr', 'gameWon']]

... .sort_values(['teamAbbr','stDate']))

>>> west_top_2.head()

 stDate teamAbbr gameWon

9 2017-10-17 GS 0

39 2017-10-18 GS 0

69 2017-10-19 GS 0

Page 500 of 580

99 2017-10-20 GS 1

129 2017-10-21 GS 1

From here, you can load this DataFrame into two ColumnDataSource objects and visualize the
race:

Bokeh libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource

Output to file

output_file('west-top-2-standings-race.html',

 title='Western Conference Top 2 Teams Wins Race')

Isolate the data for the Rockets and Warriors

rockets_data = west_top_2[west_top_2['teamAbbr'] == 'HOU']

warriors_data = west_top_2[west_top_2['teamAbbr'] == 'GS']

Create a ColumnDataSource object for each team

rockets_cds = ColumnDataSource(rockets_data)

warriors_cds = ColumnDataSource(warriors_data)

Create and configure the figure

fig = figure(x_axis_type='datetime',

 plot_height=300, plot_width=600,

 title='Western Conference Top 2 Teams Wins Race, 2017-18',

 x_axis_label='Date', y_axis_label='Wins',

Page 501 of 580

 toolbar_location=None)

Render the race as step lines

fig.step('stDate', 'gameWon',

 color='#CE1141', legend='Rockets',

 source=rockets_cds)

fig.step('stDate', 'gameWon',

 color='#006BB6', legend='Warriors',

 source=warriors_cds)

Move the legend to the upper left corner

fig.legend.location = 'top_left'

Show the plot

show(fig)

Rockets vs. Warriors

Notice how the respective ColumnDataSource objects are referenced when creating the two lines.
You simply pass the original column names as input parameters and specify which
ColumnDataSource to use via the source property.

The visualization shows the tight race throughout the season, with the Warriors building a pretty
big cushion around the middle of the season. However, a bit of a late-season slide allowed the
Rockets to catch up and ultimately surpass the defending champs to finish the season as the
Western Conference number-one seed.

Note: In Bokeh, you can specify colors either by name, hex value, or RGB color code.

For the visualization above, a color is being specified for the respective lines representing the two
teams. Instead of using CSS color names like 'red' for the Rockets and 'blue' for the Warriors, you
might have wanted to add a nice visual touch by using the official team colors in the form of hex
color codes. Alternatively, you could have used tuples representing RGB color codes: (206, 17, 65)
for the Rockets, (0, 107, 182) for the Warriors.

Bokeh provides a helpful list of CSS color names categorized by their general hue. Also,
htmlcolorcodes.com is a great site for finding CSS, hex, and RGB color codes.

Page 502 of 580

ColumnDataSource objects can do more than just serve as an easy way to reference DataFrame
columns. The ColumnDataSource object has three built-in filters that can be used to create views
on your data using a CDSView object:

 GroupFilter selects rows from a ColumnDataSource based on a categorical reference value

 IndexFilter filters the ColumnDataSource via a list of integer indices

 BooleanFilter allows you to use a list of boolean values, with True rows being selected

In the previous example, two ColumnDataSource objects were created, one each from a subset of
the west_top_2 DataFrame. The next example will recreate the same output from one
ColumnDataSource based on all of west_top_2 using a GroupFilter that creates a view on the data:

Bokeh libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource, CDSView, GroupFilter

Output to file

output_file('west-top-2-standings-race.html',

 title='Western Conference Top 2 Teams Wins Race')

Create a ColumnDataSource

west_cds = ColumnDataSource(west_top_2)

Create views for each team

rockets_view = CDSView(source=west_cds,

 filters=[GroupFilter(column_name='teamAbbr', group='HOU')])

warriors_view = CDSView(source=west_cds,

Page 503 of 580

 filters=[GroupFilter(column_name='teamAbbr', group='GS')])

Create and configure the figure

west_fig = figure(x_axis_type='datetime',

 plot_height=300, plot_width=600,

 title='Western Conference Top 2 Teams Wins Race, 2017-18',

 x_axis_label='Date', y_axis_label='Wins',

 toolbar_location=None)

Render the race as step lines

west_fig.step('stDate', 'gameWon',

 source=west_cds, view=rockets_view,

 color='#CE1141', legend='Rockets')

west_fig.step('stDate', 'gameWon',

 source=west_cds, view=warriors_view,

 color='#006BB6', legend='Warriors')

Move the legend to the upper left corner

west_fig.legend.location = 'top_left'

Show the plot

show(west_fig)

Rockets vs. Warriors 2

Page 504 of 580

Notice how the GroupFilter is passed to CDSView in a list. This allows you to combine multiple
filters together to isolate the data you need from the ColumnDataSource as needed.

For information about integrating data sources, check out the Bokeh user guide’s post on the
ColumnDataSource and other source objects available.

The Western Conference ended up being an exciting race, but say you want to see if the Eastern
Conference was just as tight. Not only that, but you’d like to view them in a single visualization. This
is a perfect segue to the next topic: layouts.

Day-05:Organizing Multiple Visualizations With Layouts

The Eastern Conference standings came down to two rivals in the Atlantic Division: the

Boston Celtics and the Toronto Raptors. Before replicating the steps used to create

west_top_2, let’s try to put the ColumnDataSource to the test one more time using what you

learned above.

In this example, you’ll see how to feed an entire DataFrame into a ColumnDataSource and

create views to isolate the relevant data:

Bokeh libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource, CDSView, GroupFilter

Output to file

output_file('east-top-2-standings-race.html',

 title='Eastern Conference Top 2 Teams Wins Race')

Create a ColumnDataSource

standings_cds = ColumnDataSource(standings)

Create views for each team

celtics_view = CDSView(source=standings_cds,

 filters=[GroupFilter(column_name='teamAbbr',

 group='BOS')])

raptors_view = CDSView(source=standings_cds,

 filters=[GroupFilter(column_name='teamAbbr',

 group='TOR')])

Create and configure the figure

east_fig = figure(x_axis_type='datetime',

 plot_height=300, plot_width=600,

 title='Eastern Conference Top 2 Teams Wins Race, 2017-18',

 x_axis_label='Date', y_axis_label='Wins',

 toolbar_location=None)

Render the race as step lines

east_fig.step('stDate', 'gameWon',

 color='#007A33', legend='Celtics',

 source=standings_cds, view=celtics_view)

east_fig.step('stDate', 'gameWon',

 color='#CE1141', legend='Raptors',

 source=standings_cds, view=raptors_view)

Move the legend to the upper left corner

Page 505 of 580

east_fig.legend.location = 'top_left'

Show the plot

show(east_fig)

The ColumnDataSource was able to isolate the relevant data within a 5,040-by-39

DataFrame without breaking a sweat, saving a few lines of Pandas code in the process.

Looking at the visualization, you can see that the Eastern Conference race was no slouch.

After the Celtics roared out of the gate, the Raptors clawed all the way back to overtake their

division rival and finish the regular season with five more wins.

With our two visualizations ready, it’s time to put them together.

Similar to the functionality of Matplotlib’s subplot, Bokeh offers the column, row, and

gridplot functions in its bokeh.layouts module. These functions can more generally be

classified as layouts.

The usage is very straightforward. If you want to put two visualizations in a vertical

configuration, you can do so with the following:

Bokeh library

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.layouts import column

Output to file

output_file('east-west-top-2-standings-race.html',

 title='Conference Top 2 Teams Wins Race')

Plot the two visualizations in a vertical configuration

show(column(west_fig, east_fig))

Page 506 of 580

I’ll save you the two lines of code, but rest assured that swapping column for row in the

snippet above will similarly configure the two plots in a horizontal configuration.

Note: If you’re trying out the code snippets as you go through the tutorial, I want to take a

quick detour to address an error you may see accessing west_fig and east_fig in the

following examples. In doing so, you may receive an error like this:

WARNING:bokeh.core.validation.check:W-1004 (BOTH_CHILD_AND_ROOT): Models

should not be a document root...

This is one of many errors that are part of Bokeh’s validation module, where w-1004 in

particular is warning about the re-use of west_fig and east_fig in a new layout.

To avoid this error as you test the examples, preface the code snippet illustrating each layout

with the following:

Bokeh libraries

Page 507 of 580

from bokeh.plotting import figure, show

from bokeh.models import ColumnDataSource, CDSView, GroupFilter

Create a ColumnDataSource

standings_cds = ColumnDataSource(standings)

Create the views for each team

celtics_view = CDSView(source=standings_cds,

 filters=[GroupFilter(column_name='teamAbbr',

 group='BOS')])

raptors_view = CDSView(source=standings_cds,

 filters=[GroupFilter(column_name='teamAbbr',

 group='TOR')])

rockets_view = CDSView(source=standings_cds,

 filters=[GroupFilter(column_name='teamAbbr',

 group='HOU')])

warriors_view = CDSView(source=standings_cds,

 filters=[GroupFilter(column_name='teamAbbr',

 group='GS')])

Create and configure the figure

east_fig = figure(x_axis_type='datetime',

 plot_height=300,

 x_axis_label='Date',

 y_axis_label='Wins',

 toolbar_location=None)

west_fig = figure(x_axis_type='datetime',

 plot_height=300,

 x_axis_label='Date',

 y_axis_label='Wins',

 toolbar_location=None)

Configure the figures for each conference

east_fig.step('stDate', 'gameWon',

 color='#007A33', legend='Celtics',

 source=standings_cds, view=celtics_view)

east_fig.step('stDate', 'gameWon',

 color='#CE1141', legend='Raptors',

 source=standings_cds, view=raptors_view)

west_fig.step('stDate', 'gameWon', color='#CE1141', legend='Rockets',

 source=standings_cds, view=rockets_view)

west_fig.step('stDate', 'gameWon', color='#006BB6', legend='Warriors',

 source=standings_cds, view=warriors_view)

Move the legend to the upper left corner

east_fig.legend.location = 'top_left'

west_fig.legend.location = 'top_left'

Layout code snippet goes here!

Doing so will renew the relevant components to render the visualization, ensuring that no

warning is needed.

Instead of using column or row, you may want to use a gridplot instead.

Page 508 of 580

One key difference of gridplot is that it will automatically consolidate the toolbar across all

of its children figures. The two visualizations above do not have a toolbar, but if they did,

then each figure would have its own when using column or row. With that, it also has its own

toolbar_location property, seen below set to 'right'.

Syntactically, you’ll also notice below that gridplot differs in that, instead of being passed a

tuple as input, it requires a list of lists, where each sub-list represents a row in the grid:

Bokeh libraries

from bokeh.io import output_file

from bokeh.layouts import gridplot

Output to file

output_file('east-west-top-2-gridplot.html',

 title='Conference Top 2 Teams Wins Race')

Reduce the width of both figures

east_fig.plot_width = west_fig.plot_width = 300

Edit the titles

east_fig.title.text = 'Eastern Conference'

west_fig.title.text = 'Western Conference'

Configure the gridplot

east_west_gridplot = gridplot([[west_fig, east_fig]],

 toolbar_location='right')

Plot the two visualizations in a horizontal configuration

show(east_west_gridplot)

Lastly, gridplot allows the passing of None values, which are interpreted as blank subplots.

Therefore, if you wanted to leave a placeholder for two additional plots, then you could do

something like this:

Bokeh libraries

from bokeh.io import output_file

from bokeh.layouts import gridplot

Page 509 of 580

Output to file

output_file('east-west-top-2-gridplot.html',

 title='Conference Top 2 Teams Wins Race')

Reduce the width of both figures

east_fig.plot_width = west_fig.plot_width = 300

Edit the titles

east_fig.title.text = 'Eastern Conference'

west_fig.title.text = 'Western Conference'

Plot the two visualizations with placeholders

east_west_gridplot = gridplot([[west_fig, None], [None, east_fig]],

 toolbar_location='right')

Plot the two visualizations in a horizontal configuration

show(east_west_gridplot)

If you’d rather toggle between both visualizations at their full size without having to squash

them down to fit next to or on top of each other, a good option is a tabbed layout.

Page 510 of 580

A tabbed layout consists of two Bokeh widget functions: Tab() and Panel() from the

bokeh.models.widgets sub-module. Like using gridplot(), making a tabbed layout is

pretty straightforward:

Bokeh Library

from bokeh.io import output_file

from bokeh.models.widgets import Tabs, Panel

Output to file

output_file('east-west-top-2-tabbed_layout.html',

 title='Conference Top 2 Teams Wins Race')

Increase the plot widths

east_fig.plot_width = west_fig.plot_width = 800

Create two panels, one for each conference

east_panel = Panel(child=east_fig, title='Eastern Conference')

west_panel = Panel(child=west_fig, title='Western Conference')

Assign the panels to Tabs

tabs = Tabs(tabs=[west_panel, east_panel])

Show the tabbed layout

show(tabs)

The first step is to create a Panel() for each tab. That may sound a little confusing, but think

of the Tabs() function as the mechanism that organizes the individual tabs created with

Panel().

Each Panel() takes as input a child, which can either be a single figure() or a layout.

(Remember that a layout is a general name for a column, row, or gridplot.) Once your

panels are assembled, they can be passed as input to Tabs() in a list.

Now that you understand how to access, draw, and organize your data, it’s time to move on to

the real magic of Bokeh: interaction! As always, check out Bokeh’s User Guide for more

information on layouts.

Page 511 of 580

Adding Interaction

The feature that sets Bokeh apart is its ability to easily implement interactivity in your

visualization. Bokeh even goes as far as describing itself as an interactive visualization

library:

Bokeh is an interactive visualization library that targets modern web browsers for

presentation. (Source)

In this section, we’ll touch on five ways that you can add interactivity:

• Configuring the toolbar
• Selecting data points
• Adding hover actions
• Linking axes and selections
• Highlighting data using the legend

Implementing these interactive elements open up possibilities for exploring your data that

static visualizations just can’t do by themselves.

Configuring the Toolbar

As you saw all the way back in Generating Your First Figure, the default Bokeh figure()

comes with a toolbar right out of the box. The default toolbar comes with the following tools

(from left to right):

• Pan
• Box Zoom
• Wheel Zoom
• Save
• Reset
• A link to Bokeh’s user guide for Configuring Plot Tools
• A link to the Bokeh homepage

The toolbar can be removed by passing toolbar_location=None when instantiating a

figure() object, or relocated by passing any of 'above', 'below', 'left', or 'right'.

Additionally, the toolbar can be configured to include any combination of tools you desire.

Bokeh offers 18 specific tools across five categories:

• Pan/Drag: box_select, box_zoom, lasso_select, pan, xpan, ypan, resize_select
• Click/Tap: poly_select, tap
• Scroll/Pinch: wheel_zoom, xwheel_zoom, ywheel_zoom
• Actions: undo, redo, reset, save
• Inspectors: crosshair, hover

To geek out on tools , make sure to visit Specifying Tools. Otherwise, they’ll be illustrated in

covering the various interactions covered herein.

Page 512 of 580

Selecting Data Points

Implementing selection behavior is as easy as adding a few specific keywords when declaring

your glyphs.

The next example will create a scatter plot that relates a player’s total number of three-point

shot attempts to the percentage made (for players with at least 100 three-point shot attempts).

The data can be aggregated from the player_stats DataFrame:

Find players who took at least 1 three-point shot during the season

three_takers = player_stats[player_stats['play3PA'] > 0]

Clean up the player names, placing them in a single column

three_takers['name'] = [f'{p["playFNm"]} {p["playLNm"]}'

 for _, p in three_takers.iterrows()]

Aggregate the total three-point attempts and makes for each player

three_takers = (three_takers.groupby('name')

 .sum()

 .loc[:,['play3PA', 'play3PM']]

 .sort_values('play3PA', ascending=False))

Filter out anyone who didn't take at least 100 three-point shots

three_takers = three_takers[three_takers['play3PA'] >= 100].reset_index()

Add a column with a calculated three-point percentage (made/attempted)

three_takers['pct3PM'] = three_takers['play3PM'] / three_takers['play3PA']

Here’s a sample of the resulting DataFrame:

>>> three_takers.sample(5)

 name play3PA play3PM pct3PM

229 Corey Brewer 110 31 0.281818

78 Marc Gasol 320 109 0.340625

126 Raymond Felton 230 81 0.352174

127 Kristaps Porziņģis 229 90 0.393013

66 Josh Richardson 336 127 0.377976

Let’s say you want to select a groups of players in the distribution, and in doing so mute the

color of the glyphs representing the non-selected players:

Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource, NumeralTickFormatter

Output to file

output_file('three-point-att-vs-pct.html',

 title='Three-Point Attempts vs. Percentage')

Store the data in a ColumnDataSource

three_takers_cds = ColumnDataSource(three_takers)

Specify the selection tools to be made available

select_tools = ['box_select', 'lasso_select', 'poly_select', 'tap',

'reset']

Page 513 of 580

Create the figure

fig = figure(plot_height=400,

 plot_width=600,

 x_axis_label='Three-Point Shots Attempted',

 y_axis_label='Percentage Made',

 title='3PT Shots Attempted vs. Percentage Made (min. 100 3PA),

2017-18',

 toolbar_location='below',

 tools=select_tools)

Format the y-axis tick labels as percentages

fig.yaxis[0].formatter = NumeralTickFormatter(format='00.0%')

Add square representing each player

fig.square(x='play3PA',

 y='pct3PM',

 source=three_takers_cds,

 color='royalblue',

 selection_color='deepskyblue',

 nonselection_color='lightgray',

 nonselection_alpha=0.3)

Visualize

show(fig)

First, specify the selection tools you want to make available. In the example above,

'box_select', 'lasso_select', 'poly_select', and 'tap' (plus a reset button) were

specified in a list called select_tools. When the figure is instantiated, the toolbar is

positioned 'below' the plot, and the list is passed to tools to make the tools selected above

available.

Each player is initially represented by a royal blue square glyph, but the following

configurations are set for when a player or group of players is selected:

• Turn the selected player(s) to deepskyblue
• Change all non-selected players’ glyphs to a lightgray color with 0.3 opacity

That’s it! With just a few quick additions, the visualization now looks like this:

Page 514 of 580

For even more information about what you can do upon selection, check out Selected and

Unselected Glyphs.

Adding Hover Actions

So the ability to select specific player data points that seem of interest in my scatter plot is

implemented, but what if you want to quickly see what individual players a glyph represents?

One option is to use Bokeh’s HoverTool() to show a tooltip when the cursor crosses paths

with a glyph. All you need to do is append the following to the code snippet above:

Bokeh Library

from bokeh.models import HoverTool

Format the tooltip

tooltips = [

 ('Player','@name'),

 ('Three-Pointers Made', '@play3PM'),

 ('Three-Pointers Attempted', '@play3PA'),

 ('Three-Point Percentage','@pct3PM{00.0%}'),

]

Add the HoverTool to the figure

fig.add_tools(HoverTool(tooltips=tooltips))

Visualize

show(fig)

The HoverTool() is slightly different than the selection tools you saw above in that it has

properties, specifically tooltips.

Page 515 of 580

First, you can configure a formatted tooltip by creating a list of tuples containing a

description and reference to the ColumnDataSource. This list was passed as input to the

HoverTool() and then simply added to the figure using add_tools(). Here’s what

happened:

Notice the addition of the Hover button to the toolbar, which can be toggled on and off.

If you want to even further emphasize the players on hover, Bokeh makes that possible with

hover inspections. Here is a slightly modified version of the code snippet that added the

tooltip:

Format the tooltip

tooltips = [

 ('Player','@name'),

 ('Three-Pointers Made', '@play3PM'),

 ('Three-Pointers Attempted', '@play3PA'),

 ('Three-Point Percentage','@pct3PM{00.0%}'),

]

Configure a renderer to be used upon hover

hover_glyph = fig.circle(x='play3PA', y='pct3PM', source=three_takers_cds,

 size=15, alpha=0,

 hover_fill_color='black', hover_alpha=0.5)

Add the HoverTool to the figure

fig.add_tools(HoverTool(tooltips=tooltips, renderers=[hover_glyph]))

Visualize

show(fig)

Page 516 of 580

This is done by creating a completely new glyph, in this case circles instead of squares, and

assigning it to hover_glyph. Note that the initial opacity is set to zero so that it is invisible

until the cursor is touching it. The properties that appear upon hover are captured by setting

hover_alpha to 0.5 along with the hover_fill_color.

Now you will see a small black circle appear over the original square when hovering over the

various markers:

To further explore the capabilities of the HoverTool(), see the HoverTool and Hover

Inspections guides.

Linking Axes and Selections

Linking is the process of syncing elements of different visualizations within a layout. For

instance, maybe you want to link the axes of multiple plots to ensure that if you zoom in on

one it is reflected on another. Let’s see how it is done.

For this example, the visualization will be able to pan to different segments of a team’s

schedule and examine various game stats. Each stat will be represented by its own plot in a

two-by-two gridplot() .

The data can be collected from the team_stats DataFrame, selecting the Philadelphia 76ers

as the team of interest:

Isolate relevant data

phi_gm_stats = (team_stats[(team_stats['teamAbbr'] == 'PHI') &

 (team_stats['seasTyp'] == 'Regular')]

 .loc[:, ['gmDate',

 'teamPTS',

Page 517 of 580

 'teamTRB',

 'teamAST',

 'teamTO',

 'opptPTS',]]

 .sort_values('gmDate'))

Add game number

phi_gm_stats['game_num'] = range(1, len(phi_gm_stats)+1)

Derive a win_loss column

win_loss = []

for _, row in phi_gm_stats.iterrows():

 # If the 76ers score more points, it's a win

 if row['teamPTS'] > row['opptPTS']:

 win_loss.append('W')

 else:

 win_loss.append('L')

Add the win_loss data to the DataFrame

phi_gm_stats['winLoss'] = win_loss

Here are the results of the 76ers’ first 5 games:

>>> phi_gm_stats.head()

 gmDate teamPTS teamTRB teamAST teamTO opptPTS game_num

winLoss

10 2017-10-18 115 48 25 17 120 1

L

39 2017-10-20 92 47 20 17 102 2

L

52 2017-10-21 94 41 18 20 128 3

L

80 2017-10-23 97 49 25 21 86 4

W

113 2017-10-25 104 43 29 16 105 5

L

Start by importing the necessary Bokeh libraries, specifying the output parameters, and

reading the data into a ColumnDataSource:

Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource, CategoricalColorMapper, Div

from bokeh.layouts import gridplot, column

Output to file

output_file('phi-gm-linked-stats.html',

 title='76ers Game Log')

Store the data in a ColumnDataSource

gm_stats_cds = ColumnDataSource(phi_gm_stats)

Each game is represented by a column, and will be colored green if the result was a win and

red for a loss. To accomplish this, Bokeh’s CategoricalColorMapper can be used to map

the data values to specified colors:

Page 518 of 580

Create a CategoricalColorMapper that assigns a color to wins and losses

win_loss_mapper = CategoricalColorMapper(factors = ['W', 'L'],

 palette=['green', 'red'])

For this use case, a list specifying the categorical data values to be mapped is passed to

factors and a list with the intended colors to palette. For more on the

CategoricalColorMapper, see the Colors section of Handling Categorical Data on Bokeh’s

User Guide.

There are four stats to visualize in the two-by-two gridplot: points, assists, rebounds, and

turnovers. In creating the four figures and configuring their respective charts, there is a lot of

redundancy in the properties. So to streamline the code a for loop can be used:

Create a dict with the stat name and its corresponding column in the data

stat_names = {'Points': 'teamPTS',

 'Assists': 'teamAST',

 'Rebounds': 'teamTRB',

 'Turnovers': 'teamTO',}

The figure for each stat will be held in this dict

stat_figs = {}

For each stat in the dict

for stat_label, stat_col in stat_names.items():

 # Create a figure

 fig = figure(y_axis_label=stat_label,

 plot_height=200, plot_width=400,

 x_range=(1, 10), tools=['xpan', 'reset', 'save'])

 # Configure vbar

 fig.vbar(x='game_num', top=stat_col, source=gm_stats_cds, width=0.9,

 color=dict(field='winLoss', transform=win_loss_mapper))

 # Add the figure to stat_figs dict

 stat_figs[stat_label] = fig

As you can see, the only parameters that needed to be adjusted were the y-axis-label of the

figure and the data that will dictate top in the vbar. These values were easily stored in a dict

that was iterated through to create the figures for each stat.

You can also see the implementation of the CategoricalColorMapper in the configuration

of the vbar glyph. The color property is passed a dict with the field in the

ColumnDataSource to be mapped and the name of the CategoricalColorMapper created

above.

The initial view will only show the first 10 games of the 76ers’ season, so there needs to be a

way to pan horizontally to navigate through the rest of the games in the season. Thus

configuring the toolbar to have an xpan tool allows panning throughout the plot without

having to worry about accidentally skewing the view along the vertical axis.

Now that the figures are created, gridplot can be setup by referencing the figures from the

dict created above:

Page 519 of 580

Create layout

grid = gridplot([[stat_figs['Points'], stat_figs['Assists']],

 [stat_figs['Rebounds'], stat_figs['Turnovers']]])

Linking the axes of the four plots is as simple as setting the x_range of each figure equal to

one another:

Link together the x-axes

stat_figs['Points'].x_range = \

 stat_figs['Assists'].x_range = \

 stat_figs['Rebounds'].x_range = \

 stat_figs['Turnovers'].x_range

To add a title bar to the visualization, you could have tried to do this on the points figure, but

it would have been limited to the space of that figure. Therefore, a nice trick is to use Bokeh’s

ability to interpret HTML to insert a Div element that contains the title information. Once that

is created, simply combine that with the gridplot() in a column layout:

Add a title for the entire visualization using Div

html = """<h3>Philadelphia 76ers Game Log</h3>

<i>2017-18 Regular Season</i>

<i>Wins in green, losses in red</i>

"""

sup_title = Div(text=html)

Visualize

show(column(sup_title, grid))

Putting all the pieces together results in the following:

Similarly you can easily implement linked selections, where a selection on one plot will be

reflected on others.

Page 520 of 580

To see how this works, the next visualization will contain two scatter plots: one that shows

the 76ers’ two-point versus three-point field goal percentage and the other showing the 76ers’

team points versus opponent points on a game-by-game basis.

The goal is to be able to select data points on the left-side scatter plot and quickly be able to

recognize if the corresponding datapoint on the right scatter plot is a win or loss.

The DataFrame for this visualization is very similar to that from the first example:

Isolate relevant data

phi_gm_stats_2 = (team_stats[(team_stats['teamAbbr'] == 'PHI') &

 (team_stats['seasTyp'] == 'Regular')]

 .loc[:, ['gmDate',

 'team2P%',

 'team3P%',

 'teamPTS',

 'opptPTS']]

 .sort_values('gmDate'))

Add game number

phi_gm_stats_2['game_num'] = range(1, len(phi_gm_stats_2) + 1)

Derive a win_loss column

win_loss = []

for _, row in phi_gm_stats_2.iterrows():

 # If the 76ers score more points, it's a win

 if row['teamPTS'] > row['opptPTS']:

 win_loss.append('W')

 else:

 win_loss.append('L')

Add the win_loss data to the DataFrame

phi_gm_stats_2['winLoss'] = win_loss

Here’s what the data looks like:

>>> phi_gm_stats_2.head()

 gmDate team2P% team3P% teamPTS opptPTS game_num winLoss

10 2017-10-18 0.4746 0.4286 115 120 1 L

39 2017-10-20 0.4167 0.3125 92 102 2 L

52 2017-10-21 0.4138 0.3333 94 128 3 L

80 2017-10-23 0.5098 0.3750 97 86 4 W

113 2017-10-25 0.5082 0.3333 104 105 5 L

The code to create the visualization is as follows:

Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource, CategoricalColorMapper,

NumeralTickFormatter

from bokeh.layouts import gridplot

Output inline in the notebook

output_file('phi-gm-linked-selections.html',

 title='76ers Percentages vs. Win-Loss')

Page 521 of 580

Store the data in a ColumnDataSource

gm_stats_cds = ColumnDataSource(phi_gm_stats_2)

Create a CategoricalColorMapper that assigns specific colors to wins and

losses

win_loss_mapper = CategoricalColorMapper(factors = ['W', 'L'],

palette=['Green', 'Red'])

Specify the tools

toolList = ['lasso_select', 'tap', 'reset', 'save']

Create a figure relating the percentages

pctFig = figure(title='2PT FG % vs 3PT FG %, 2017-18 Regular Season',

 plot_height=400, plot_width=400, tools=toolList,

 x_axis_label='2PT FG%', y_axis_label='3PT FG%')

Draw with circle markers

pctFig.circle(x='team2P%', y='team3P%', source=gm_stats_cds,

 size=12, color='black')

Format the y-axis tick labels as percenages

pctFig.xaxis[0].formatter = NumeralTickFormatter(format='00.0%')

pctFig.yaxis[0].formatter = NumeralTickFormatter(format='00.0%')

Create a figure relating the totals

totFig = figure(title='Team Points vs Opponent Points, 2017-18 Regular

Season',

 plot_height=400, plot_width=400, tools=toolList,

 x_axis_label='Team Points', y_axis_label='Opponent Points')

Draw with square markers

totFig.square(x='teamPTS', y='opptPTS', source=gm_stats_cds, size=10,

 color=dict(field='winLoss', transform=win_loss_mapper))

Create layout

grid = gridplot([[pctFig, totFig]])

Visualize

show(grid)

This is a great illustration of the power in using a ColumnDataSource. As long as the glyph

renderers (in this case, the circle glyphs for the percentages, and square glyphs for the

wins and losses) share the same ColumnDataSource, then the selections will be linked by

default.

Here’s how it looks in action, where you can see selections made on either figure will be

reflected on the other:

Page 522 of 580

By selecting a random sample of data points in the upper right quadrant of the left scatter

plot, those corresponding to both high two-point and three-point field goal percentage, the

data points on the right scatter plot are highlighted.

Similarly, selecting data points on the right scatter plot that correspond to losses tend to be

further to the lower left, lower shooting percentages, on the left scatter plot.

All the details on linking plots can be found at Linking Plots in the Bokeh User Guide.

Highlighting Data Using the Legend

That brings us to the final interactivity example in this tutorial: interactive legends.

In the Drawing Data With Glyphs section, you saw how easy it is to implement a legend

when creating your plot. With the legend in place, adding interactivity is merely a matter of

assigning a click_policy. Using a single line of code, you can quickly add the ability to

either hide or mute data using the legend.

In this example, you’ll see two identical scatter plots comparing the game-by-game points

and rebounds of LeBron James and Kevin Durant. The only difference will be that one will

use a hide as its click_policy, while the other uses mute.

The first step is to configure the output and set up the data, creating a view for each player

from the player_stats DataFrame:

Bokeh Libraries

from bokeh.plotting import figure, show

from bokeh.io import output_file

from bokeh.models import ColumnDataSource, CDSView, GroupFilter

from bokeh.layouts import row

Output inline in the notebook

output_file('lebron-vs-durant.html',

Page 523 of 580

 title='LeBron James vs. Kevin Durant')

Store the data in a ColumnDataSource

player_gm_stats = ColumnDataSource(player_stats)

Create a view for each player

lebron_filters = [GroupFilter(column_name='playFNm', group='LeBron'),

 GroupFilter(column_name='playLNm', group='James')]

lebron_view = CDSView(source=player_gm_stats,

 filters=lebron_filters)

durant_filters = [GroupFilter(column_name='playFNm', group='Kevin'),

 GroupFilter(column_name='playLNm', group='Durant')]

durant_view = CDSView(source=player_gm_stats,

 filters=durant_filters)

Before creating the figures, the common parameters across the figure, markers, and data can

be consolidated into dictionaries and reused. Not only does this save redundancy in the next

step, but it provides an easy way to tweak these parameters later if need be:

Consolidate the common keyword arguments in dicts

common_figure_kwargs = {

 'plot_width': 400,

 'x_axis_label': 'Points',

 'toolbar_location': None,

}

common_circle_kwargs = {

 'x': 'playPTS',

 'y': 'playTRB',

 'source': player_gm_stats,

 'size': 12,

 'alpha': 0.7,

}

common_lebron_kwargs = {

 'view': lebron_view,

 'color': '#002859',

 'legend': 'LeBron James'

}

common_durant_kwargs = {

 'view': durant_view,

 'color': '#FFC324',

 'legend': 'Kevin Durant'

}

Now that the various properties are set, the two scatter plots can be built in a much more

concise fashion:

Create the two figures and draw the data

hide_fig = figure(**common_figure_kwargs,

 title='Click Legend to HIDE Data',

 y_axis_label='Rebounds')

hide_fig.circle(**common_circle_kwargs, **common_lebron_kwargs)

hide_fig.circle(**common_circle_kwargs, **common_durant_kwargs)

mute_fig = figure(**common_figure_kwargs, title='Click Legend to MUTE

Data')

mute_fig.circle(**common_circle_kwargs, **common_lebron_kwargs,

 muted_alpha=0.1)

mute_fig.circle(**common_circle_kwargs, **common_durant_kwargs,

Page 524 of 580

 muted_alpha=0.1)

Note that mute_fig has an extra parameter called muted_alpha. This parameter controls the

opacity of the markers when mute is used as the click_policy.

Finally, the click_policy for each figure is set, and they are shown in a horizontal

configuration:

Add interactivity to the legend

hide_fig.legend.click_policy = 'hide'

mute_fig.legend.click_policy = 'mute'

Visualize

show(row(hide_fig, mute_fig))

Once the legend is in place, all you have to do is assign either hide or mute to the figure’s

click_policy property. This will automatically turn your basic legend into an interactive

legend.

Also note that, specifically for mute, the additional property of muted_alpha was set in the

respective circle glyphs for LeBron James and Kevin Durant. This dictates the visual effect

driven by the legend interaction.

For more on all things interaction in Bokeh, Adding Interactions in the Bokeh User Guide is a

great place to start.

Presenting insights effectively through visualizations and narratives

Page 525 of 580

Week 8: Text analysis and sentiment analysis

Day- 01 & 02: NLTK libaray for text analysis
Natural language processing (NLP) is a field that focuses on making natural human language usable by

computer programs. NLTK, or Natural Language Toolkit, is a Python package that you can use for NLP.

A lot of the data that you could be analyzing is unstructured data and contains human-readable text.

Before you can analyze that data programmatically, you first need to preprocess it. In this tutorial,

you’ll take your first look at the kinds of text preprocessing tasks you can do with NLTK so that you’ll

be ready to apply them in future projects. You’ll also see how to do some basic text analysis and

create visualizations.

Steps:

Find text to analyze

Preprocess your text for analysis

Analyze your text
The first thing you need to do is make sure that you have Python installed. For this tutorial, you’ll be

using Python 3.9. If you don’t yet have Python installed, then check out Python 3 Installation & Setup

Guide to get started. In shell type following commamd

$ python -m pip install nltk==3.5

python -m pip install numpy matplotlib

Once you have that dealt with, your next step is to install NLTK with pip. It’s a best practice to install it

in a virtual environment. To learn more about virtual environments, check out Python Virtual

Environments: A Primer.

Tokenizing
By tokenizing, you can conveniently split up text by word or by sentence. This will allow you to work

with smaller pieces of text that are still relatively coherent and meaningful even outside of the

context of the rest of the text. It’s your first step in turning unstructured data into structured data,

which is easier to analyze.

When you’re analyzing text, you’ll be tokenizing by word and tokenizing by sentence. Here’s what

both types of tokenization bring to the table:

Tokenizing by word: Words are like the atoms of natural language. They’re the smallest unit of

meaning that still makes sense on its own. Tokenizing your text by word allows you to identify words

that come up particularly often. For example, if you were analyzing a group of job ads, then you might

find that the word “Python” comes up often. That could suggest high demand for Python knowledge,

but you’d need to look deeper to know more.

Tokenizing by sentence: When you tokenize by sentence, you can analyze how those words relate to

one another and see more context. Are there a lot of negative words around the word “Python”

because the hiring manager doesn’t like Python? Are there more terms from the domain of

herpetology than the domain of software development, suggesting that you may be dealing with an

entirely different kind of python than you were expecting?

from nltk.tokenize import sent_tokenize, word_tokenize

Page 526 of 580

You can use sent_tokenize() to split up example_string into sentences:

>>> sent_tokenize(example_string)

>>> word_tokenize(example_string)

Filtering Stop Words
Stop words are words that you want to ignore, so you filter them out of your text when you’re

processing it. Very common words like 'in', 'is', and 'an' are often used as stop words since they don’t

add a lot of meaning to a text in and of themselves.

Here’s how to import the relevant parts of NLTK in order to filter out stop words:

>>> nltk.download("stopwords")

>>> from nltk.corpus import stopwords

>>> from nltk.tokenize import word_tokenize

>>> worf_quote = "Sir, I protest. I am not a merry man!"

>>> words_in_quote = word_tokenize(worf_quote)

>>> words_in_quote

['Sir', ',', 'protest', '.', 'merry', 'man', '!']

You have a list of the words in worf_quote, so the next step is to create a set of stop words to

filter words_in_quote. For this example, you’ll need to focus on stop words in "english":

>>> stop_words = set(stopwords.words("english"))

>>> stop_words = set(stopwords.words("english"))

Next, create an empty list to hold the words that make it past the filter:

>>>

>>> filtered_list = []

You created an empty list, filtered_list, to hold all the words in words_in_quote that aren’t stop

words. Now you can use stop_words to filter words_in_quote:

>>>

>>> for word in words_in_quote:

... if word.casefold() not in stop_words:

... filtered_list.append(word)

You iterated over words_in_quote with a for loop and added all the words that weren’t stop words

to filtered_list. You used .casefold() on word so you could ignore whether the letters in word were

uppercase or lowercase. This is worth doing because stopwords.words('english') includes only

lowercase versions of stop words.

Page 527 of 580

Alternatively, you could use a list comprehension to make a list of all the words in your text that

aren’t stop words:

>>>

>>> filtered_list = [

... word for word in words_in_quote if word.casefold() not in stop_words

...]

When you use a list comprehension, you don’t create an empty list and then add items to the end of

it. Instead, you define the list and its contents at the same time. Using a list comprehension is often

seen as more Pythonic.

Take a look at the words that ended up in filtered_list:

>>>

>>> filtered_list

['Sir', ',', 'protest', '.', 'merry', 'man', '!']

You filtered out a few words like 'am' and 'a', but you also filtered out 'not', which does affect the

overall meaning of the sentence. (Worf won’t be happy about this.)

Words like 'I' and 'not' may seem too important to filter out, and depending on what kind of analysis

you want to do, they can be. Here’s why:

'I' is a pronoun, which are context words rather than content words:

Content words give you information about the topics covered in the text or the sentiment that the

author has about those topics.

Context words give you information about writing style. You can observe patterns in how authors use

context words in order to quantify their writing style. Once you’ve quantified their writing style, you

can analyze a text written by an unknown author to see how closely it follows a particular writing style

so you can try to identify who the author is.

'not' is technically an adverb but has still been included in NLTK’s list of stop words for English. If you

want to edit the list of stop words to exclude 'not' or make other changes, then you can download it.

So, 'I' and 'not' can be important parts of a sentence, but it depends on what you’re trying to learn

from that sentence.

Stemming
Stemming is a text processing task in which you reduce words to their root, which is the core part of a

word. For example, the words “helping” and “helper” share the root “help.” Stemming allows you to

zero in on the basic meaning of a word rather than all the details of how it’s being used. NLTK

has more than one stemmer, but you’ll be using the Porter stemmer.

Here’s how to import the relevant parts of NLTK in order to start stemming:

>>>

>>> from nltk.stem import PorterStemmer

Page 528 of 580

>>> from nltk.tokenize import word_tokenize

Now that you’re done importing, you can create a stemmer with PorterStemmer():

>>>

>>> stemmer = PorterStemmer()

The next step is for you to create a string to stem. Here’s one you can use:

>>>

>>> string_for_stemming = """

... The crew of the USS Discovery discovered many discoveries.

... Discovering is what explorers do."""

Before you can stem the words in that string, you need to separate all the words in it:

>>>

>>> words = word_tokenize(string_for_stemming)

Now that you have a list of all the tokenized words from the string, take a look at what’s in words:

>>>

>>> words

['The',

 'crew',

 'of',

 'the',

 'USS',

 'Discovery',

 'discovered',

 'many',

 'discoveries',

 '.',

 'Discovering',

 'is',

 'what',

 'explorers',

 'do',

 '.']

Page 529 of 580

Create a list of the stemmed versions of the words in words by using stemmer.stem() in a list

comprehension:

>>>

>>> stemmed_words = [stemmer.stem(word) for word in words]

Take a look at what’s in stemmed_words:

>>>

>>> stemmed_words

['the',

 'crew',

 'of',

 'the',

 'uss',

 'discoveri',

 'discov',

 'mani',

 'discoveri',

 '.',

 'discov',

 'is',

 'what',

 'explor',

 'do',

 '.']

Here’s what happened to all the words that started with 'discov' or 'Discov':

Original word Stemmed version

'Discovery' 'discoveri'

'discovered' 'discov'

'discoveries' 'discoveri'

'Discovering' 'discov'

Those results look a little inconsistent. Why would 'Discovery' give

you 'discoveri' when 'Discovering' gives you 'discov'?

Page 530 of 580

Understemming and overstemming are two ways stemming can go wrong:

Understemming happens when two related words should be reduced to the same stem but aren’t.

This is a false negative.

Overstemming happens when two unrelated words are reduced to the same stem even though they

shouldn’t be. This is a false positive.

The Porter stemming algorithm dates from 1979, so it’s a little on the older side. The Snowball

stemmer, which is also called Porter2, is an improvement on the original and is also available through

NLTK, so you can use that one in your own projects. It’s also worth noting that the purpose of the

Porter stemmer is not to produce complete words but to find variant forms of a word.

Fortunately, you have some other ways to reduce words to their core meaning, such as lemmatizing,

which you’ll see later in this tutorial. But first, we need to cover parts of speech.

Tagging Parts of Speech

Part of speech is a grammatical term that deals with the roles words play when you use them

together in sentences. Tagging parts of speech, or POS tagging, is the task of labeling the words in

your text according to their part of speech.

In English, there are eight parts of speech:

Part of

speech Role Examples

Noun Is a person, place, or thing mountain, bagel,

Poland

Pronoun Replaces a noun you, she, we

Adjective Gives information about what a noun is like efficient, windy,

colorful

Verb Is an action or a state of being learn, is, go

Adverb Gives information about a verb, an adjective, or another

adverb

efficiently, always,

very

Preposition Gives information about how a noun or pronoun is

connected to another word

from, about, at

Conjunction Connects two other words or phrases so, because, and

Interjection Is an exclamation yay, ow, wow

Some sources also include the category articles (like “a” or “the”) in the list of parts of speech, but

other sources consider them to be adjectives. NLTK uses the word determiner to refer to articles.

Here’s how to import the relevant parts of NLTK in order to tag parts of speech:

>>>

>>> from nltk.tokenize import word_tokenize

Page 531 of 580

Now create some text to tag. You can use this Carl Sagan quote:

>>>

>>> sagan_quote = """

... If you wish to make an apple pie from scratch,

... you must first invent the universe."""

Use word_tokenize to separate the words in that string and store them in a list:

>>>

>>> words_in_sagan_quote = word_tokenize(sagan_quote)

Now call nltk.pos_tag() on your new list of words:

>>>

>>> import nltk

>>> nltk.pos_tag(words_in_sagan_quote)

[('If', 'IN'),

 ('you', 'PRP'),

 ('wish', 'VBP'),

 ('to', 'TO'),

 ('make', 'VB'),

 ('an', 'DT'),

 ('apple', 'NN'),

 ('pie', 'NN'),

 ('from', 'IN'),

 ('scratch', 'NN'),

 (',', ','),

 ('you', 'PRP'),

 ('must', 'MD'),

 ('first', 'VB'),

 ('invent', 'VB'),

 ('the', 'DT'),

 ('universe', 'NN'),

 ('.', '.')]

Page 532 of 580

All the words in the quote are now in a separate tuple, with a tag that represents their part of speech.

But what do the tags mean? Here’s how to get a list of tags and their meanings:

>>>

>>> nltk.help.upenn_tagset()

The list is quite long, but feel free to expand the box below to see it.

POS Tags and Their MeaningsShow/Hide

Here’s a summary that you can use to get started with NLTK’s POS tags:

Tags that start with Deal with

JJ Adjectives

NN Nouns

RB Adverbs

PRP Pronouns

VB Verbs

Now that you know what the POS tags mean, you can see that your tagging was fairly successful:

'pie' was tagged NN because it’s a singular noun.

'you' was tagged PRP because it’s a personal pronoun.

'invent' was tagged VB because it’s the base form of a verb.

But how would NLTK handle tagging the parts of speech in a text that is basically

gibberish? Jabberwocky is a nonsense poem that doesn’t technically mean much but is still written in

a way that can convey some kind of meaning to English speakers.

Make a string to hold an excerpt from this poem:

>>>

>>> jabberwocky_excerpt = """

... 'Twas brillig, and the slithy toves did gyre and gimble in the wabe:

... all mimsy were the borogoves, and the mome raths outgrabe."""

Use word_tokenize to separate the words in the excerpt and store them in a list:

>>>

>>> words_in_excerpt = word_tokenize(jabberwocky_excerpt)

Call nltk.pos_tag() on your new list of words:

>>>

>>> nltk.pos_tag(words_in_excerpt)

Page 533 of 580

[("'T", 'NN'),

 ('was', 'VBD'),

 ('brillig', 'VBN'),

 (',', ','),

 ('and', 'CC'),

 ('the', 'DT'),

 ('slithy', 'JJ'),

 ('toves', 'NNS'),

 ('did', 'VBD'),

 ('gyre', 'NN'),

 ('and', 'CC'),

 ('gimble', 'JJ'),

 ('in', 'IN'),

 ('the', 'DT'),

 ('wabe', 'NN'),

 (':', ':'),

 ('all', 'DT'),

 ('mimsy', 'NNS'),

 ('were', 'VBD'),

 ('the', 'DT'),

 ('borogoves', 'NNS'),

 (',', ','),

 ('and', 'CC'),

 ('the', 'DT'),

 ('mome', 'JJ'),

 ('raths', 'NNS'),

 ('outgrabe', 'RB'),

 ('.', '.')]

Accepted English words like 'and' and 'the' were correctly tagged as a conjunction and a determiner,

respectively. The gibberish word 'slithy' was tagged as an adjective, which is what a human English

speaker would probably assume from the context of the poem as well. Way to go, NLTK!

Page 534 of 580

Lemmatizing
Now that you’re up to speed on parts of speech, you can circle back to lemmatizing. Like

stemming, lemmatizing reduces words to their core meaning, but it will give you a complete English

word that makes sense on its own instead of just a fragment of a word like 'discoveri'.

Note: A lemma is a word that represents a whole group of words, and that group of words is called

a lexeme.

For example, if you were to look up the word “blending” in a dictionary, then you’d need to look at

the entry for “blend,” but you would find “blending” listed in that entry.

In this example, “blend” is the lemma, and “blending” is part of the lexeme. So when you lemmatize a

word, you are reducing it to its lemma.

Here’s how to import the relevant parts of NLTK in order to start lemmatizing:

>>>

>>> from nltk.stem import WordNetLemmatizer

Create a lemmatizer to use:

>>>

>>> lemmatizer = WordNetLemmatizer()

Let’s start with lemmatizing a plural noun:

>>>

>>> lemmatizer.lemmatize("scarves")

'scarf'

"scarves" gave you 'scarf', so that’s already a bit more sophisticated than what you would have gotten

with the Porter stemmer, which is 'scarv'. Next, create a string with more than one word to

lemmatize:

>>>

>>> string_for_lemmatizing = "The friends of DeSoto love scarves."

Now tokenize that string by word:

>>>

>>> words = word_tokenize(string_for_lemmatizing)

Here’s your list of words:

>>>

>>> words

['The',

 'friends',

 'of',

Page 535 of 580

 'DeSoto',

 'love'

 'scarves',

 '.']

Create a list containing all the words in words after they’ve been lemmatized:

>>>

>>> lemmatized_words = [lemmatizer.lemmatize(word) for word in words]

Here’s the list you got:

>>>

>>> lemmatized_words

['The',

 'friend',

 'of',

 'DeSoto',

 'love',

 'scarf',

 '.'

That looks right. The plurals 'friends' and 'scarves' became the singulars 'friend' and 'scarf'.

But what would happen if you lemmatized a word that looked very different from its lemma? Try

lemmatizing "worst":

>>>

>>> lemmatizer.lemmatize("worst")

'worst'

You got the result 'worst' because lemmatizer.lemmatize() assumed that "worst" was a noun. You can

make it clear that you want "worst" to be an adjective:

>>>

>>> lemmatizer.lemmatize("worst", pos="a")

'bad'

The default parameter for pos is 'n' for noun, but you made sure that "worst" was treated as an

adjective by adding the parameter pos="a". As a result, you got 'bad', which looks very different from

your original word and is nothing like what you’d get if you were stemming. This is because "worst" is

the superlative form of the adjective 'bad', and lemmatizing reduces superlatives as well

as comparatives to their lemmas.

Page 536 of 580

Now that you know how to use NLTK to tag parts of speech, you can try tagging your words before

lemmatizing them to avoid mixing up homographs, or words that are spelled the same but have

different meanings and can be different parts of speech.

Chunking
While tokenizing allows you to identify words and sentences, chunking allows you to identify phrases.

Note: A phrase is a word or group of words that works as a single unit to perform a grammatical

function. Noun phrases are built around a noun.

Here are some examples:

“A planet”

“A tilting planet”

“A swiftly tilting planet”

Chunking makes use of POS tags to group words and apply chunk tags to those groups. Chunks don’t

overlap, so one instance of a word can be in only one chunk at a time.

Here’s how to import the relevant parts of NLTK in order to chunk:

>>>

>>> from nltk.tokenize import word_tokenize

Before you can chunk, you need to make sure that the parts of speech in your text are tagged, so

create a string for POS tagging. You can use this quote from The Lord of the Rings:

>>>

>>> lotr_quote = "It's a dangerous business, Frodo, going out your door."

Now tokenize that string by word:

>>>

>>> words_in_lotr_quote = word_tokenize(lotr_quote)

>>> words_in_lotr_quote

['It',

 "'s",

 'a',

 'dangerous',

 'business',

 ',',

 'Frodo',

 ',',

 'going',

Page 537 of 580

 'out',

 'your',

 'door',

 '.']

Now you’ve got a list of all of the words in lotr_quote.

The next step is to tag those words by part of speech:

>>>

>>> nltk.download("averaged_perceptron_tagger")

>>> lotr_pos_tags = nltk.pos_tag(words_in_lotr_quote)

>>> lotr_pos_tags

[('It', 'PRP'),

 ("'s", 'VBZ'),

 ('a', 'DT'),

 ('dangerous', 'JJ'),

 ('business', 'NN'),

 (',', ','),

 ('Frodo', 'NNP'),

 (',', ','),

 ('going', 'VBG'),

 ('out', 'RP'),

 ('your', 'PRP$'),

 ('door', 'NN'),

 ('.', '.')]

You’ve got a list of tuples of all the words in the quote, along with their POS tag. In order to chunk,

you first need to define a chunk grammar.

Note: A chunk grammar is a combination of rules on how sentences should be chunked. It often

uses regular expressions, or regexes.

For this tutorial, you don’t need to know how regular expressions work, but they will definitely come

in handy for you in the future if you want to process text.

Create a chunk grammar with one regular expression rule:

>>>

>>> grammar = "NP: {<DT>?<JJ>*<NN>}"

Page 538 of 580

NP stands for noun phrase. You can learn more about noun phrase chunking in Chapter 7 of Natural

Language Processing with Python—Analyzing Text with the Natural Language Toolkit.

According to the rule you created, your chunks:

Start with an optional (?) determiner ('DT')

Can have any number (*) of adjectives (JJ)

End with a noun (<NN>)

Create a chunk parser with this grammar:

>>>

>>> chunk_parser = nltk.RegexpParser(grammar)

Now try it out with your quote:

>>>

>>> tree = chunk_parser.parse(lotr_pos_tags)

Here’s how you can see a visual representation of this tree:

>>>

>>> tree.draw()

This is what the visual representation looks like:

You got two noun phrases:

'a dangerous business' has a determiner, an adjective, and a noun.

'door' has just a noun.

Now that you know about chunking, it’s time to look at chinking.

Chinking
Chinking is used together with chunking, but while chunking is used to include a pattern, chinking is

used to exclude a pattern.

Let’s reuse the quote you used in the section on chunking. You already have a list of tuples containing

each of the words in the quote along with its part of speech tag:

>>>

>>> lotr_pos_tags

[('It', 'PRP'),

Page 539 of 580

 ("'s", 'VBZ'),

 ('a', 'DT'),

 ('dangerous', 'JJ'),

 ('business', 'NN'),

 (',', ','),

 ('Frodo', 'NNP'),

 (',', ','),

 ('going', 'VBG'),

 ('out', 'RP'),

 ('your', 'PRP$'),

 ('door', 'NN'),

 ('.', '.')]

The next step is to create a grammar to determine what you want to include and exclude in your

chunks. This time, you’re going to use more than one line because you’re going to have more than

one rule. Because you’re using more than one line for the grammar, you’ll be using triple quotes ("""):

>>>

>>> grammar = """

... Chunk: {<.*>+}

... }<JJ>{"""

The first rule of your grammar is {<.*>+}. This rule has curly braces that face inward ({}) because it’s

used to determine what patterns you want to include in you chunks. In this case, you want to include

everything: <.*>+.

The second rule of your grammar is }<JJ>{. This rule has curly braces that face outward (}{) because it’s

used to determine what patterns you want to exclude in your chunks. In this case, you want to

exclude adjectives: <JJ>.

Create a chunk parser with this grammar:

>>>

>>> chunk_parser = nltk.RegexpParser(grammar)

Now chunk your sentence with the chink you specified:

>>>

>>> tree = chunk_parser.parse(lotr_pos_tags)

You get this tree as a result:

>>>

Page 540 of 580

>>> tree

Tree('S', [Tree('Chunk', [('It', 'PRP'), ("'s", 'VBZ'), ('a', 'DT')]), ('dangerous', 'JJ'), Tree('Chunk',

[('business', 'NN'), (',', ','), ('Frodo', 'NNP'), (',', ','), ('going', 'VBG'), ('out', 'RP'), ('your', 'PRP$'), ('door',

'NN'), ('.', '.')])])

In this case, ('dangerous', 'JJ') was excluded from the chunks because it’s an adjective (JJ). But that will

be easier to see if you get a graphic representation again:

>>>

>>> tree.draw()

You get this visual representation of the tree:

Here, you’ve excluded the adjective 'dangerous' from your chunks and are left with two chunks

containing everything else. The first chunk has all the text that appeared before the adjective that was

excluded. The second chunk contains everything after the adjective that was excluded.

Now that you know how to exclude patterns from your chunks, it’s time to look into named entity

recognition (NER).

Using Named Entity Recognition (NER)

Named entities are noun phrases that refer to specific locations, people, organizations, and so on.

With named entity recognition, you can find the named entities in your texts and also determine what

kind of named entity they are.

Here’s the list of named entity types from the NLTK book:

NE type Examples

ORGANIZATION Georgia-Pacific Corp., WHO

PERSON Eddy Bonte, President Obama

LOCATION Murray River, Mount Everest

DATE June, 2008-06-29

TIME two fifty a m, 1:30 p.m.

MONEY 175 million Canadian dollars, GBP 10.40

PERCENT twenty pct, 18.75 %

FACILITY Washington Monument, Stonehenge

GPE South East Asia, Midlothian

You can use nltk.ne_chunk() to recognize named entities. Let’s use lotr_pos_tags again to test it out:

Page 541 of 580

>>>

>>> nltk.download("maxent_ne_chunker")

>>> nltk.download("words")

>>> tree = nltk.ne_chunk(lotr_pos_tags)

Now take a look at the visual representation:

>>>

>>> tree.draw()

Here’s what you get:

See how Frodo has been tagged as a PERSON? You also have the option to use the

parameter binary=True if you just want to know what the named entities are but not what kind of

named entity they are:

>>>

>>> tree = nltk.ne_chunk(lotr_pos_tags, binary=True)

>>> tree.draw()

Now all you see is that Frodo is an NE:

That’s how you can identify named entities! But you can take this one step further and extract named

entities directly from your text. Create a string from which to extract named entities. You can use this

quote from The War of the Worlds:

>>>

>>> quote = """

... Men like Schiaparelli watched the red planet—it is odd, by-the-bye, that

... for countless centuries Mars has been the star of war—but failed to

... interpret the fluctuating appearances of the markings they mapped so well.

... All that time the Martians must have been getting ready.

...

... During the opposition of 1894 a great light was seen on the illuminated

Page 542 of 580

... part of the disk, first at the Lick Observatory, then by Perrotin of Nice,

... and then by other observers. English readers heard of it first in the

... issue of Nature dated August 2."""

Now create a function to extract named entities:

>>>

>>> def extract_ne(quote):

... words = word_tokenize(quote, language=language)

... tags = nltk.pos_tag(words)

... tree = nltk.ne_chunk(tags, binary=True)

... return set(

... " ".join(i[0] for i in t)

... for t in tree

... if hasattr(t, "label") and t.label() == "NE"

...)

With this function, you gather all named entities, with no repeats. In order to do that, you tokenize by

word, apply part of speech tags to those words, and then extract named entities based on those tags.

Because you included binary=True, the named entities you’ll get won’t be labeled more specifically.

You’ll just know that they’re named entities.

Take a look at the information you extracted:

>>>

>>> extract_ne(quote)

{'Lick Observatory', 'Mars', 'Nature', 'Perrotin', 'Schiaparelli'}

You missed the city of Nice, possibly because NLTK interpreted it as a regular English adjective, but

you still got the following:

An institution: 'Lick Observatory'

A planet: 'Mars'

A publication: 'Nature'

People: 'Perrotin', 'Schiaparelli'

That’s some pretty decent variety!

Getting Text to Analyze
Now that you’ve done some text processing tasks with small example texts, you’re ready to analyze a

bunch of texts at once. A group of texts is called a corpus. NLTK provides several corpora covering

everything from novels hosted by Project Gutenberg to inaugural speeches by presidents of the

United States.

Page 543 of 580

In order to analyze texts in NLTK, you first need to import them. This requires nltk.download("book"),

which is a pretty big download:

>>>

>>> nltk.download("book")

>>> from nltk.book import *

*** Introductory Examples for the NLTK Book ***

Loading text1, ..., text9 and sent1, ..., sent9

Type the name of the text or sentence to view it.

Type: 'texts()' or 'sents()' to list the materials.

text1: Moby Dick by Herman Melville 1851

text2: Sense and Sensibility by Jane Austen 1811

text3: The Book of Genesis

text4: Inaugural Address Corpus

text5: Chat Corpus

text6: Monty Python and the Holy Grail

text7: Wall Street Journal

text8: Personals Corpus

text9: The Man Who Was Thursday by G . K . Chesterton 1908

You now have access to a few linear texts (such as Sense and Sensibility and Monty Python and the

Holy Grail) as well as a few groups of texts (such as a chat corpus and a personals corpus). Human

nature is fascinating, so let’s see what we can find out by taking a closer look at the personals corpus!

This corpus is a collection of personals ads, which were an early version of online dating. If you

wanted to meet someone, then you could place an ad in a newspaper and wait for other readers to

respond to you.

If you’d like to learn how to get other texts to analyze, then you can check out Chapter 3 of Natural

Language Processing with Python – Analyzing Text with the Natural Language Toolkit.

Using a Concordance

When you use a concordance, you can see each time a word is used, along with its immediate

context. This can give you a peek into how a word is being used at the sentence level and what words

are used with it.

Let’s see what these good people looking for love have to say! The personals corpus is called text8, so

we’re going to call .concordance() on it with the parameter "man":

>>>

>>> text8.concordance("man")

Page 544 of 580

Displaying 14 of 14 matches:

 to hearing from you all . ABLE young man seeks , sexy older women . Phone for

ble relationship . GENUINE ATTRACTIVE MAN 40 y . o ., no ties , secure , 5 ft .

ship , and quality times . VIETNAMESE MAN Single , never married , financially

ip . WELL DRESSED emotionally healthy man 37 like to meet full figured woman fo

 nth subs LIKE TO BE MISTRESS of YOUR MAN like to be treated well . Bold DTE no

eeks lady in similar position MARRIED MAN 50 , attrac . fit , seeks lady 40 - 5

eks nice girl 25 - 30 serious rship . Man 46 attractive fit , assertive , and k

 40 - 50 sought by Aussie mid 40s b / man f / ship r / ship LOVE to meet widowe

discreet times . Sth E Subs . MARRIED MAN 42yo 6ft , fit , seeks Lady for discr

woman , seeks professional , employed man , with interests in theatre , dining

 tall and of large build seeks a good man . I am a nonsmoker , social drinker ,

lead to relationship . SEEKING HONEST MAN I am 41 y . o ., 5 ft . 4 , med . bui

 quiet times . Seeks 35 - 45 , honest man with good SOH & similar interests , f

 genuine , caring , honest and normal man for fship , poss rship . S / S , S /

Interestingly, the last three of those fourteen matches have to do with seeking an honest man,

specifically:

SEEKING HONEST MAN

Seeks 35 - 45 , honest man with good SOH & similar interests

genuine , caring , honest and normal man for fship , poss rship

Let’s see if there’s a similar pattern with the word "woman":

>>>

>>> text8.concordance("woman")

Displaying 11 of 11 matches:

at home . Seeking an honest , caring woman , slim or med . build , who enjoys t

thy man 37 like to meet full figured woman for relationship . 48 slim , shy , S

rry . MALE 58 years old . Is there a Woman who would like to spend 1 weekend a

 other interests . Seeking Christian Woman for fship , view to rship . SWM 45 D

ALE 60 - burly beared seeks intimate woman for outings n / s s / d F / ston / P

ington . SCORPIO 47 seeks passionate woman for discreet intimate encounters SEX

le dad . 42 , East sub . 5 " 9 seeks woman 30 + for f / ship relationship TALL

Page 545 of 580

personal trainer looking for married woman age open for fun MARRIED Dark guy 37

rinker , seeking slim - medium build woman who is happy in life , age open . AC

. O . TERTIARY Educated professional woman , seeks professional , employed man

 real romantic , age 50 - 65 y . o . WOMAN OF SUBSTANCE 56 , 59 kg ., 50 , fit

The issue of honesty came up in the first match only:

Seeking an honest , caring woman , slim or med . build

Dipping into a corpus with a concordance won’t give you the full picture, but it can still be interesting

to take a peek and see if anything stands out.

Making a Dispersion Plot

You can use a dispersion plot to see how much a particular word appears and where it appears. So

far, we’ve looked for "man" and "woman", but it would be interesting to see how much those words

are used compared to their synonyms:

>>>

>>> text8.dispersion_plot(

... ["woman", "lady", "girl", "gal", "man", "gentleman", "boy", "guy"]

...)

Here’s the dispersion plot you get:

Each vertical blue line represents one instance of a word. Each horizontal row of blue lines represents

the corpus as a whole. This plot shows that:

"lady" was used a lot more than "woman" or "girl". There were no instances of "gal".

"man" and "guy" were used a similar number of times and were more common

than "gentleman" or "boy".

Page 546 of 580

You use a dispersion plot when you want to see where words show up in a text or corpus. If you’re

analyzing a single text, this can help you see which words show up near each other. If you’re analyzing

a corpus of texts that is organized chronologically, it can help you see which words were being used

more or less over a period of time.

Staying on the theme of romance, see what you can find out by making a dispersion plot for Sense

and Sensibility, which is text2. Jane Austen novels talk a lot about people’s homes, so make a

dispersion plot with the names of a few homes:

>>>

>>> text2.dispersion_plot(["Allenham", "Whitwell", "Cleveland", "Combe"])

Here’s the plot you get:

Apparently Allenham is mentioned a lot in the first third of the novel and then doesn’t come up much

again. Cleveland, on the other hand, barely comes up in the first two thirds but shows up a fair bit in

the last third. This distribution reflects changes in the relationship between Marianne and Willoughby:

Allenham is the home of Willoughby’s benefactress and comes up a lot when Marianne is first

interested in him.

Cleveland is a home that Marianne stays at after she goes to see Willoughby in London and things go

wrong.

Dispersion plots are just one type of visualization you can make for textual data. The next one you’ll

take a look at is frequency distributions.

Making a Frequency Distribution

With a frequency distribution, you can check which words show up most frequently in your text. You’ll

need to get started with an import:

>>>

>>> from nltk import FreqDist

FreqDist is a subclass of collections.Counter. Here’s how to create a frequency distribution of the

entire corpus of personals ads:

Page 547 of 580

>>>

>>> frequency_distribution = FreqDist(text8)

>>> print(frequency_distribution)

<FreqDist with 1108 samples and 4867 outcomes>

Since 1108 samples and 4867 outcomes is a lot of information, start by narrowing that down. Here’s

how to see the 20 most common words in the corpus:

>>>

>>> frequency_distribution.most_common(20)

[(',', 539),

 ('.', 353),

 ('/', 110),

 ('for', 99),

 ('and', 74),

 ('to', 74),

 ('lady', 68),

 ('-', 66),

 ('seeks', 60),

 ('a', 52),

 ('with', 44),

 ('S', 36),

 ('ship', 33),

 ('&', 30),

 ('relationship', 29),

 ('fun', 28),

 ('in', 27),

 ('slim', 27),

 ('build', 27),

 ('o', 26)]

You have a lot of stop words in your frequency distribution, but you can remove them just as you

did earlier. Create a list of all of the words in text8 that aren’t stop words:

>>>

>>> meaningful_words = [

Page 548 of 580

... word for word in text8 if word.casefold() not in stop_words

...]

Now that you have a list of all of the words in your corpus that aren’t stop words, make a frequency

distribution:

>>>

>>> frequency_distribution = FreqDist(meaningful_words)

Take a look at the 20 most common words:

>>>

>>> frequency_distribution.most_common(20)

[(',', 539),

 ('.', 353),

 ('/', 110),

 ('lady', 68),

 ('-', 66),

 ('seeks', 60),

 ('ship', 33),

 ('&', 30),

 ('relationship', 29),

 ('fun', 28),

 ('slim', 27),

 ('build', 27),

 ('smoker', 23),

 ('50', 23),

 ('non', 22),

 ('movies', 22),

 ('good', 21),

 ('honest', 20),

 ('dining', 19),

 ('rship', 18)]

You can turn this list into a graph:

>>>

Page 549 of 580

>>> frequency_distribution.plot(20, cumulative=True)

Here’s the graph you get:

Some of the most common words are:

'lady'

'seeks'

'ship'

'relationship'

'fun'

'slim'

'build'

'smoker'

'50'

'non'

'movies'

'good'

'honest'

From what you’ve already learned about the people writing these personals ads, they did seem

interested in honesty and used the word 'lady' a lot. In addition, 'slim' and 'build' both show up the

same number of times. You saw slim and build used near each other when you were learning

Page 550 of 580

about concordances, so maybe those two words are commonly used together in this corpus. That

brings us to collocations!

Finding Collocations

A collocation is a sequence of words that shows up often. If you’re interested in common collocations

in English, then you can check out The BBI Dictionary of English Word Combinations. It’s a handy

reference you can use to help you make sure your writing is idiomatic. Here are some examples of

collocations that use the word “tree”:

Syntax tree

Family tree

Decision tree

To see pairs of words that come up often in your corpus, you need to call .collocations() on it:

>>>

>>> text8.collocations()

would like; medium build; social drinker; quiet nights; non smoker;

long term; age open; Would like; easy going; financially secure; fun

times; similar interests; Age open; weekends away; poss rship; well

presented; never married; single mum; permanent relationship; slim

build

slim build did show up, as did medium build and several other word combinations. No long walks on

the beach though!

But what would happen if you looked for collocations after lemmatizing the words in your corpus?

Would you find some word combinations that you missed the first time around because they came up

in slightly varied versions?

If you followed the instructions earlier, then you’ll already have a lemmatizer, but you can’t

call collocations() on just any data type, so you’re going to need to do some prep work. Start by

creating a list of the lemmatized versions of all the words in text8:

>>>

>>> lemmatized_words = [lemmatizer.lemmatize(word) for word in text8]

But in order for you to be able to do the linguistic processing tasks you’ve seen so far, you need to

make an NLTK text with this list:

>>>

>>> new_text = nltk.Text(lemmatized_words)

Here’s how to see the collocations in your new_text:

>>>

Page 551 of 580

>>> new_text.collocations()

medium build; social drinker; non smoker; long term; would like; age

open; easy going; financially secure; Would like; quiet night; Age

open; well presented; never married; single mum; permanent

relationship; slim build; year old; similar interest; fun time; Photo

pls

Compared to your previous list of collocations, this new one is missing a few:

weekends away

poss rship

The idea of quiet nights still shows up in the lemmatized version, quiet night. Your latest search for

collocations also brought up a few news ones:

year old suggests that users often mention ages.

photo pls suggests that users often request one or more photos.

That’s how you can find common word combinations to see what people are talking about and how

they’re talking about it!

Conclusion

Congratulations on taking your first steps with NLP! A whole new world of unstructured data is now

open for you to explore. Now that you’ve covered the basics of text analytics tasks, you can get out

there are find some texts to analyze and see what you can learn about the texts themselves as well as

the people who wrote them and the topics they’re about.

Now you know how to:

Find text to analyze

Preprocess your text for analysis

Analyze your text

Create visualizations based on your analysis

For your next step, you can use NLTK to analyze a text to see whether the sentiments expressed in it

are positive or negative. To learn more about sentiment analysis, check out Sentiment Analysis: First

Steps With Python’s NLTK Library. If you’d like to dive deeper into the nuts and bolts of NLTK, then

you can work your way through Natural Language Processing with Python—Analyzing Text with the

Natural Language Toolkit.

Day-03 & 04: Sentiment Analysis: First Steps With Python's NLTK Library
Sentiment Analysis

Sentiment analysis can help you determine the ratio of positive to negative engagements about a

specific topic. You can analyze bodies of text, such as comments, tweets, and product reviews, to

obtain insights from your audience. In this tutorial, you’ll learn the important features of NLTK for

Page 552 of 580

processing text data and the different approaches you can use to perform sentiment analysis on your

data.

Steps for Sentiment Analysis
Split and filter text data in preparation for analysis

Analyze word frequency

Find concordance and collocations using different methods

Perform quick sentiment analysis with NLTK’s built-in classifier

Define features for custom classification

Use and compare classifiers for sentiment analysis with NLTK

Getting Started With NLTK

The NLTK library contains various utilities that allow you to effectively manipulate and analyze

linguistic data. Among its advanced features are text classifiers that you can use for many kinds of

classification, including sentiment analysis.

Sentiment analysis is the practice of using algorithms to classify various samples of related text into

overall positive and negative categories. With NLTK, you can employ these algorithms through

powerful built-in machine learning operations to obtain insights from linguistic data.

import nltk

nltk.download()

NLTK will display a download manager showing all available and installed resources. Here are the ones

you’ll need to download for this task:

names: A list of common English names compiled by Mark Kantrowitz

stopwords: A list of really common words, like articles, pronouns, prepositions, and conjunctions

state_union: A sample of transcribed State of the Union addresses by different US presidents,

compiled by Kathleen Ahrens

twitter_samples: A list of social media phrases posted to Twitter

movie_reviews: Two thousand movie reviews categorized by Bo Pang and Lillian Lee

averaged_perceptron_tagger: A data model that NLTK uses to categorize words into their part of

speech

vader_lexicon: A scored list of words and jargon that NLTK references when performing sentiment

analysis, created by C.J. Hutto and Eric Gilbert

punkt: A data model created by Jan Strunk that NLTK uses to split full texts into word lists

A quick way to download specific resources directly from the console is to pass

a list to nltk.download():

>>>

Page 553 of 580

>>> import nltk

>>> nltk.download([

... "names",

... "stopwords",

... "state_union",

... "twitter_samples",

... "movie_reviews",

... "averaged_perceptron_tagger",

... "vader_lexicon",

... "punkt",

...])

his will tell NLTK to find and download each resource based on its identifier.

Should NLTK require additional resources that you haven’t installed, you’ll see a

helpful LookupError with details and instructions to download the resource:

>>> import nltk

>>> w = nltk.corpus.shakespeare.words()

...

LookupError:

**

 Resource shakespeare not found.

 Please use the NLTK Downloader to obtain the resource:

 >>> import nltk

 >>> nltk.download('shakespeare')

Compiling Data
NLTK provides a number of functions that you can call with few or no arguments that will help you

meaningfully analyze text before you even touch its machine learning capabilities. Many of NLTK’s

utilities are helpful in preparing your data for more advanced analysis.

Soon, you’ll learn about frequency distributions, concordance, and collocations. But first, you need

some data.

Start by loading the State of the Union corpus you downloaded earlier:

Page 554 of 580

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]

Note that you build a list of individual words with the corpus’s .words() method, but you

use str.isalpha() to include only the words that are made up of letters. Otherwise, your word list may

end up with “words” that are only punctuation marks.

Have a look at your list. You’ll notice lots of little words like “of,” “a,” “the,” and similar. These

common words are called stop words, and they can have a negative effect on your analysis because

they occur so often in the text. Thankfully, there’s a convenient way to filter them out.

NLTK provides a small corpus of stop words that you can load into a list:

stopwords = nltk.corpus.stopwords.words("english")

Make sure to specify english as the desired language since this corpus contains stop words in various

languages.

Now you can remove stop words from your original word list:

words = [w for w in words if w.lower() not in stopwords]

Since all words in the stopwords list are lowercase, and those in the original list may not be, you

use str.lower() to account for any discrepancies. Otherwise, you may end up with mixedCase or

capitalized stop words still in your list.

While you’ll use corpora provided by NLTK for this tutorial, it’s possible to build your own text corpora

from any source. Building a corpus can be as simple as loading some plain text or as complex as

labeling and categorizing each sentence. Refer to NLTK’s documentation for more information on how

to work with corpus readers.

For some quick analysis, creating a corpus could be overkill. If all you need is a word list, there are

simpler ways to achieve that goal. Beyond Python’s own string manipulation methods, NLTK

provides nltk.word_tokenize(), a function that splits raw text into individual words.

While tokenization is itself a bigger topic (and likely one of the steps you’ll take when creating a

custom corpus), this tokenizer delivers simple word lists really well.

To use it, call word_tokenize() with the raw text you want to split:

>>>

>>> from pprint import pprint

>>> text = """

... For some quick analysis, creating a corpus could be overkill.

... If all you need is a word list,

... there are simpler ways to achieve that goal."""

>>> pprint(nltk.word_tokenize(text), width=79, compact=True)

['For', 'some', 'quick', 'analysis', ',', 'creating', 'a', 'corpus', 'could',

 'be', 'overkill', '.', 'If', 'all', 'you', 'need', 'is', 'a', 'word', 'list',

Page 555 of 580

 ',', 'there', 'are', 'simpler', 'ways', 'to', 'achieve', 'that', 'goal', '.']

Now you have a workable word list! Remember that punctuation will be counted as individual words,

so use str.isalpha() to filter them out later.

Creating Frequency Distributions
Now you’re ready for frequency distributions. A frequency distribution is essentially a table that tells

you how many times each word appears within a given text. In NLTK, frequency distributions are a

specific object type implemented as a distinct class called FreqDist. This class provides useful

operations for word frequency analysis.

To build a frequency distribution with NLTK, construct the nltk.FreqDist class with a word list:

words: list[str] = nltk.word_tokenize(text)

fd = nltk.FreqDist(words)

This will create a frequency distribution object similar to a Python dictionary but with added features.

Note: Type hints with generics as you saw above in words: list[str] = ... is a new feature in Python 3.9!

After building the object, you can use methods like .most_common() and .tabulate() to start

visualizing information:

>>>

>>> fd.most_common(3)

[('must', 1568), ('people', 1291), ('world', 1128)]

>>> fd.tabulate(3)

 must people world

 1568 1291 1128

These methods allow you to quickly determine frequently used words in a sample.

With .most_common(), you get a list of tuples containing each word and how many times it appears

in your text. You can get the same information in a more readable format with .tabulate().

In addition to these two methods, you can use frequency distributions to query particular words. You

can also use them as iterators to perform some custom analysis on word properties.

For example, to discover differences in case, you can query for different variations of the same word:

>>>

>>> fd["America"]

1076

>>> fd["america"] # Note this doesn't result in a KeyError

0

>>> fd["AMERICA"]

3

Page 556 of 580

These return values indicate the number of times each word occurs exactly as given.

Since frequency distribution objects are iterable, you can use them within list comprehensions to

create subsets of the initial distribution. You can focus these subsets on properties that are useful for

your own analysis.

Try creating a new frequency distribution that’s based on the initial one but normalizes all words to

lowercase:

lower_fd = nltk.FreqDist([w.lower() for w in fd])

Now you have a more accurate representation of word usage regardless of case.

Think of the possibilities: You could create frequency distributions of words starting with a particular

letter, or of a particular length, or containing certain letters. Your imagination is the limit!

Extracting Concordance and Collocations

In the context of NLP, a concordance is a collection of word locations along with their context. You

can use concordances to find:

How many times a word appears

Where each occurrence appears

What words surround each occurrence

In NLTK, you can do this by calling .concordance(). To use it, you need an instance of

the nltk.Text class, which can also be constructed with a word list.

Before invoking .concordance(), build a new word list from the original corpus text so that all the

context, even stop words, will be there:

>>>

>>> text = nltk.Text(nltk.corpus.state_union.words())

>>> text.concordance("america", lines=5)

Displaying 5 of 1079 matches:

 would want us to do . That is what America will do . So much blood has already

ay , the entire world is looking to America for enlightened leadership to peace

beyond any shadow of a doubt , that America will continue the fight for freedom

 to make complete victory certain , America will never become a party to any pl

nly in law and in justice . Here in America , we have labored long and hard to

Note that .concordance() already ignores case, allowing you to see the context of all case variants of a

word in order of appearance. Note also that this function doesn’t show you the location of each word

in the text.

Additionally, since .concordance() only prints information to the console, it’s not ideal for data

manipulation. To obtain a usable list that will also give you information about the location of each

occurrence, use .concordance_list():

Page 557 of 580

>>>

>>> concordance_list = text.concordance_list("america", lines=2)

>>> for entry in concordance_list:

... print(entry.line)

...

 would want us to do . That is what America will do . So much blood has already

ay , the entire world is looking to America for enlightened leadership to peace

.concordance_list() gives you a list of ConcordanceLine objects, which contain information about

where each word occurs as well as a few more properties worth exploring. The list is also sorted in

order of appearance.

The nltk.Text class itself has a few other interesting features. One of them is .vocab(), which is worth

mentioning because it creates a frequency distribution for a given text.

Revisiting nltk.word_tokenize(), check out how quickly you can create a custom nltk.Text instance and

an accompanying frequency distribution:

>>>

>>> words: list[str] = nltk.word_tokenize(

... """Beautiful is better than ugly.

... Explicit is better than implicit.

... Simple is better than complex."""

...)

>>> text = nltk.Text(words)

>>> fd = text.vocab() # Equivalent to fd = nltk.FreqDist(words)

>>> fd.tabulate(3)

 is better than

 3 3 3

.vocab() is essentially a shortcut to create a frequency distribution from an instance of nltk.Text. That

way, you don’t have to make a separate call to instantiate a new nltk.FreqDist object.

Another powerful feature of NLTK is its ability to quickly find collocations with simple function calls.

Collocations are series of words that frequently appear together in a given text. In the State of the

Union corpus, for example, you’d expect to find the words United and States appearing next to each

other very often. Those two words appearing together is a collocation.

Collocations can be made up of two or more words. NLTK provides classes to handle several types of

collocations:

Bigrams: Frequent two-word combinations

Page 558 of 580

Trigrams: Frequent three-word combinations

Quadgrams: Frequent four-word combinations

NLTK provides specific classes for you to find collocations in your text. Following the pattern you’ve

seen so far, these classes are also built from lists of words:

words = [w for w in nltk.corpus.state_union.words() if w.isalpha()]

finder = nltk.collocations.TrigramCollocationFinder.from_words(words)

The TrigramCollocationFinder instance will search specifically for trigrams. As you may have guessed,

NLTK also has the BigramCollocationFinder and QuadgramCollocationFinder classes for bigrams and

quadgrams, respectively. All these classes have a number of utilities to give you information about all

identified collocations.

One of their most useful tools is the ngram_fd property. This property holds a frequency distribution

that is built for each collocation rather than for individual words.

Using ngram_fd, you can find the most common collocations in the supplied text:

>>>

>>> finder.ngram_fd.most_common(2)

[(('the', 'United', 'States'), 294), (('the', 'American', 'people'), 185)]

>>> finder.ngram_fd.tabulate(2)

 ('the', 'United', 'States') ('the', 'American', 'people')

 294 185

You don’t even have to create the frequency distribution, as it’s already a property of the collocation

finder instance.

Now that you’ve learned about some of NLTK’s most useful tools, it’s time to jump into sentiment

analysis!

Using NLTK’s Pre-Trained Sentiment Analyzer

NLTK already has a built-in, pretrained sentiment analyzer called VADER (Valence Aware Dictionary

and sEntiment Reasoner).

Since VADER is pretrained, you can get results more quickly than with many other analyzers.

However, VADER is best suited for language used in social media, like short sentences with some slang

and abbreviations. It’s less accurate when rating longer, structured sentences, but it’s often a good

launching point.

To use VADER, first create an instance of nltk.sentiment.SentimentIntensityAnalyzer, then

use .polarity_scores() on a raw string:

>>>

>>> from nltk.sentiment import SentimentIntensityAnalyzer

>>> sia = SentimentIntensityAnalyzer()

Page 559 of 580

>>> sia.polarity_scores("Wow, NLTK is really powerful!")

{'neg': 0.0, 'neu': 0.295, 'pos': 0.705, 'compound': 0.8012}

You’ll get back a dictionary of different scores. The negative, neutral, and positive scores are related:

They all add up to 1 and can’t be negative. The compound score is calculated differently. It’s not just

an average, and it can range from -1 to 1.

Now you’ll put it to the test against real data using two different corpora. First, load

the twitter_samples corpus into a list of strings, making a replacement to render URLs inactive to

avoid accidental clicks:

tweets = [t.replace("://", "//") for t in nltk.corpus.twitter_samples.strings()]

Notice that you use a different corpus method, .strings(), instead of .words(). This gives you a list of

raw tweets as strings.

Different corpora have different features, so you may need to use Python’s help(), as

in help(nltk.corpus.tweet_samples), or consult NLTK’s documentation to learn how to use a given

corpus.

Now use the .polarity_scores() function of your SentimentIntensityAnalyzer instance to classify

tweets:

from random import shuffle

def is_positive(tweet: str) -> bool:

 """True if tweet has positive compound sentiment, False otherwise."""

 return sia.polarity_scores(tweet)["compound"] > 0

shuffle(tweets)

for tweet in tweets[:10]:

 print(">", is_positive(tweet), tweet)

In this case, is_positive() uses only the positivity of the compound score to make the call. You can

choose any combination of VADER scores to tweak the classification to your needs.

Now take a look at the second corpus, movie_reviews. As the name implies, this is a collection of

movie reviews. The special thing about this corpus is that it’s already been classified. Therefore, you

can use it to judge the accuracy of the algorithms you choose when rating similar texts.

Keep in mind that VADER is likely better at rating tweets than it is at rating long movie reviews. To get

better results, you’ll set up VADER to rate individual sentences within the review rather than the

entire text.

Since VADER needs raw strings for its rating, you can’t use .words() like you did earlier. Instead, make

a list of the file IDs that the corpus uses, which you can use later to reference individual reviews:

positive_review_ids = nltk.corpus.movie_reviews.fileids(categories=["pos"])

Page 560 of 580

negative_review_ids = nltk.corpus.movie_reviews.fileids(categories=["neg"])

all_review_ids = positive_review_ids + negative_review_ids

.fileids() exists in most, if not all, corpora. In the case of movie_reviews, each file corresponds to a

single review. Note also that you’re able to filter the list of file IDs by specifying categories. This

categorization is a feature specific to this corpus and others of the same type.

Next, redefine is_positive() to work on an entire review. You’ll need to obtain that specific review

using its file ID and then split it into sentences before rating:

from statistics import mean

def is_positive(review_id: str) -> bool:

 """True if the average of all sentence compound scores is positive."""

 text = nltk.corpus.movie_reviews.raw(review_id)

 scores = [

 sia.polarity_scores(sentence)["compound"]

 for sentence in nltk.sent_tokenize(text)

]

 return mean(scores) > 0

.raw() is another method that exists in most corpora. By specifying a file ID or a list of file IDs, you can

obtain specific data from the corpus. Here, you get a single review, then use nltk.sent_tokenize() to

obtain a list of sentences from the review. Finally, is_positive() calculates the average compound

score for all sentences and associates a positive result with a positive review.

You can take the opportunity to rate all the reviews and see how accurate VADER is with this setup:

>>>

>>> shuffle(all_review_ids)

>>> correct = 0

>>> for review_id in all_review_ids:

... if is_positive(review_id):

... if review_id in positive_review_ids:

... correct += 1

... else:

... if review_id in negative_review_ids:

... correct += 1

...

Page 561 of 580

>>> print(F"{correct / len(all_review_ids):.2%} correct")

64.00% correct

After rating all reviews, you can see that only 64 percent were correctly classified by VADER using the

logic defined in is_positive().

A 64 percent accuracy rating isn’t great, but it’s a start. Have a little fun tweaking is_positive() to see if

you can increase the accuracy.

In the next section, you’ll build a custom classifier that allows you to use additional features for

classification and eventually increase its accuracy to an acceptable level.

Customizing NLTK’s Sentiment Analysis

NLTK offers a few built-in classifiers that are suitable for various types of analyses, including sentiment

analysis. The trick is to figure out which properties of your dataset are useful in classifying each piece

of data into your desired categories.

In the world of machine learning, these data properties are known as features, which you must reveal

and select as you work with your data. While this tutorial won’t dive too deeply into feature

selection and feature engineering, you’ll be able to see their effects on the accuracy of classifiers.

Selecting Useful Features

Since you’ve learned how to use frequency distributions, why not use them as a launching point for

an additional feature?

By using the predefined categories in the movie_reviews corpus, you can create sets of positive and

negative words, then determine which ones occur most frequently across each set. Begin by

excluding unwanted words and building the initial category groups:

 1unwanted = nltk.corpus.stopwords.words("english")

 2unwanted.extend([w.lower() for w in nltk.corpus.names.words()])

 3

 4def skip_unwanted(pos_tuple):

 5 word, tag = pos_tuple

 6 if not word.isalpha() or word in unwanted:

 7 return False

 8 if tag.startswith("NN"):

 9 return False

10 return True

11

12positive_words = [word for word, tag in filter(

13 skip_unwanted,

Page 562 of 580

14 nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["pos"]))

15)]

16negative_words = [word for word, tag in filter(

17 skip_unwanted,

18 nltk.pos_tag(nltk.corpus.movie_reviews.words(categories=["neg"]))

19)]

This time, you also add words from the names corpus to the unwanted list on line 2 since movie

reviews are likely to have lots of actor names, which shouldn’t be part of your feature sets.

Notice pos_tag() on lines 14 and 18, which tags words by their part of speech.

It’s important to call pos_tag() before filtering your word lists so that NLTK can more accurately tag all

words. skip_unwanted(), defined on line 4, then uses those tags to exclude nouns, according to

NLTK’s default tag set.

Now you’re ready to create the frequency distributions for your custom feature. Since many words

are present in both positive and negative sets, begin by finding the common set so you can remove it

from the distribution objects:

positive_fd = nltk.FreqDist(positive_words)

negative_fd = nltk.FreqDist(negative_words)

common_set = set(positive_fd).intersection(negative_fd)

for word in common_set:

 del positive_fd[word]

 del negative_fd[word]

top_100_positive = {word for word, count in positive_fd.most_common(100)}

top_100_negative = {word for word, count in negative_fd.most_common(100)}

Once you’re left with unique positive and negative words in each frequency distribution object, you

can finally build sets from the most common words in each distribution. The amount of words in each

set is something you could tweak in order to determine its effect on sentiment analysis.

This is one example of a feature you can extract from your data, and it’s far from perfect. Looking

closely at these sets, you’ll notice some uncommon names and words that aren’t necessarily positive

or negative. Additionally, the other NLTK tools you’ve learned so far can be useful for building more

features. One possibility is to leverage collocations that carry positive meaning, like the bigram

“thumbs up!”

Here’s how you can set up the positive and negative bigram finders:

Page 563 of 580

unwanted = nltk.corpus.stopwords.words("english")

unwanted.extend([w.lower() for w in nltk.corpus.names.words()])

positive_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([

 w for w in nltk.corpus.movie_reviews.words(categories=["pos"])

 if w.isalpha() and w not in unwanted

])

negative_bigram_finder = nltk.collocations.BigramCollocationFinder.from_words([

 w for w in nltk.corpus.movie_reviews.words(categories=["neg"])

 if w.isalpha() and w not in unwanted

])

The rest is up to you! Try different combinations of features, think of ways to use the negative VADER

scores, create ratios, polish the frequency distributions. The possibilities are endless!

Training and Using a Classifier

With your new feature set ready to use, the first prerequisite for training a classifier is to define a

function that will extract features from a given piece of data.

Since you’re looking for positive movie reviews, focus on the features that indicate positivity,

including VADER scores:

def extract_features(text):

 features = dict()

 wordcount = 0

 compound_scores = list()

 positive_scores = list()

 for sentence in nltk.sent_tokenize(text):

 for word in nltk.word_tokenize(sentence):

 if word.lower() in top_100_positive:

 wordcount += 1

 compound_scores.append(sia.polarity_scores(sentence)["compound"])

 positive_scores.append(sia.polarity_scores(sentence)["pos"])

 # Adding 1 to the final compound score to always have positive numbers

Page 564 of 580

 # since some classifiers you'll use later don't work with negative numbers.

 features["mean_compound"] = mean(compound_scores) + 1

 features["mean_positive"] = mean(positive_scores)

 features["wordcount"] = wordcount

 return features

extract_features() should return a dictionary, and it will create three features for each piece of text:

The average compound score

The average positive score

The amount of words in the text that are also part of the top 100 words in all positive reviews

In order to train and evaluate a classifier, you’ll need to build a list of features for each text you’ll

analyze:

features = [

 (extract_features(nltk.corpus.movie_reviews.raw(review)), "pos")

 for review in nltk.corpus.movie_reviews.fileids(categories=["pos"])

]

features.extend([

 (extract_features(nltk.corpus.movie_reviews.raw(review)), "neg")

 for review in nltk.corpus.movie_reviews.fileids(categories=["neg"])

])

Each item in this list of features needs to be a tuple whose first item is the dictionary returned

by extract_features and whose second item is the predefined category for the text. After initially

training the classifier with some data that has already been categorized (such as

the movie_reviews corpus), you’ll be able to classify new data.

Training the classifier involves splitting the feature set so that one portion can be used for training

and the other for evaluation, then calling .train():

>>>

>>> # Use 1/4 of the set for training

>>> train_count = len(features) // 4

>>> shuffle(features)

>>> classifier = nltk.NaiveBayesClassifier.train(features[:train_count])

>>> classifier.show_most_informative_features(10)

Most Informative Features

Page 565 of 580

 wordcount = 2 pos : neg = 4.1 : 1.0

 wordcount = 3 pos : neg = 3.8 : 1.0

 wordcount = 0 neg : pos = 1.6 : 1.0

 wordcount = 1 pos : neg = 1.5 : 1.0

>>> nltk.classify.accuracy(classifier, features[train_count:])

0.668

Since you’re shuffling the feature list, each run will give you different results. In fact, it’s important to

shuffle the list to avoid accidentally grouping similarly classified reviews in the first quarter of the list.

Adding a single feature has marginally improved VADER’s initial accuracy, from 64 percent to 67

percent. More features could help, as long as they truly indicate how positive a review is. You can

use classifier.show_most_informative_features() to determine which features are most indicative of a

specific property.

To classify new data, find a movie review somewhere and pass it to classifier.classify(). You can also

use extract_features() to tell you exactly how it was scored:

>>>

>>> new_review = ...

>>> classifier.classify(new_review)

>>> extract_features(new_review)

Was it correct? Based on the scoring output from extract_features(), what can you improve?

Feature engineering is a big part of improving the accuracy of a given algorithm, but it’s not the whole

story. Another strategy is to use and compare different classifiers.

Comparing Additional Classifiers

NLTK provides a class that can use most classifiers from the popular machine learning

framework scikit-learn.

Many of the classifiers that scikit-learn provides can be instantiated quickly since they have defaults

that often work well. In this section, you’ll learn how to integrate them within NLTK to classify

linguistic data.

Installing and Importing scikit-learn
Like NLTK, scikit-learn is a third-party Python library, so you’ll have to install it with pip:

$ python3 -m pip install scikit-learn

After you’ve installed scikit-learn, you’ll be able to use its classifiers directly within NLTK.

The following classifiers are a subset of all classifiers available to you. These will work within NLTK for

sentiment analysis:

from sklearn.naive_bayes import (

 BernoulliNB,

Page 566 of 580

 ComplementNB,

 MultinomialNB,)

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.neural_network import MLPClassifier

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

With these classifiers imported, you’ll first have to instantiate each one. Thankfully, all of these have

pretty good defaults and don’t require much tweaking.

To aid in accuracy evaluation, it’s helpful to have a mapping of classifier names and their instances:

classifiers = { "BernoulliNB": BernoulliNB(),

 "ComplementNB": ComplementNB(),

 "MultinomialNB": MultinomialNB(),

 "KNeighborsClassifier": KNeighborsClassifier(),

 "DecisionTreeClassifier": DecisionTreeClassifier(),

 "RandomForestClassifier": RandomForestClassifier(),

 "LogisticRegression": LogisticRegression(),

 "MLPClassifier": MLPClassifier(max_iter=1000),

 "AdaBoostClassifier": AdaBoostClassifier(), }

Now you can use these instances for training and accuracy evaluation.

Using scikit-learn Classifiers With NLTK

Since NLTK allows you to integrate scikit-learn classifiers directly into its own classifier class, the

training and classification processes will use the same methods you’ve already

seen, .train() and .classify().

You’ll also be able to leverage the same features list you built earlier by means of extract_features().

To refresh your memory, here’s how you built the features list:

features = [

 (extract_features(nltk.corpus.movie_reviews.raw(review)), "pos")

 for review in nltk.corpus.movie_reviews.fileids(categories=["pos"])

]

features.extend([

Page 567 of 580

 (extract_features(nltk.corpus.movie_reviews.raw(review)), "neg")

 for review in nltk.corpus.movie_reviews.fileids(categories=["neg"])])

The features list contains tuples whose first item is a set of features given by extract_features(), and

whose second item is the classification label from preclassified data in the movie_reviews corpus.

Since the first half of the list contains only positive reviews, begin by shuffling it, then iterate over all

classifiers to train and evaluate each one:

>>>

>>> # Use 1/4 of the set for training

>>> train_count = len(features) // 4

>>> shuffle(features)

>>> for name, sklearn_classifier in classifiers.items():

... classifier = nltk.classify.SklearnClassifier(sklearn_classifier)

... classifier.train(features[:train_count])

... accuracy = nltk.classify.accuracy(classifier, features[train_count:])

... print(F"{accuracy:.2%} - {name}")

...

67.00% - BernoulliNB

66.80% - ComplementNB

66.33% - MultinomialNB

69.07% - KNeighborsClassifier

62.73% - DecisionTreeClassifier

66.60% - RandomForestClassifier

72.20% - LogisticRegression

73.13% - MLPClassifier

69.40% - AdaBoostClassifier

For each scikit-learn classifier, call nltk.classify.SklearnClassifier to create a usable NLTK classifier that

can be trained and evaluated exactly like you’ve seen before with nltk.NaiveBayesClassifier and its

other built-in classifiers. The .train() and .accuracy() methods should receive different portions of the

same list of features.

Day-05: Labs and Practice activities for sentiments analysis on various datasets

This day is reserved for various data analysis and practice activities activities along with assessments.

Page 568 of 580

Week 9: Time series analysis and forecasting

Day-01: Time Series – Introduction

NumPy

Numerical Python is a library used for scientific computing. It works on an N-dimensional array object

and provides basic mathematical functionality such as size, shape, mean, standard deviation,

minimum, maximum as well as some more complex functions such as linear algebraic functions and

Fourier transform. You will learn more about these as we move ahead in this tutorial.

Pandas

This library provides highly efficient and easy-to-use data structures such as series, dataframes and

panels. It has enhanced Python’s functionality from mere data collection and preparation to data

analysis. The two libraries, Pandas and NumPy, make any operation on small to very large dataset

very simple. To know more about these functions,follow this tutorial.

SciPy

Science Python is a library used for scientific and technical computing. It provides functionalities for

optimization, signal and image processing, integration, interpolation and linear algebra. This library

comes handy while performing machine learning. We will discuss these functionalities as we move

ahead in this tutorial.

Scikit Learn

This library is a SciPy Toolkit widely used for statistical modelling, machine learning and deep learning,

as it contains various customizable regression, classification and clustering models. It works well with

Numpy, Pandas and other libraries which makes it easier to use.

Statsmodels

Like Scikit Learn, this library is used for statistical data exploration and statistical

modelling. It also operates well with other Python libraries.

Matplotlib

This library is used for data visualization in various formats such as line plot, bar graph,

heat maps, scatter plots, histogram etc. It contains all the graph related functionalities

required from plotting to labelling. We will discuss these functionalities as we move ahead

in this tutorial.

Datetime

This library, with its two modules – datetime and calendar, provides all necessary datetime

functionality for reading, formatting and manipulating time.

These libraries are very essential to start with machine learning with any sort of data.

Page 569 of 580

Time Series – Data Processing and Visualization

Time Series is a sequence of observations indexed in equi-spaced time intervals. Hence, the

order and continuity should be maintained in any time series. The dataset we will be using is a

multi-variate time series having hourly data for approximately one year, for air quality in a

significantly polluted Italian city. The dataset can be downloaded from the link given below:

http://archive.ics.uci.edu/ml/datasets/air+quality

It is necessary to make sure that: • The time series is equally spaced, and • There are no

redundant values or gaps in it. In case the time series is not continuous, we can upsample or

downsample it.

Showing df.head()

import pandas

df = pandas.read_csv("AirQualityUCI.csv", sep = ";", decimal = ",") df = df.iloc[: , 0:14]

len(df)

9471

df.head()

df.isna().sum()

df = df[df['Date'].notnull()]

For preprocessing the time series, we make sure there are no NaN(NULL) values in the dataset;

if there are, we can replace them with either 0 or average or preceding or succeeding values.

Replacing is a preferred choice over dropping so that the continuity of the time series is

maintained. However, in our dataset the last few values seem to be NULL and hence dropping

will not affect the continuity.

Dropping NaN(Not-a-Number)

df.isna().sum()

df = df[df['Date'].notnull()]

df = df[df['Date'].notnull()]

Converting to datetime object

df['DateTime'] = (df.Date) + ' ' + (df.Time)

print (type(df.DateTime[0]))

import datetime

df.DateTime = df.DateTime.apply(lambda x: datetime.datetime.strptime(x,'%d/%m/%Y

%H.%M.%S'))

Page 570 of 580

print (type(df.DateTime[0]))

Showing plots

df.index = df.DateTime

import matplotlib.pyplot as plt

plt.plot(df['T'])

plt.plot(df['C6H6(GT)'])

Box-plots are another useful kind of graphs that allow you to condense a lot of information

about a dataset into a single graph. It shows the mean, 25% and 75% quartile and outliers of

one or multiple variables. In the case when number of outliers is few and is very distant from

the mean, we can eliminate the outliers by setting them to mean value or 75% quartile value.

Showing Boxplots

plt.boxplot(df[['T','C6H6(GT)']].values)

Time Series – Modeling

A time series has 4 components as given below:

• Level: It is the mean value around which the series varies.

• Trend: It is the increasing or decreasing behavior of a variable with time.

• Seasonality: It is the cyclic behavior of time series.

• Noise: It is the error in the observations added due to environmental factors.

Time Series Modeling Techniques

To capture these components, there are a number of popular time series modelling techniques.

This section gives a brief introduction of each technique, however we will discuss about them

in detail in the upcoming chapters:

Naïve Methods

These are simple estimation techniques, such as the predicted value is given the value equal to

mean of preceding values of the time dependent variable, or previous actual value. These are

used for comparison with sophisticated modelling techniques.

Auto Regression

Auto regression predicts the values of future time periods as a function of values at previous

time periods. Predictions of auto regression may fit the data better than that of naïve methods,

but it may not be able to account for seasonality.

ARIMA Model

An Auto-Regressive Integrated Moving-Average(ARIMA) models the value of a variable as

a linear function of previous values and residual errors at previous time steps of a stationary

time series. However, the real world data may be non-stationary and have seasonality, thus

Seasonal-ARIMA and Fractional-ARIMA were developed. ARIMA works on univariate time

series, to handle multiple variables VARIMA was introduced.

Page 571 of 580

Exponential Smoothing

It models the value of a variable as an exponential weighted linear function of previous

values. This statistical model can handle trend and seasonality as well.

LSTM

Long Short-Term Memory model (LSTM) is a recurrent neural network which is used for

time series to account for long term dependencies. It can be trained with large amount of

data to capture the trends in multi-variate time series.

Time Series – Parameter Calibration

Any statistical or machine learning model has some parameters which greatly influence how

the data is modeled. For example, ARIMA has p, d, q values. These parameters are to be

decided such that the error between actual values and modeled values is minimum.

Parameter calibration is said to be the most crucial and time-consuming task of model fitting.

Hence, it is very essential for us to choose optimal parameters.

Methods for Calibration of Parameters

There are various ways to calibrate parameters. This section talks about some of them in

detail.

Hit-and-try

One common way of calibrating models is hand calibration, where you start by visualizing the

time-series and intuitively try some parameter values and change them over and over until you

achieve a good enough fit. It requires a good understanding of the model we are trying. For

ARIMA model, hand calibration is done with the help of auto-correlation plot for ‘p’

parameter, partial auto-correlation plot for ‘q’ parameter and ADF-test to confirm the

stationarity of time-series and setting ‘d’ parameter. We will discuss all these in detail in the

coming chapters.

Grid Search

Another way of calibrating models is by grid search, which essentially means you try building

a model for all possible combinations of parameters and select the one with minimum error.

This is time-consuming and hence is useful when number of parameters to be calibrated and

range of values they take are fewer as this involves multiple nested for loops.

Genetic Algorithm

Genetic algorithm works on the biological principle that a good solution will eventually

evolve to the most ‘optimal’ solution. It uses biological operations of mutation, cross-over

and selection to finally reach to an optimal solution.

For further knowledge you can read about other parameter optimization techniques like

Page 572 of 580

Bayesian optimization and Swarm optimization.

Time Series – Naïve Methods

 Naïve Methods such as assuming the predicted value at time ‘t’ to be the actual value of

the variable at time ‘t-1’ or rolling mean of series, are used to weigh how well do the statistical

models and machine learning models can perform and emphasize their need. In this chapter,

let us try these models on one of the features of our time-series data. First we shall see the mean

of the ‘temperature’ feature of our data and the deviation around it. It is also useful to see

maximum and minimum temperature values. We can use the functionalities of numpy library

here.

Showing statistics

import numpy print ('Mean: ',numpy.mean(df['T']), '; Standard Deviation:

',numpy.std(df['T']),'; \nMaximum Temperature: ',max(df['T']),'; Minimum Temperature:

',min(df['T']))

We have the statistics for all 9357 observations across equi-spaced timeline which are useful

for us to understand the data. Now we will try the first naïve method, setting the predicted value

at present time equal to actual value at previous time and calculate the root mean squared

error(RMSE) for it to quantify the performance of this method.

Showing 1st naïve method
Before executing following commands first install scikit-learn in notebook:

!pip install scikit-learn

df['T'] df['T_t-1'] = df['T'].shift(1)

df_naive = df[['T','T_t-1']][1:]

from sklearn import metrics

from math import sqrt

df['T_rm'] = df['T'].rolling(3).mean().shift(1)

df_naive = df[['T','T_rm']].dropna()

true = df_naive['T']

prediction = df_naive['T_t-1']

error = sqrt(metrics.mean_squared_error(true,prediction))

print ('RMSE for Naive Method 1: ', error)

Let us see the next naïve method, where predicted value at present time is equated to the mean

of the time periods preceding it. We will calculate the RMSE for this method too.

Page 573 of 580

Showing 2nd naïve method

df['T_rm'] = df['T'].rolling(3).mean().shift(1)

df_naive = df[['T','T_rm']].dropna()

true = df_naive['T']

prediction = df_naive['T_rm']

error = sqrt(metrics.mean_squared_error(true,prediction))

print ('RMSE for Naive Method 2: ', error)

Here, you can experiment with various number of previous time periods also called ‘lags’

you want to consider, which is kept as 3 here. In this data it can be seen that as you increase

the number of lags and error increases. If lag is kept 1, it becomes same as the naïve method

used earlier.

Points to Note

 You can write a very simple function for calculating root mean squared error. Here, we

have used the mean squared error function from the package ‘sklearn’ and then taken its

square root.

 In pandas df[‘column_name’] can also be written as df.column_name, however for this

dataset df.T will not work the same as df[‘T’] because df.T is the function for transposing a

dataframe. So use only df[‘T’] or consider renaming this column before using the other

syntax.

Time Series – Auto Regression

For a stationary time series, an auto regression models sees the value of a variable at time ‘t’

as a linear function of values ‘p’ time steps preceding it. Mathematically it can be written as:

Where, ‘p’ is the auto-regressive trend parameter

𝜖𝑡 is white noise, and

 𝑦𝑡−1, 𝑦𝑡−2 …𝑦𝑡−𝑝 denote the value of variable at previous time periods.

The value of p can be calibrated using various methods. One way of finding the apt

value of ‘p’ is plotting the auto-correlation plot.

Page 574 of 580

Note: We should separate the data into train and test at 8:2 ratio of total data available

prior to doing any analysis on the data because test data is only to find out the accuracy of our

model and assumption is, it is not available to us until after predictions have been made. In

case of time series, sequence of data points is very essential so one should keep in mind not to

lose the order during splitting of data. An auto-correlation plot or a correlogram shows the

relation of a variable with itself at prior time steps. It makes use of Pearson’s correlation and

shows the correlations within 95% confidence interval. Let’s see how it looks like for

‘temperature’ variable of our data.

Showing ACP

split = len(df) - int(0.2*len(df))

train, test = df['T'][0:split], df['T'][split:]

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(train, lags = 100)

plt.show()

All the lag values lying outside the shaded blue region are assumed to have a correlation.

Time Series – Moving Average

For a stationary time series, a moving average model sees the value of a variable at time ‘t’ as

a linear function of residual errors from ‘q’ time steps preceding it. The residual error is

calculated by comparing the value at the time ‘t’ to moving average of the values preceding.

Mathematically it can be written as:

Where ‘q’ is the moving-average trend parameter

𝜖𝑡 is white noise, and 𝜖𝑡−1, 𝜖𝑡−2 … 𝜖𝑡−𝑞are the error terms at previous time periods.

Value of ‘q’ can be calibrated using various methods. One way of finding the apt value of ‘q’

is plotting the partial auto-correlation plot. A partial auto-correlation plot shows the relation of

a variable with itself at prior time steps with indirect correlations removed, unlike auto-

correlation plot which shows direct as well as indirect correlations, let’s see how it looks like

for ‘temperature’ variable of our data.

Showing PACP

from statsmodels.graphics.tsaplots import plot_pacf

plot_pacf(train, lags = 100)

plt.show()

Page 575 of 580

A partial auto-correlation is read in the same way as a correlogram.

Time Series – ARIMA
We have already understood that for a stationary time series a variable at time ‘t’ is a linear function

of prior observations or residual errors. Hence it is time for us to combine the two and have an Auto-

regressive moving average (ARMA) model.

However, at times the time series is not stationary, i.e the statistical properties of a series like mean,

variance changes over time. And the statistical models we have studied so far assume the time series

to be stationary, therefore, we can include a pre-processing step of differencing the time series to

make it stationary. Now, it is important for us to find out whether the time series we are dealing with

is stationary or not.

 Various methods to find the stationarity of a time series are looking for seasonality or trend in the

plot of time series, checking the difference in mean and variance for various time periods, Augmented

Dickey-Fuller (ADF) test, KPSS test, Hurst’s exponent etc. Let us see whether the ‘temperature’

variable of our dataset is a stationary time series or not using ADF test.

from statsmodels.tsa.stattools import adfuller

result = adfuller(train)

print('ADF Statistic: %f' % result[0])

print('p-value: %f' % result[1])

print('Critical Values:')

for key, value In result[4].items()

 print('\t%s: %.3f' % (key, value))

Now that we have run the ADF test, let us interpret the result. First we will compare the ADF

Statistic with the critical values, a lower critical value tells us the series is most likely non-

stationary. Next, we see the p-value. A p-value greater than 0.05 also suggests that the time

series is non-stationary. Alternatively, p-value less than or equal to 0.05, or ADF Statistic less

than critical values suggest the time series is stationary.

Hence, the time series we are dealing with is already stationary. In case of stationary time

series, we set the ‘d’ parameter as 0. We can also confirm the stationarity of time series using

Hurst exponent.

import hurst

H, c,data = hurst.compute_Hc(train)

print("H = {:.4f}, c = {:.4f}".format(H,c))

The value of H0.5 shows persistent behavior or a trending series. H=0.5 shows random

walk/Brownian motion. The value of H< 0.5, confirming that our series is stationary.

Page 576 of 580

For non-stationary time series, we set ‘d’ parameter as 1. Also, the value of the autoregressive

trend parameter ‘p’ and the moving average trend parameter ‘q’, is calculated on the stationary

time series i.e by plotting ACP and PACP after differencing the time series. ARIMA Model,

which is characterized by 3 parameter, (p,d,q) are now clear to us, so let us model our time

series and predict the future values of temperature.

from statsmodels.tsa.arima_model import ARIMA

model = ARIMA(train.values, order=(5, 0, 2))

model_fit = model.fit(disp=False)

predictions = model_fit.predict(len(test))

test_ = pandas.DataFrame(test)

test_['predictions'] = predictions[0:1871]

plt.plot(df['T'])

plt.plot(test_.predictions)

plt.show()

error = sqrt(metrics.mean_squared_error(test.values,predictions[0:1871]))

print ('Test RMSE for ARIMA: ', error)

Time Series – Variations of ARIMA

In the previous chapter, we have now seen how ARIMA model works, and its limitations that

it cannot handle seasonal data or multivariate time series and hence, new models were

introduced to include these features.

A glimpse of these new models is given here:

Vector Auto-Regression (VAR)

It is a generalized version of auto regression model for multivariate stationary time series.

It is characterized by ‘p’ parameter.

Vector Moving Average (VMA)

It is a generalized version of moving average model for multivariate stationary time series.

It is characterized by ‘q’ parameter.

Vector Auto Regression Moving Average (VARMA)

Page 577 of 580

It is the combination of VAR and VMA and a generalized version of ARMA model for

multivariate stationary time series. It is characterized by ‘p’ and ‘q’ parameters. Much like,

ARMA is capable of acting like an AR model by setting ‘q’ parameter as 0 and as a MA

model by setting ‘p’ parameter as 0, VARMA is also capable of acting like an VAR model by

setting ‘q’ parameter as 0 and as a VMA model by setting ‘p’ parameter as 0.

from statsmodels.tsa.statespace.varmax import VARMAX

model = VARMAX(train_multi, order = (2,1))

model_fit = model.fit()

plt.plot(train_multi['T'])

plt.plot(test_multi['T'])

plt.plot(predictions_multi.iloc[:,0:1], '--')

plt.show()

plt.plot(train_multi['C6H6(GT)'])

plt.plot(test_multi['C6H6(GT)'])

plt.plot(predictions_multi.iloc[:,1:2], '--')

plt.show()

The above code shows how VARMA model can be used to model multivariate time series,

although this model may not be best suited on our data.

VARMA with Exogenous Variables (VARMAX)

It is an extension of VARMA model where extra variables called covariates are used to

model the primary variable we are interested it.

Seasonal Auto Regressive Integrated Moving Average (SARIMA)

This is the extension of ARIMA model to deal with seasonal data. It divides the data into

seasonal and non-seasonal components and models them in a similar fashion. It is

characterized by 7 parameters, for non-seasonal part (p,d,q) parameters same as for ARIMA

model and for seasonal part (P,D,Q,m) parameters where ‘m’ is the number of seasonal

periods and P,D,Q are similar to parameters of ARIMA model. These parameters can be

calibrated using grid search or genetic algorithm.

Page 578 of 580

SARIMA with Exogenous Variables (SARIMAX)

This is the extension of SARIMA model to include exogenous variables which help us to

model the variable we are interested in.

It may be useful to do a co-relation analysis on variables before putting them as exogenous

variables.

from scipy.stats.stats import pearsonr

x=train_multi['T'].values

y=train_multi['C6H6(GT)'].values

corr , p = pearsonr(x,y)

print ('Corelation Coefficient =', corr,'\nP-Value =',p)

Pearson’s Correlation shows a linear relation between 2 variables, to interpret the results, we

first look at the p-value, if it is less that 0.05 then the value of coefficient is significant, else the

value of coefficient is not significant. For significant p-value, a positive value of correlation

coefficient indicates positive correlation, and a negative value indicates a negative correlation.

Hence, for our data, ‘temperature’ and ‘C6H6’ seem to have a highly positive correlation.

Therefore, we will be modelling temperature and will give ‘C6H6’ as exogenous variable to

SARIMAX model.

from statsmodels.tsa.statespace.sarimax import SARIMAX

model = SARIMAX(x, exog = y, order = (2, 0, 2), seasonal_order = (2, 0, 1,

4),enforce_stationarity=False,

enforce_invertibility = False)

model_fit = model.fit(disp = False)

y_ = test_multi['C6H6(GT)'].values

predicted = model_fit.predict(exog=y_)

test_multi_ = pandas.DataFrame(test)

test_multi_['predictions'] = predicted[0:1871]

plt.plot(train_multi['T'])

plt.plot(test_multi_['T'])

plt.plot(test_multi_.predictions, '--')

Page 579 of 580

The predictions here seem to take larger variations now as opposed to univariate ARIMA

modelling. Needless to say, SARIMAX can be used as an ARX, MAX, ARMAX or ARIMAX

model by setting only the corresponding parameters to non-zero values.

Fractional Auto Regressive Integrated Moving Average (FARIMA) At times, it may happen

that our series is not stationary, yet differencing with ‘d’ parameter taking the value 1 may

over-difference it. So, we need to difference the time series using a fractional value.

In the world of data science there is no one superior model, the model that works on your data

depends greatly on your dataset. Knowledge of various models allows us to choose one that

work on our data and experimenting with that model to achieve the best results. And results

should be seen as plot as well as error metrics, at times a small error may also be bad, hence,

plotting and visualizing the results is essential.

Day-02:Time Series – Exponential Smoothing
Simple Exponential Smoothing Exponential Smoothing is a technique for smoothing univariate time-

series by assigning exponentially decreasing weights to data over a time period. Mathematically, the

value of variable at time ‘t+1’ given value at time t, y_(t+1|t) is defined as:

where, 0≤ 𝛼 ≤1 is the smoothing parameter, and y1,...,yt are previous values of network traffic at

times 1, 2, 3, … ,t. This is a simple method to model a time series with no clear trend or seasonality.

But exponential smoothing can also be used for time series with trend and seasonality. Triple

Exponential Smoothing Triple Exponential Smoothing (TES) or Holt's Winter method, applies

exponential smoothing three times - level smoothing 𝑙𝑡 , trend smoothing 𝑏𝑡 , and seasonal

smoothing 𝑠𝑡 , with 𝛼, 𝛽 ∗ and 𝛾 as smoothing parameters with ‘m’ as the frequency of the

seasonality, i.e. the number of seasons in a year. According to the nature of the seasonal component,

TES has two categories: • Holt-Winter's Additive Method: When the seasonality is additive in nature. •

Holt-Winter’s Multiplicative Method: When the seasonality is multiplicative in nature. For non-

Page 580 of 580

seasonal time series, we only have trend smoothing and level smoothing, which is called Holt’s Linear

Trend Method. Let’s try applying triple exponential smoothing on our data.

from statsmodels.tsa.holtwinters import ExponentialSmoothing

model = ExponentialSmoothing(train.values)

model_fit = model.fit()

predictions_ = model_fit.predict(len(test))

plt.plot(test.values)

plt.plot(predictions_[1:1871])

Here, we have trained the model once with training set and then we keep on making predictions.

A more realistic approach is to re-train the model after one or more time step(s). As we get the

prediction for time ‘t+1’ from training data ‘til time ‘t’, the next prediction for time ‘t+2’ can

be made using the training data ‘til time ‘t+1’ as the actual value at ‘t+1’ will be known then.

This methodology of making predictions for one or more future steps and then re-training the

model is called rolling forecast or walk forward validation.

Time Series – Walk Forward Validation

In time series modelling, the predictions over time become less and less accurate and hence it

is a more realistic approach to re-train the model with actual data as it gets available for further

predictions. Since training of statistical models are not time consuming, walk-forward

Page 581 of 580

validation is the most preferred solution to get most accurate results. Let us apply one step walk

forward validation on our data and compare it with the results we got earlier.

import numpy

prediction = []

data = train.values

for t in test.values:

 model = (ExponentialSmoothing(data).fit())

 y = model.predict()

 prediction.append(y[0])

 data = numpy.append(data, t)

test_ = pandas.DataFrame(test)

test_['predictionswf'] = prediction

plt.plot(test_['T'])

plt.plot(test_.predictionswf, '--')

plt.show()

Page 582 of 580

error = sqrt(metrics.mean_squared_error(test.values,prediction))

print ('Test RMSE for Triple Exponential Smoothing with Walk-Forward Validation: ', error)

We can see that our model performs significantly better now. In fact, the trend is followed so

closely that on the plot predictions are overlapping with the actual values. You can try applying

walk-forward validation on ARIMA models too.

Day-03:Time Series – LSTM Model

Now, we are familiar with statistical modelling on time series, but machine learning is all

the rage right now, so it is essential to be familiar with some machine learning models as

well. We shall start with the most popular model in time series domain – Long Short-term

Memory model.

LSTM is a class of recurrent neural network. So before we can jump to LSTM, it is essential

to understand neural networks and recurrent neural networks.

Neural Networks

An artificial neural network is a layered structure of connected neurons, inspired by

biological neural networks. It is not one algorithm but combinations of various algorithms

Page 583 of 580

which allows us to do complex operations on data.

Recurrent Neural Networks

It is a class of neural networks tailored to deal with temporal data. The neurons of RNN

have a cell state/memory, and input is processed according to this internal state, which is

achieved with the help of loops with in the neural network. There are recurring module(s)

of ‘tanh’ layers in RNNs that allow them to retain information. However, not for a long

time, which is why we need LSTM models.

LSTM

It is special kind of recurrent neural network that is capable of learning long term

dependencies in data. This is achieved because the recurring module of the model has a

combination of four layers interacting with each other.

An LSTM module has a cell state and three gates which provides them with the power to

selectively learn, unlearn or retain information from each of the units. The cell state in LSTM

helps the information to flow through the units without being altered by allowing only a few

linear interactions. Each unit has an input, output and a forget gate which can add or remove

the information to the cell state. The forget gate decides which information from the previous

cell state should be forgotten for which it uses a sigmoid function. The input gate controls the

information flow to the current cell state using a point-wise multiplication operation of

‘sigmoid’ and ‘tanh’ respectively. Finally, the output gate decides which information should

be passed on to the next hidden state. Now that we have understood the internal working of

LSTM model, let us implement it. To understand the implementation of LSTM, we will start

with a simple example – a straight line. Let us see, if LSTM can learn the relationship of a

straight line and predict it. First let us create the dataset depicting a straight line.

x = numpy.arange (1,500,1)

y = 0.4 * x + 30

plt.plot(x,y)

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):]

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):]

train = numpy.array(list(zip(trainx,trainy)))

test = numpy.array(list(zip(trainx,trainy)))

Page 584 of 580

def create_dataset(n_X, look_back):

 dataX, dataY = [], []

 for i in range(len(n_X)-look_back):

 a = n_X[i:(i+look_back),]

 dataX.append(a)

 dataY.append(n_X[i + look_back,])

 return numpy.array(dataX), numpy.array(dataY)

look_back = 1

trainx,trainy = create_dataset(train, look_back)

testx,testy = create_dataset(test, look_back)

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2))

testx = numpy.reshape(testx, (testx.shape[0], 1, 2))

Now we will train our model

Small batches of training data are shown to network, one run of when entire training data is

shown to the model in batches and error is calculated is called an epoch. The epochs are to be

run ‘til the time the error is reducing.

Note: First Install Keras and Tensorflow libaries

!pip install keras

!anaconda create -n tensorflow python=3.11

!activate tensorflow

!pip install --ignore-installed --upgrade tensorflow

from keras.models import Sequential

from keras.layers import LSTM, Dense

model = Sequential()

model.add(LSTM(256, return_sequences=True, input_shape=(trainx.shape[1], 2)))

Page 585 of 580

model.add(LSTM(128,input_shape=(trainx.shape[1], 2)))

model.add(Dense(2))

model.compile(loss='mean_squared_error', optimizer = 'adam')

model.fit(trainx, trainy, epochs=2000, batch_size=10, verbose=2, shuffle=False)

model.save_weights('LSTMBasic1.h5')

Now, we should try and model a sine or cosine wave in a similar fashion. You can run the

code given below and play with the model parameters to see how the results change.

model.load_weights('LSTMBasic1.h5')

predict = model.predict(testx)

Now let’s see what our predictions look like.

x = numpy.arange (1,500,1)

y = numpy.sin(x)

plt.plot(x,y)

trainx, testx = x[0:int(0.8*(len(x)))], x[int(0.8*(len(x))):]

trainy, testy = y[0:int(0.8*(len(y)))], y[int(0.8*(len(y))):]

train = numpy.array(list(zip(trainx,trainy)))

test = numpy.array(list(zip(trainx,trainy)))

look_back = 1

trainx,trainy = create_dataset(train, look_back)

testx,testy = create_dataset(test, look_back)

trainx = numpy.reshape(trainx, (trainx.shape[0], 1, 2))

testx = numpy.reshape(testx, (testx.shape[0], 1, 2))

model = Sequential()

model.add(LSTM(512, return_sequences = True, input_shape = (trainx.shape[1],

2)))

Page 586 of 580

model.add(LSTM(256,input_shape = (trainx.shape[1], 2)))

model.add(Dense(2))

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

model.fit(trainx, trainy, epochs = 2000, batch_size = 10, verbose = 2, shuffle

= False)

model.save_weights('LSTMBasic2.h5')

model.load_weights('LSTMBasic2.h5')

predict = model.predict(testx)

plt.plot(trainx.reshape(398,2)[:,0:1], trainx.reshape(398,2)[:,1:2])

plt.plot(predict[:,0:1], predict[:,1:2])

Day-04: Time Series – Error Metrics

It is important for us to quantify the performance of a model to use it as a feedback and

comparison. In this tutorial we have used one of the most popular error metric root mean

squared error. There are various other error metrics available. This chapter discusses them

in brief.

Mean Square Error

It is the average of square of difference between the predicted values and true values.

Sklearn provides it as a function. It has the same units as the true and predicted values

squared and is always positive.

Page 587 of 580

Where 𝑦’𝑡 is the predicted value,

𝑦𝑡 is the actual value, and

n is the total number of values in test set.

It is clear from the equation that MSE is more penalizing for larger errors, or the outliers.

Root Mean Square Error

It is the square root of the mean square error. It is also always positive and is in the range

of the data.

Root Mean Square Error

It is the square root of the mean square error. It is also always positive and is in the range of

the data.

Where, 𝑦’𝑡 is predicted value

𝑦𝑡 is actual value, and

n is total number of values in test set.

It is in the power of unity and hence is more interpretable as compared to MSE. RMSE is

also more penalizing for larger errors. We have used RMSE metric in our tutorial.

Mean Absolute Error

It is the average of absolute difference between predicted values and true values. It has the

same units as predicted and true value and is always positive.

Page 588 of 580

Where, 𝑦’𝑡 is predicted value,

𝑦𝑡 is actual value and n is total number of values in test set.

However, the disadvantage of using this error is that the positive error and negative errors

can offset each other. Hence mean absolute percentage error is used.

Mean Absolute Percentage Error

It is the percentage of average of absolute difference between predicted values and

true values, divided by the true value.

Where 𝑦’𝑡 is predicted value
𝑦𝑡 is actual value, and
n is total number of values in test set.

Day-05: Time Series – Applications

We discussed time series analysis in this tutorial, which has given us the understanding that time series

models first recognize the trend and seasonality from the existing observations and then forecast a

value based on this trend and seasonality. Such analysis is useful in various fields such as:

• Financial Analysis: It includes sales forecasting, inventory analysis, stock market analysis, price

estimation.

• Weather Analysis: It includes temperature estimation, climate change, seasonal shift

recognition, weather forecasting.

• Network Data Analysis: It includes network usage prediction, anomaly or intrusion detection,

predictive maintenance.

• Healthcare Analysis: It includes census prediction, insurance benefits prediction, patient

monitoring.

Time Series – Further Scope
Machine learning deals with various kinds of problems. In fact, almost all fields have a scope to be
automatized or improved with the help of machine learning. A few such problems on which a great deal of
work is being done are given below.

Time Series Data
This is the data which changes according to time, and hence time plays a crucial role in it,
which we largely discussed in this tutorial.

Page 589 of 580

Non-Time Series Data
It is the data independent of time, and a major percentage of ML problems are on non time series

data. For simplicity, we shall categorize it further as:

• Numerical Data: Computers, unlike humans, only understand numbers, so all kinds of data

ultimately is converted to numerical data for machine learning, for example, image data is

converted to (r,b,g) values, characters are converted to ASCII codes or words are indexed to

numbers, speech data is converted to mfcc files containing numerical data.

• Image Data: Computer vision has revolutionized the world of computers, it has

• various applications in the field of medicine, satellite imaging etc.

• Text Data: Natural Language Processing (NLP) is used for text classification, paraphrase

detection and language summarization. This is what makes Google and Facebook smart.

• Speech Data: Speech Processing involves speech recognition and sentimental understanding.

It plays a crucial role in imparting to computers human-like qualities.

Now, Stdents are required to explore the projects related to time series analysis and forecasting and

presents their proposal for further discussion and refinement.

Page 590 of 580

Week 10 & 11: Data Analysis Projects

In these two weeks there will be discussion and working on Advanced Data Analysis

Techniques and working on project in group of (2-3) students. Topics listed below will be

discussed based on the profile of the students, learning and coverage. The following topics will

be discussed, and notes will be shared with students in soft format. The projects will be

developed using google labs for collaborative working of groups.

Advanced Analytics is the autonomous or semi-autonomous examination of data or content using
sophisticated techniques and tools, typically beyond those of traditional business intelligence (BI), to
discover deeper insights, make predictions, or generate recommendations.

Advanced analytic techniques include data/text mining, machine learning, pattern matching,
forecasting, visualization, semantic analysis, sentiment analysis, network and cluster analysis,
multivariate statistics, graph analysis, simulation, complex event processing, and neural networks.

Page 591 of 580

List of resources & Acknoledgements:

1. Starting Out with Python[4th Globa lED] by Tony Gaddis

2. Python for Data Analysis by Wes McKinney

3. Python Data Science Handbook, Essential Tools for Working with Data by Beijing Boston

4. Data Science by Lillian Pierson 3rd Edition

5. Python Data Visualization Cookbook by Igor Milovanović
6. Natural Language Processing with Python by Steven Bird, Ewan Klein, and Edward Loper

7. https://realpython.com/python-data-visualization-bokeh/

8. https://github.com/osanchez2323/Portfolio/blob/master/NBA%20Draft%20Analysis/

9. https://docs.bokeh.org/en/latest/

10. https://pandas.pydata.org/

11. https://matplotlib.org/

12. https://dash.plotly.com/

